organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Fluoro­pyridin-5-yl)phenol

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K., Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 10 June 2012; accepted 11 June 2012; online 16 June 2012)

In the title compound, C11H8FNO, the aromatic rings are oriented at a dihedral angle of 31.93 (6)°. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming C(9) chains propagating along the c-axis direction. There are aromatic ππ stacking inter­actions between the pyridine rings [centroid–centroid separation = 3.7238 (16) Å].

Related literature

For related structures, see: Adeel et al. (2012[Adeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.]); Elahi et al. (2012[Elahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8FNO

  • Mr = 189.18

  • Orthorhombic, P b c a

  • a = 12.275 (3) Å

  • b = 7.4343 (11) Å

  • c = 19.328 (3) Å

  • V = 1763.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 7508 measured reflections

  • 1732 independent reflections

  • 896 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.123

  • S = 1.00

  • 1732 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.08 2.891 (3) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structure of 5-(4-fluorophenyl)-2-fluoropyridine (Elahi et al., 2012) and 5-(4-chlorophenyl)-2-fluoropyridine (Adeel et al., 2012) which are related to (I).

In (I) the 4-hydroxybenzene A (C1–C6/O1) and the 2-fluoropyridine B (C7—C11/N1/F1) are planar with r.m.s. deviations of 0.0222 Å and 0.0154 Å. The dihedral angle between A/B is 31.93 (6)°. There molecules are stabilized in the form of one-dimensional C(9) chains along the c-axis due to H-bondings of O—H···N type between hydroxy and pyridine groups (Table 1, Fig. 2). There exist ππ interaction between Cg1···Cg1i [i = 1/2 - x, -1/2 + y, z] and Cg1···Cg1ii [ii = 1/2 - x, 1/2 + y, z] at a distance of 3.7238 (16) Å, where Cg1 is the centroid of pyridine ring.

Related literature top

For related structures, see: Adeel et al. (2012); Elahi et al. (2012).

Experimental top

To a 6 ml solution of 5-bromo-2-fluoropyridine (0.2 g, 1.136 mmol), 4-hydroxyphenylboronic acid (0.190 g, 1.36 mmol) in dioxane and K3PO4 (0.361 g, 1.5 mmol, in 1 ml H2O) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added. The aqueous layer was extracted three times with EtOAc(3×15 ml). The organic layer was evaporated in vacuo and title compound was obtained as light brown solid. Yield: 0.191 g, 89%. M.p. 350–352 K. Crystallization from a saturated solution of CHCl3 /CH3OH gave light brown plates.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Structure description top

We have reported the crystal structure of 5-(4-fluorophenyl)-2-fluoropyridine (Elahi et al., 2012) and 5-(4-chlorophenyl)-2-fluoropyridine (Adeel et al., 2012) which are related to (I).

In (I) the 4-hydroxybenzene A (C1–C6/O1) and the 2-fluoropyridine B (C7—C11/N1/F1) are planar with r.m.s. deviations of 0.0222 Å and 0.0154 Å. The dihedral angle between A/B is 31.93 (6)°. There molecules are stabilized in the form of one-dimensional C(9) chains along the c-axis due to H-bondings of O—H···N type between hydroxy and pyridine groups (Table 1, Fig. 2). There exist ππ interaction between Cg1···Cg1i [i = 1/2 - x, -1/2 + y, z] and Cg1···Cg1ii [ii = 1/2 - x, 1/2 + y, z] at a distance of 3.7238 (16) Å, where Cg1 is the centroid of pyridine ring.

For related structures, see: Adeel et al. (2012); Elahi et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form C(9) chains extending along [001].
4-(2-Fluoropyridin-5-yl)phenol top
Crystal data top
C11H8FNOF(000) = 784
Mr = 189.18Dx = 1.425 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 869 reflections
a = 12.275 (3) Åθ = 2.1–26.0°
b = 7.4343 (11) ŵ = 0.11 mm1
c = 19.328 (3) ÅT = 296 K
V = 1763.8 (6) Å3Plate, light brown
Z = 80.28 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1732 independent reflections
Radiation source: fine-focus sealed tube896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 156
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.975, Tmax = 0.985l = 1723
7508 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0483P)2]
where P = (Fo2 + 2Fc2)/3
1732 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H8FNOV = 1763.8 (6) Å3
Mr = 189.18Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.275 (3) ŵ = 0.11 mm1
b = 7.4343 (11) ÅT = 296 K
c = 19.328 (3) Å0.28 × 0.22 × 0.18 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
896 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.064
7508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
1732 reflectionsΔρmin = 0.18 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.16138 (14)0.0574 (2)0.57218 (6)0.0807 (7)
O10.44529 (15)0.4234 (3)0.12632 (8)0.0611 (8)
N10.3071 (2)0.1137 (3)0.50603 (9)0.0532 (9)
C10.3319 (2)0.2565 (3)0.31870 (11)0.0361 (9)
C20.4308 (2)0.3444 (3)0.31099 (12)0.0414 (9)
C30.4687 (2)0.3971 (3)0.24670 (12)0.0439 (10)
C40.4071 (2)0.3622 (3)0.18829 (12)0.0416 (9)
C50.3108 (2)0.2682 (3)0.19463 (11)0.0449 (10)
C60.2736 (2)0.2170 (3)0.25895 (10)0.0419 (9)
C70.2856 (2)0.2081 (3)0.38699 (11)0.0367 (9)
C80.1738 (2)0.2085 (3)0.39711 (12)0.0462 (10)
C90.1293 (2)0.1575 (3)0.45939 (12)0.0520 (11)
C100.2008 (3)0.1116 (3)0.51007 (12)0.0524 (10)
C110.3492 (2)0.1610 (3)0.44353 (11)0.0470 (10)
H10.398770.408310.096430.0916*
H20.472730.368480.349990.0497*
H30.535300.455720.242760.0527*
H50.270720.239250.155330.0540*
H60.208150.154700.262470.0503*
H80.128170.243780.361180.0555*
H90.054360.154580.466430.0624*
H110.424530.161700.438410.0565*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0964 (16)0.1031 (13)0.0427 (9)0.0147 (11)0.0132 (9)0.0107 (8)
O10.0498 (15)0.0910 (14)0.0424 (10)0.0135 (11)0.0072 (9)0.0057 (10)
N10.066 (2)0.0596 (15)0.0339 (13)0.0057 (14)0.0004 (12)0.0012 (10)
C10.0395 (18)0.0352 (13)0.0335 (14)0.0013 (12)0.0020 (12)0.0030 (10)
C20.0406 (18)0.0456 (14)0.0380 (14)0.0002 (13)0.0052 (12)0.0044 (10)
C30.0363 (18)0.0471 (16)0.0484 (16)0.0038 (13)0.0056 (13)0.0035 (11)
C40.0421 (19)0.0493 (15)0.0335 (15)0.0028 (14)0.0063 (13)0.0012 (11)
C50.045 (2)0.0555 (16)0.0341 (15)0.0048 (14)0.0050 (12)0.0024 (11)
C60.0418 (18)0.0457 (15)0.0382 (15)0.0071 (13)0.0006 (13)0.0018 (11)
C70.0412 (19)0.0336 (13)0.0354 (14)0.0023 (12)0.0028 (13)0.0028 (10)
C80.049 (2)0.0521 (16)0.0376 (16)0.0036 (14)0.0005 (14)0.0011 (11)
C90.048 (2)0.0627 (18)0.0453 (17)0.0060 (15)0.0049 (15)0.0046 (12)
C100.069 (2)0.0544 (17)0.0339 (17)0.0055 (17)0.0102 (17)0.0002 (12)
C110.050 (2)0.0504 (16)0.0405 (16)0.0029 (14)0.0015 (14)0.0054 (11)
Geometric parameters (Å, º) top
F1—C101.356 (3)C7—C81.386 (3)
O1—C41.364 (3)C7—C111.388 (3)
O1—H10.8200C8—C91.375 (3)
N1—C111.360 (3)C9—C101.359 (4)
N1—C101.307 (4)C2—H20.9300
C1—C21.387 (3)C3—H30.9300
C1—C71.481 (3)C5—H50.9300
C1—C61.390 (3)C6—H60.9300
C2—C31.384 (3)C8—H80.9300
C3—C41.383 (3)C9—H90.9300
C4—C51.379 (3)C11—H110.9300
C5—C61.378 (3)
C4—O1—H1109.00N1—C10—C9126.8 (2)
C10—N1—C11115.8 (2)F1—C10—C9118.9 (3)
C2—C1—C6117.5 (2)N1—C11—C7123.4 (2)
C6—C1—C7119.4 (2)C1—C2—H2119.00
C2—C1—C7123.1 (2)C3—C2—H2119.00
C1—C2—C3121.6 (2)C2—C3—H3120.00
C2—C3—C4119.7 (2)C4—C3—H3120.00
O1—C4—C5122.8 (2)C4—C5—H5120.00
C3—C4—C5119.4 (2)C6—C5—H5120.00
O1—C4—C3117.8 (2)C1—C6—H6119.00
C4—C5—C6120.3 (2)C5—C6—H6119.00
C1—C6—C5121.4 (2)C7—C8—H8119.00
C1—C7—C8120.3 (2)C9—C8—H8119.00
C1—C7—C11123.2 (2)C8—C9—H9122.00
C8—C7—C11116.5 (2)C10—C9—H9122.00
C7—C8—C9121.1 (2)N1—C11—H11118.00
C8—C9—C10116.3 (2)C7—C11—H11118.00
F1—C10—N1114.4 (2)
C11—N1—C10—F1177.63 (19)C2—C3—C4—O1177.2 (2)
C11—N1—C10—C92.5 (4)C2—C3—C4—C52.8 (3)
C10—N1—C11—C71.2 (3)O1—C4—C5—C6176.9 (2)
C6—C1—C2—C32.3 (3)C3—C4—C5—C63.1 (3)
C7—C1—C2—C3176.1 (2)C4—C5—C6—C10.7 (4)
C2—C1—C6—C52.0 (3)C1—C7—C8—C9177.6 (2)
C7—C1—C6—C5176.5 (2)C11—C7—C8—C92.6 (3)
C2—C1—C7—C8146.8 (2)C1—C7—C11—N1178.9 (2)
C2—C1—C7—C1133.1 (3)C8—C7—C11—N11.2 (3)
C6—C1—C7—C831.6 (3)C7—C8—C9—C101.5 (3)
C6—C1—C7—C11148.5 (2)C8—C9—C10—F1178.9 (2)
C1—C2—C3—C40.1 (3)C8—C9—C10—N11.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.082.891 (3)168
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H8FNO
Mr189.18
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.275 (3), 7.4343 (11), 19.328 (3)
V3)1763.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7508, 1732, 896
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 1.00
No. of reflections1732
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.082.891 (3)168
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges financial support from the World University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

References

First citationAdeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds