organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Amino-N′-(2-hy­dr­oxy-5-meth­­oxy­benzyl­­idene)benzohydrazide monohydrate

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 7 June 2012; accepted 12 June 2012; online 4 July 2012)

In the title compound, C15H15N3O3·H2O, the hydazide Schiff base mol­ecule shows an E conformation around the C=N bond. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. The dihedral angle between the substituted phenyl rings is 23.40 (11)°. The water mol­ecule mediates linking of neighbouring mol­ecules through O—H⋯(O,O) hydrogen bonds into infinite chains along the a axis, which are further connected together through N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). C—H⋯O inter­actions aso occur.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For 4-amino­benzohydrazide-derived Schiff base structures, see: Xu (2012[Xu, S.-Q. (2012). Acta Cryst. E68, o1320.]); Shi & Li (2012[Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546-o1547.]); Bakir & Green (2002[Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263-o265.]); Kargar et al. (2012a[Kargar, H., Kia, R. & Tahir, M. N. (2012a). Acta Cryst. E68, o2118-o2119.],b[Kargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, o2120.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O3·H2O

  • Mr = 303.32

  • Monoclinic, P 21

  • a = 4.7376 (5) Å

  • b = 13.270 (2) Å

  • c = 11.7265 (16) Å

  • β = 98.459 (4)°

  • V = 729.18 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.982

  • 6511 measured reflections

  • 1679 independent reflections

  • 1433 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.03

  • 1679 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1i 0.92 2.00 2.926 (3) 174
O2—H2⋯N3 0.93 1.85 2.650 (3) 143
O1W—H2W1⋯O1ii 0.83 1.95 2.787 (3) 176
N2—H2N⋯O1W 0.95 2.15 3.084 (3) 167
N1—H1N1⋯O3iii 0.93 2.25 3.043 (3) 143
N1—H2N1⋯O2i 0.99 2.17 3.141 (3) 169
C2—H2A⋯O1W 0.93 2.45 3.351 (3) 163
C8—H8A⋯O1W 0.93 2.56 3.368 (3) 146
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) x+2, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])'; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore the structure of the new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The asymmetric unit of the title compound, Fig. 1, comprises a molecule of the title hydazide Schiff base and a water molecule of crystallization. It shows E conformation around CN bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). Intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the substituted phenyl rings is 23.40 (11)Å. The water molecule mediates linking of the neighboring molecules through O—H···(O, O) hydrogen bondings into infinite chains along the a axis which are further connected together through N—H···O hydrogen bonds, forming two-dimensional network parallel to (0 0 1) [Fig. 2].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002); Kargar et al. (2012a,b).

Experimental top

The title compound was synthesized by adding 1 mmol of methyl 4-aminobenzoate to a solution of 5-methoxysalicylaldehyde (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 50 min and after cooling to room temperature a light-yellow precipitate was filtered and washed with diethylether and dried in air. white prismatic crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The N- and O-bound H-atoms were located in a difference Fourier map and constrained to refine to the parent atoms with Uiso (H) = 1.2 or 1.5 Ueq(N, O), respectively, see Table 1. The rest of the H atoms were positioned by riding model approximation with C—H = 0.93 and Uiso (H) = k × Ueq(C) with k = 1.2 for CH and 1.5 for CH3. In the absence of sufficient anomalous scattering 1437 Friedel pairs were merged.

Structure description top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). In order to explore the structure of the new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The asymmetric unit of the title compound, Fig. 1, comprises a molecule of the title hydazide Schiff base and a water molecule of crystallization. It shows E conformation around CN bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Kargar et al., 2012a,b; Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002). Intramolecular O—H···N hydrogen bond makes S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the substituted phenyl rings is 23.40 (11)Å. The water molecule mediates linking of the neighboring molecules through O—H···(O, O) hydrogen bondings into infinite chains along the a axis which are further connected together through N—H···O hydrogen bonds, forming two-dimensional network parallel to (0 0 1) [Fig. 2].

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002); Kargar et al. (2012a,b).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008)'; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines shows the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A view along the a axis of crystal packing of the title compound, showing linking of molecules through the intermolecular N—H···O and O—H···O interactions (dashed lines), forming two-dimensional networks. Only the H atoms involved in the interactions are shown.
(E)-4-Amino-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C15H15N3O3·H2OF(000) = 320
Mr = 303.32Dx = 1.381 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 873 reflections
a = 4.7376 (5) Åθ = 2.5–28.5°
b = 13.270 (2) ŵ = 0.10 mm1
c = 11.7265 (16) ÅT = 291 K
β = 98.459 (4)°Prism, white
V = 729.18 (17) Å30.28 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1679 independent reflections
Radiation source: fine-focus sealed tube1433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 56
Tmin = 0.972, Tmax = 0.982k = 1717
6511 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.0579P]
where P = (Fo2 + 2Fc2)/3
1679 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C15H15N3O3·H2OV = 729.18 (17) Å3
Mr = 303.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.7376 (5) ŵ = 0.10 mm1
b = 13.270 (2) ÅT = 291 K
c = 11.7265 (16) Å0.28 × 0.20 × 0.18 mm
β = 98.459 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1433 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.028
6511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
1679 reflectionsΔρmin = 0.13 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2636 (4)0.77661 (14)0.05541 (17)0.0508 (5)
O20.2127 (4)0.80740 (14)0.21112 (17)0.0525 (5)
H20.10700.78230.15700.079*
O30.7483 (4)0.51216 (16)0.43124 (16)0.0576 (6)
O1W0.2220 (4)0.39655 (14)0.06445 (17)0.0554 (5)
H1W10.39150.36180.06550.083*
H2W10.07240.36280.06020.083*
N10.9460 (5)0.49031 (19)0.3593 (2)0.0563 (6)
H1N11.00850.52620.41860.084*
H2N11.03250.42840.32290.084*
N20.1583 (4)0.62403 (16)0.01294 (17)0.0385 (5)
H2N0.17760.55300.01640.046*
N30.0003 (4)0.66404 (16)0.09130 (17)0.0380 (5)
C10.4541 (4)0.6311 (2)0.1357 (2)0.0343 (5)
C20.5460 (5)0.53219 (18)0.1196 (2)0.0389 (6)
H2A0.49450.49560.05820.047*
C30.7107 (5)0.48700 (19)0.1917 (2)0.0424 (6)
H3A0.77180.42090.17780.051*
C40.7876 (5)0.5391 (2)0.2859 (2)0.0409 (6)
C50.6937 (6)0.6372 (2)0.3037 (2)0.0470 (6)
H5A0.74070.67320.36640.056*
C60.5309 (5)0.6824 (2)0.2298 (2)0.0439 (6)
H6A0.47140.74870.24320.053*
C70.2861 (5)0.68406 (19)0.0575 (2)0.0359 (5)
C80.1204 (5)0.59925 (19)0.1497 (2)0.0388 (6)
H8A0.09470.53090.13700.047*
C90.2965 (5)0.6304 (2)0.2356 (2)0.0357 (5)
C100.3358 (5)0.7308 (2)0.2623 (2)0.0386 (5)
C110.5064 (5)0.7548 (2)0.3461 (2)0.0462 (7)
H11A0.53150.82190.36510.055*
C120.6366 (6)0.6808 (2)0.4005 (2)0.0459 (7)
H12A0.74890.69810.45620.055*
C130.6028 (5)0.5804 (2)0.3732 (2)0.0421 (6)
C140.4317 (5)0.5551 (2)0.2919 (2)0.0404 (6)
H14A0.40580.48770.27430.049*
C150.7400 (8)0.4101 (3)0.3976 (3)0.0687 (9)
H15A0.86670.37130.43720.103*
H15B0.54910.38480.41690.103*
H15C0.79860.40470.31590.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (10)0.0383 (11)0.0708 (13)0.0017 (8)0.0294 (9)0.0014 (9)
O20.0604 (11)0.0439 (11)0.0593 (12)0.0043 (9)0.0290 (10)0.0038 (9)
O30.0680 (13)0.0610 (13)0.0512 (12)0.0032 (10)0.0335 (10)0.0064 (9)
O1W0.0532 (11)0.0398 (10)0.0783 (14)0.0022 (9)0.0271 (10)0.0019 (9)
N10.0682 (15)0.0580 (15)0.0502 (13)0.0072 (13)0.0343 (12)0.0005 (12)
N20.0362 (10)0.0410 (11)0.0421 (11)0.0000 (10)0.0183 (9)0.0052 (10)
N30.0316 (10)0.0471 (12)0.0378 (11)0.0012 (9)0.0138 (8)0.0056 (9)
C10.0305 (11)0.0378 (13)0.0363 (12)0.0033 (10)0.0101 (9)0.0029 (10)
C20.0437 (13)0.0367 (13)0.0406 (13)0.0007 (11)0.0199 (11)0.0026 (10)
C30.0483 (14)0.0364 (14)0.0460 (14)0.0041 (11)0.0182 (12)0.0000 (11)
C40.0390 (13)0.0484 (15)0.0385 (13)0.0013 (11)0.0161 (11)0.0050 (11)
C50.0570 (15)0.0480 (16)0.0407 (14)0.0011 (13)0.0227 (12)0.0104 (12)
C60.0526 (15)0.0372 (14)0.0452 (14)0.0025 (12)0.0184 (12)0.0028 (11)
C70.0282 (11)0.0386 (14)0.0421 (14)0.0011 (10)0.0093 (10)0.0026 (11)
C80.0372 (12)0.0430 (14)0.0386 (13)0.0039 (10)0.0135 (10)0.0034 (10)
C90.0293 (11)0.0459 (14)0.0331 (12)0.0025 (11)0.0084 (9)0.0032 (11)
C100.0365 (13)0.0452 (14)0.0356 (12)0.0012 (11)0.0103 (10)0.0003 (11)
C110.0495 (15)0.0501 (17)0.0412 (14)0.0055 (12)0.0143 (12)0.0084 (12)
C120.0466 (14)0.0589 (18)0.0353 (13)0.0068 (13)0.0166 (11)0.0042 (13)
C130.0413 (14)0.0544 (16)0.0326 (13)0.0031 (12)0.0118 (11)0.0027 (12)
C140.0422 (13)0.0427 (14)0.0391 (13)0.0072 (11)0.0148 (11)0.0014 (11)
C150.091 (2)0.0530 (19)0.070 (2)0.0032 (17)0.0381 (19)0.0106 (16)
Geometric parameters (Å, º) top
O1—C71.233 (3)C3—H3A0.9300
O2—C101.355 (3)C4—C51.383 (4)
O2—H20.9261C5—C61.379 (3)
O3—C131.377 (3)C5—H5A0.9300
O3—C151.413 (4)C6—H6A0.9300
O1W—H1W10.9247C8—C91.459 (3)
O1W—H2W10.8339C8—H8A0.9300
N1—C41.383 (3)C9—C101.387 (4)
N1—H1N10.9272C9—C141.403 (4)
N1—H2N10.9864C10—C111.398 (3)
N2—C71.353 (3)C11—C121.366 (4)
N2—N31.376 (3)C11—H11A0.9300
N2—H2N0.9473C12—C131.386 (4)
N3—C81.284 (3)C12—H12A0.9300
C1—C21.387 (3)C13—C141.381 (3)
C1—C61.390 (3)C14—H14A0.9300
C1—C71.478 (3)C15—H15A0.9600
C2—C31.370 (3)C15—H15B0.9600
C2—H2A0.9300C15—H15C0.9600
C3—C41.396 (3)
C10—O2—H2110.2O1—C7—C1122.8 (2)
C13—O3—C15117.1 (2)N2—C7—C1115.4 (2)
H1W1—O1W—H2W1117.5N3—C8—C9121.5 (2)
C4—N1—H1N1119.3N3—C8—H8A119.3
C4—N1—H2N1110.4C9—C8—H8A119.3
H1N1—N1—H2N1126.4C10—C9—C14119.5 (2)
C7—N2—N3121.2 (2)C10—C9—C8122.5 (2)
C7—N2—H2N124.2C14—C9—C8118.0 (2)
N3—N2—H2N114.5O2—C10—C9122.7 (2)
C8—N3—N2115.2 (2)O2—C10—C11118.1 (2)
C2—C1—C6117.3 (2)C9—C10—C11119.2 (2)
C2—C1—C7123.5 (2)C12—C11—C10120.8 (3)
C6—C1—C7119.2 (2)C12—C11—H11A119.6
C3—C2—C1121.7 (2)C10—C11—H11A119.6
C3—C2—H2A119.1C11—C12—C13120.6 (2)
C1—C2—H2A119.1C11—C12—H12A119.7
C2—C3—C4120.7 (2)C13—C12—H12A119.7
C2—C3—H3A119.7O3—C13—C14124.7 (3)
C4—C3—H3A119.7O3—C13—C12115.8 (2)
C5—C4—N1122.6 (2)C14—C13—C12119.5 (2)
C5—C4—C3118.1 (2)C13—C14—C9120.5 (2)
N1—C4—C3119.3 (2)C13—C14—H14A119.8
C6—C5—C4120.8 (2)C9—C14—H14A119.8
C6—C5—H5A119.6O3—C15—H15A109.5
C4—C5—H5A119.6O3—C15—H15B109.5
C5—C6—C1121.5 (2)H15A—C15—H15B109.5
C5—C6—H6A119.3O3—C15—H15C109.5
C1—C6—H6A119.3H15A—C15—H15C109.5
O1—C7—N2121.8 (2)H15B—C15—H15C109.5
C7—N2—N3—C8177.2 (2)N3—C8—C9—C102.5 (3)
C6—C1—C2—C31.3 (3)N3—C8—C9—C14177.0 (2)
C7—C1—C2—C3177.5 (2)C14—C9—C10—O2179.8 (2)
C1—C2—C3—C41.2 (4)C8—C9—C10—O20.3 (4)
C2—C3—C4—C50.2 (4)C14—C9—C10—C110.9 (3)
C2—C3—C4—N1177.9 (2)C8—C9—C10—C11179.6 (2)
N1—C4—C5—C6178.6 (3)O2—C10—C11—C12179.8 (2)
C3—C4—C5—C60.6 (4)C9—C10—C11—C120.8 (4)
C4—C5—C6—C10.5 (4)C10—C11—C12—C130.2 (4)
C2—C1—C6—C50.4 (4)C15—O3—C13—C145.6 (4)
C7—C1—C6—C5178.4 (2)C15—O3—C13—C12174.2 (3)
N3—N2—C7—O10.8 (4)C11—C12—C13—O3178.6 (2)
N3—N2—C7—C1178.87 (19)C11—C12—C13—C141.2 (4)
C2—C1—C7—O1162.1 (2)O3—C13—C14—C9178.7 (2)
C6—C1—C7—O116.6 (4)C12—C13—C14—C91.1 (4)
C2—C1—C7—N217.6 (3)C10—C9—C14—C130.0 (3)
C6—C1—C7—N2163.7 (2)C8—C9—C14—C13179.4 (2)
N2—N3—C8—C9179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.922.002.926 (3)174
O2—H2···N30.931.852.650 (3)143
O1W—H2W1···O1ii0.831.952.787 (3)176
N2—H2N···O1W0.952.153.084 (3)167
N1—H1N1···O3iii0.932.253.043 (3)143
N1—H2N1···O2i0.992.173.141 (3)169
C2—H2A···O1W0.932.453.351 (3)163
C8—H8A···O1W0.932.563.368 (3)146
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1/2, z; (iii) x+2, y, z1.

Experimental details

Crystal data
Chemical formulaC15H15N3O3·H2O
Mr303.32
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)4.7376 (5), 13.270 (2), 11.7265 (16)
β (°) 98.459 (4)
V3)729.18 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6511, 1679, 1433
Rint0.028
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.03
No. of reflections1679
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)', SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1i0.92002.00002.926 (3)174
O2—H2···N30.93001.85002.650 (3)143
O1W—H2W1···O1ii0.83001.95002.787 (3)176
N2—H2N···O1W0.95002.15003.084 (3)167
N1—H1N1···O3iii0.93002.25003.043 (3)143
N1—H2N1···O2i0.99002.17003.141 (3)169
C2—H2A···O1W0.93002.45003.351 (3)163
C8—H8A···O1W0.93002.56003.368 (3)146
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y1/2, z; (iii) x+2, y, z1.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012a). Acta Cryst. E68, o2118–o2119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, o2120.  CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546–o1547.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-Q. (2012). Acta Cryst. E68, o1320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds