metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(acetato-κ2O,O′)[2-(3,5-di­methyl-1H-pyrazol-1-yl-κN2)quinoline-κN]zinc(II)

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 4 June 2012; accepted 5 June 2012; online 13 June 2012)

The ZnII atom in the title compound, [Zn(C2H3O2)2(C14H13N3)], is coordinated by an N2O3 donor set defined by the quinolinyl- and pyrazolyl-N atoms of the chelating heterocyclic ligand, and three carboxyl­ate-O atoms derived from the monodentate and bidentate carboxyl­ate ligands. Distortions from the ideal square-pyramidal coordination geometry relate to the restricted bite angle of the chelating ligands, i.e. O—Zn—O = 59.65 (5) and N—Zn—N = 76.50 (6)°, and the close approach of the non-coordinating carbonyl atom [Zn⋯O = 2.858 (2) Å]. In the crystal, mol­ecules are consolidated into a three-dimensional architecture by C—H⋯O inter­actions

Related literature

For background to luminescent coordination complexes, see: Bai et al. (2011[Bai, S.-Q., Young, D. J. & Hor, T. S. A. (2011). Chem. Asian J. 6, 292-304.], 2012[Bai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961-971.]); Chou et al. (2011[Chou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653-2665.]); Wang (2001[Wang, S. (2001). Coord. Chem. Rev. 215, 79-98.]). For the synthesis, see: Savel'eva et al. (2009[Savel'eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull., Int. Ed. 58, 1837-1840.]); Scott et al. (1952[Scott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444-3445.]). For the structure of the dichlorido analogue, see: Najib et al. (2012[Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571-m572.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)2(C14H13N3)]

  • Mr = 406.73

  • Triclinic, [P \overline 1]

  • a = 7.6586 (4) Å

  • b = 10.7334 (6) Å

  • c = 11.5772 (4) Å

  • α = 69.437 (4)°

  • β = 81.546 (3)°

  • γ = 72.736 (4)°

  • V = 849.93 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.27 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.617, Tmax = 1.000

  • 6205 measured reflections

  • 3498 independent reflections

  • 3322 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.03

  • 3498 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 2.0388 (14)
Zn—O2 2.3240 (15)
Zn—O3 1.9397 (13)
Zn—N1 2.0570 (15)
Zn—N3 2.1460 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O3i 0.98 2.57 3.544 (2) 176
C5—H5A⋯O2ii 0.98 2.60 3.417 (3) 141
C7—H7⋯O2ii 0.95 2.56 3.235 (2) 128
C9—H9C⋯O4iii 0.98 2.36 3.274 (2) 156
C12—H12⋯O1iv 0.95 2.51 3.310 (2) 142
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z+2; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Many ZnII complexes of nitrogen-containing ligands exhibit intense emission at room temperature (Wang, 2001; Chou et al., 2011; Bai et al., 2011; Bai et al., 2012). The title compound was prepared as part of a series of potentially luminescent coordination complexes for use in organic light emitting diode (OLED) materials. We have previously reported the solid-state structure of dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-2)quinoline]zinc(II) (Najib et al., 2012), i.e. the dichlorido analogue of the title compound, (I).

The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms of the heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylates, Table 1. The resulting N2O3 donor set defines an approximate square pyramid with the Zn atom lying 0.8591 (8) Å out of the plane defined by the O1, O2, N1 and N3 atoms [r.m.s. deviation = 0.1122 Å] in the direction of the O3 atom. The assignment of coordination geometry is quantified by the value of τ = 0.06 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Significant distortions in the coordination geometry are apparent owing the restricted bite angles of the chelating ligands, i.e. O1—Zn—O2 = 59.65 (5)° and N1—Zn—N3 = 76.50 (6)°. Further distortions are related to the relatively close approach of the O4 atom to Zn, the Zn···O4 separation is 2.858 (2) Å. The five-membered chelate ring is approximately planar with a r.m.s. deviation = 0.088 Å and with maximum deviations of 0.074 (2) and -0.057 (1) Å for the N1 and Zn atoms, respectively. The bidentate ligand is planar with the dihedral angle between the quinolinyl and pyrazolyl rings being 2.14 (6)°.

Molecules are consolidated into a three-dimensional architecture by C—H···O interactions, Fig. 2 and Table 2.

Related literature top

For background to luminescent coordination complexes, see: Bai et al. (2011, 2012); Chou et al. (2011); Wang (2001). For the synthesis, see: Savel'eva et al. (2009); Scott et al. (1952). For the structure of the dichlorido analogue, see: Najib et al. (2012). For additional geometric analysis, see: Addison et al. (1984).

Experimental top

The title compound was prepared by modification of a literature procedure (Savel'eva et al., 2009) and as previously described for the corresponding dichloride (Najib et al., 2012). 3,5-Dimethyl-1-(2'-quinolyl)pyrazole (0.0908 g), prepared as in the literature (Scott et al., 1952), in a mixture of EtOH (4 ml) and CH2Cl2 (2 ml) was added to a suspension of Zn(OAc)2 (0.0764 g) in EtOH (8 ml). The solution was heated to dissolve the Zn(OAc)2. Light-brown prisms formed over a period of 16 h and were collected by filtration, washed with EtOH and recrystallized from CH2Cl2/hexane. Yield 0.0733 g (44%). M.pt: 474 K. IR v/cm-1: 2925, 2864, 2365, 2323, 1604, 1507, 1424, 1388.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Many ZnII complexes of nitrogen-containing ligands exhibit intense emission at room temperature (Wang, 2001; Chou et al., 2011; Bai et al., 2011; Bai et al., 2012). The title compound was prepared as part of a series of potentially luminescent coordination complexes for use in organic light emitting diode (OLED) materials. We have previously reported the solid-state structure of dichlorido[2-(3,5-dimethyl-1H-pyrazol-1-yl-2)quinoline]zinc(II) (Najib et al., 2012), i.e. the dichlorido analogue of the title compound, (I).

The ZnII atom in (I), Fig. 1, is chelated by quinolinyl- and pyrazolyl-N atoms of the heterocyclic ligand, and three carboxylate-O atoms derived from the monodentate and bidentate carboxylates, Table 1. The resulting N2O3 donor set defines an approximate square pyramid with the Zn atom lying 0.8591 (8) Å out of the plane defined by the O1, O2, N1 and N3 atoms [r.m.s. deviation = 0.1122 Å] in the direction of the O3 atom. The assignment of coordination geometry is quantified by the value of τ = 0.06 which compares to the τ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Significant distortions in the coordination geometry are apparent owing the restricted bite angles of the chelating ligands, i.e. O1—Zn—O2 = 59.65 (5)° and N1—Zn—N3 = 76.50 (6)°. Further distortions are related to the relatively close approach of the O4 atom to Zn, the Zn···O4 separation is 2.858 (2) Å. The five-membered chelate ring is approximately planar with a r.m.s. deviation = 0.088 Å and with maximum deviations of 0.074 (2) and -0.057 (1) Å for the N1 and Zn atoms, respectively. The bidentate ligand is planar with the dihedral angle between the quinolinyl and pyrazolyl rings being 2.14 (6)°.

Molecules are consolidated into a three-dimensional architecture by C—H···O interactions, Fig. 2 and Table 2.

For background to luminescent coordination complexes, see: Bai et al. (2011, 2012); Chou et al. (2011); Wang (2001). For the synthesis, see: Savel'eva et al. (2009); Scott et al. (1952). For the structure of the dichlorido analogue, see: Najib et al. (2012). For additional geometric analysis, see: Addison et al. (1984).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of (I) in projection down the c axis. The C—H···O interactions are shown as orange dashed lines.
(Acetato-κO)(acetato-κ2O,O')[2-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)quinoline-κN]zinc(II) top
Crystal data top
[Zn(C2H3O2)2(C14H13N3)]Z = 2
Mr = 406.73F(000) = 420
Triclinic, P1Dx = 1.589 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.6586 (4) ÅCell parameters from 3775 reflections
b = 10.7334 (6) Åθ = 4.6–76.3°
c = 11.5772 (4) ŵ = 2.27 mm1
α = 69.437 (4)°T = 100 K
β = 81.546 (3)°Prism, light-brown
γ = 72.736 (4)°0.25 × 0.15 × 0.05 mm
V = 849.93 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3498 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3322 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.6°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1213
Tmin = 0.617, Tmax = 1.000l = 1114
6205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.5376P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C2H3O2)2(C14H13N3)]γ = 72.736 (4)°
Mr = 406.73V = 849.93 (7) Å3
Triclinic, P1Z = 2
a = 7.6586 (4) ÅCu Kα radiation
b = 10.7334 (6) ŵ = 2.27 mm1
c = 11.5772 (4) ÅT = 100 K
α = 69.437 (4)°0.25 × 0.15 × 0.05 mm
β = 81.546 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3498 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3322 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 1.000Rint = 0.021
6205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
3498 reflectionsΔρmin = 0.45 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.81157 (3)0.72065 (2)0.729830 (19)0.01539 (9)
O10.54802 (18)0.81205 (15)0.67857 (12)0.0237 (3)
O20.7235 (2)0.72283 (17)0.54526 (14)0.0333 (3)
O30.97606 (19)0.83912 (14)0.66803 (13)0.0251 (3)
O40.8163 (2)0.95459 (18)0.79237 (13)0.0346 (4)
N10.9903 (2)0.53183 (15)0.73964 (13)0.0157 (3)
N20.9663 (2)0.42401 (15)0.84284 (13)0.0148 (3)
N30.76154 (19)0.59226 (15)0.91411 (13)0.0147 (3)
C10.5715 (3)0.78835 (18)0.57607 (17)0.0191 (3)
C20.4136 (3)0.8434 (2)0.49227 (18)0.0247 (4)
H2A0.43330.78910.43660.037*
H2B0.40530.94010.44360.037*
H2C0.29960.83670.54210.037*
C30.9376 (3)0.93922 (19)0.71118 (16)0.0203 (4)
C41.0519 (3)1.0407 (2)0.65732 (18)0.0238 (4)
H4A1.00081.12020.68650.036*
H4B1.05151.07190.56700.036*
H4C1.17780.99610.68340.036*
C51.1702 (3)0.56456 (19)0.54237 (16)0.0216 (4)
H5A1.18230.51960.48000.032*
H5B1.28880.57730.55030.032*
H5C1.08010.65460.51710.032*
C61.1083 (2)0.47655 (18)0.66347 (16)0.0169 (3)
C71.1602 (2)0.33201 (18)0.71639 (16)0.0172 (3)
H71.24270.26860.68040.021*
C81.0696 (2)0.29988 (18)0.82920 (16)0.0162 (3)
C91.0774 (3)0.15864 (18)0.91825 (16)0.0197 (3)
H9A1.15980.08970.88380.029*
H9B0.95450.14410.93300.029*
H9C1.12310.14940.99640.029*
C100.8445 (2)0.45914 (18)0.93770 (15)0.0146 (3)
C110.8173 (2)0.35645 (18)1.04951 (16)0.0175 (3)
H110.88190.26241.06340.021*
C120.6956 (2)0.39558 (19)1.13728 (16)0.0186 (3)
H120.67350.32791.21270.022*
C130.6026 (2)0.53597 (18)1.11662 (16)0.0165 (3)
C140.4758 (2)0.5825 (2)1.20508 (16)0.0197 (4)
H140.44640.51761.28030.024*
C150.3960 (2)0.7202 (2)1.18233 (17)0.0212 (4)
H150.31290.75091.24230.025*
C160.4366 (2)0.81699 (19)1.06979 (17)0.0204 (4)
H160.38130.91261.05540.025*
C170.5549 (2)0.77526 (18)0.98073 (16)0.0183 (3)
H170.57880.84140.90470.022*
C180.6406 (2)0.63361 (18)1.00311 (15)0.0157 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.01744 (13)0.01236 (13)0.01501 (13)0.00462 (9)0.00080 (9)0.00227 (9)
O10.0225 (7)0.0315 (7)0.0164 (6)0.0077 (6)0.0021 (5)0.0058 (5)
O20.0279 (8)0.0360 (8)0.0346 (8)0.0037 (6)0.0070 (6)0.0178 (7)
O30.0254 (7)0.0173 (6)0.0335 (7)0.0087 (5)0.0018 (6)0.0067 (5)
O40.0350 (8)0.0474 (9)0.0219 (7)0.0177 (7)0.0070 (6)0.0096 (6)
N10.0193 (7)0.0134 (7)0.0132 (6)0.0059 (6)0.0005 (5)0.0015 (5)
N20.0172 (7)0.0121 (6)0.0133 (6)0.0044 (5)0.0012 (5)0.0012 (5)
N30.0159 (7)0.0141 (7)0.0139 (6)0.0045 (5)0.0019 (5)0.0034 (5)
C10.0218 (9)0.0131 (8)0.0210 (8)0.0073 (7)0.0013 (7)0.0013 (6)
C20.0265 (10)0.0261 (10)0.0220 (9)0.0074 (8)0.0060 (7)0.0062 (7)
C30.0231 (9)0.0210 (9)0.0125 (7)0.0048 (7)0.0062 (6)0.0009 (6)
C40.0294 (10)0.0212 (9)0.0253 (9)0.0116 (8)0.0022 (7)0.0103 (7)
C50.0258 (9)0.0205 (9)0.0179 (8)0.0085 (7)0.0030 (7)0.0053 (7)
C60.0178 (8)0.0186 (8)0.0159 (8)0.0062 (7)0.0010 (6)0.0063 (7)
C70.0180 (8)0.0163 (8)0.0188 (8)0.0048 (6)0.0019 (6)0.0070 (7)
C80.0173 (8)0.0139 (8)0.0184 (8)0.0037 (6)0.0040 (6)0.0055 (6)
C90.0232 (9)0.0134 (8)0.0201 (8)0.0032 (7)0.0030 (7)0.0034 (7)
C100.0153 (8)0.0150 (8)0.0139 (7)0.0056 (6)0.0022 (6)0.0031 (6)
C110.0204 (8)0.0145 (8)0.0167 (8)0.0056 (6)0.0020 (6)0.0026 (6)
C120.0205 (8)0.0183 (8)0.0148 (8)0.0075 (7)0.0015 (6)0.0007 (6)
C130.0151 (8)0.0196 (8)0.0161 (8)0.0071 (7)0.0018 (6)0.0049 (7)
C140.0187 (8)0.0255 (9)0.0152 (8)0.0078 (7)0.0001 (6)0.0058 (7)
C150.0166 (8)0.0288 (10)0.0206 (8)0.0053 (7)0.0002 (6)0.0118 (7)
C160.0171 (8)0.0205 (9)0.0246 (9)0.0034 (7)0.0029 (7)0.0089 (7)
C170.0177 (8)0.0168 (8)0.0203 (8)0.0049 (7)0.0027 (6)0.0049 (7)
C180.0151 (8)0.0178 (8)0.0150 (8)0.0059 (6)0.0024 (6)0.0041 (6)
Geometric parameters (Å, º) top
Zn—O12.0388 (14)C5—H5B0.9800
Zn—O22.3240 (15)C5—H5C0.9800
Zn—O31.9397 (13)C6—C71.406 (2)
Zn—N12.0570 (15)C7—C81.366 (2)
Zn—N32.1460 (14)C7—H70.9500
O1—C11.276 (2)C8—C91.494 (2)
O2—C11.243 (2)C9—H9A0.9800
O3—C31.279 (2)C9—H9B0.9800
O4—C31.239 (2)C9—H9C0.9800
N1—C61.327 (2)C10—C111.410 (2)
N1—N21.3752 (19)C11—C121.366 (3)
N2—C81.383 (2)C11—H110.9500
N2—C101.414 (2)C12—C131.412 (3)
N3—C101.326 (2)C12—H120.9500
N3—C181.383 (2)C13—C181.418 (2)
C1—C21.507 (3)C13—C141.422 (2)
C2—H2A0.9800C14—C151.365 (3)
C2—H2B0.9800C14—H140.9500
C2—H2C0.9800C15—C161.413 (3)
C3—C41.507 (3)C15—H150.9500
C4—H4A0.9800C16—C171.376 (3)
C4—H4B0.9800C16—H160.9500
C4—H4C0.9800C17—C181.411 (2)
C5—C61.491 (2)C17—H170.9500
C5—H5A0.9800
O3—Zn—O1115.05 (6)H5A—C5—H5C109.5
O3—Zn—N1100.66 (6)H5B—C5—H5C109.5
O1—Zn—N1133.70 (6)N1—C6—C7109.92 (15)
O3—Zn—N3130.20 (6)N1—C6—C5121.23 (16)
O1—Zn—N399.32 (5)C7—C6—C5128.84 (16)
N1—Zn—N376.50 (6)C8—C7—C6107.15 (16)
O3—Zn—O2100.51 (6)C8—C7—H7126.4
O1—Zn—O259.65 (5)C6—C7—H7126.4
N1—Zn—O286.61 (6)C7—C8—N2106.19 (15)
N3—Zn—O2128.42 (6)C7—C8—C9126.73 (16)
C1—O1—Zn96.11 (11)N2—C8—C9127.07 (15)
C1—O2—Zn83.96 (12)C8—C9—H9A109.5
C3—O3—Zn113.89 (12)C8—C9—H9B109.5
C6—N1—N2106.53 (14)H9A—C9—H9B109.5
C6—N1—Zn137.00 (12)C8—C9—H9C109.5
N2—N1—Zn115.34 (10)H9A—C9—H9C109.5
N1—N2—C8110.21 (13)H9B—C9—H9C109.5
N1—N2—C10116.43 (14)N3—C10—N2115.77 (14)
C8—N2—C10133.36 (14)N3—C10—C11123.55 (16)
C10—N3—C18118.69 (14)N2—C10—C11120.68 (15)
C10—N3—Zn114.76 (11)C12—C11—C10118.35 (16)
C18—N3—Zn126.25 (11)C12—C11—H11120.8
O2—C1—O1120.25 (17)C10—C11—H11120.8
O2—C1—C2120.74 (17)C11—C12—C13120.42 (16)
O1—C1—C2119.00 (17)C11—C12—H12119.8
C1—C2—H2A109.5C13—C12—H12119.8
C1—C2—H2B109.5C12—C13—C18117.95 (16)
H2A—C2—H2B109.5C12—C13—C14122.76 (16)
C1—C2—H2C109.5C18—C13—C14119.28 (16)
H2A—C2—H2C109.5C15—C14—C13120.20 (16)
H2B—C2—H2C109.5C15—C14—H14119.9
O4—C3—O3123.91 (18)C13—C14—H14119.9
O4—C3—C4120.51 (18)C14—C15—C16120.16 (17)
O3—C3—C4115.58 (16)C14—C15—H15119.9
C3—C4—H4A109.5C16—C15—H15119.9
C3—C4—H4B109.5C17—C16—C15121.15 (17)
H4A—C4—H4B109.5C17—C16—H16119.4
C3—C4—H4C109.5C15—C16—H16119.4
H4A—C4—H4C109.5C16—C17—C18119.54 (16)
H4B—C4—H4C109.5C16—C17—H17120.2
C6—C5—H5A109.5C18—C17—H17120.2
C6—C5—H5B109.5N3—C18—C17119.36 (15)
H5A—C5—H5B109.5N3—C18—C13121.01 (16)
C6—C5—H5C109.5C17—C18—C13119.63 (16)
O3—Zn—O1—C186.61 (12)Zn—N1—C6—C7165.93 (13)
N1—Zn—O1—C150.21 (13)N2—N1—C6—C5178.46 (15)
N3—Zn—O1—C1130.39 (11)Zn—N1—C6—C515.0 (3)
O2—Zn—O1—C11.07 (10)N1—C6—C7—C80.2 (2)
O3—Zn—O2—C1111.88 (12)C5—C6—C7—C8178.77 (18)
O1—Zn—O2—C11.10 (10)C6—C7—C8—N20.27 (19)
N1—Zn—O2—C1147.89 (12)C6—C7—C8—C9178.33 (17)
N3—Zn—O2—C178.10 (13)N1—N2—C8—C70.66 (19)
O1—Zn—O3—C365.51 (14)C10—N2—C8—C7179.74 (17)
N1—Zn—O3—C3144.72 (13)N1—N2—C8—C9177.92 (16)
N3—Zn—O3—C363.46 (15)C10—N2—C8—C91.2 (3)
O2—Zn—O3—C3126.78 (13)C18—N3—C10—N2179.97 (14)
O3—Zn—N1—C655.42 (18)Zn—N3—C10—N25.87 (19)
O1—Zn—N1—C685.47 (19)C18—N3—C10—C110.4 (3)
N3—Zn—N1—C6175.51 (19)Zn—N3—C10—C11174.50 (13)
O2—Zn—N1—C644.64 (18)N1—N2—C10—N32.6 (2)
O3—Zn—N1—N2138.85 (11)C8—N2—C10—N3176.44 (17)
O1—Zn—N1—N280.26 (13)N1—N2—C10—C11177.04 (15)
N3—Zn—N1—N29.79 (11)C8—N2—C10—C113.9 (3)
O2—Zn—N1—N2121.08 (12)N3—C10—C11—C121.6 (3)
C6—N1—N2—C80.80 (18)N2—C10—C11—C12178.81 (16)
Zn—N1—N2—C8169.09 (11)C10—C11—C12—C131.1 (3)
C6—N1—N2—C10179.95 (14)C11—C12—C13—C180.4 (3)
Zn—N1—N2—C1010.16 (18)C11—C12—C13—C14179.51 (17)
O3—Zn—N3—C10101.18 (13)C12—C13—C14—C15177.08 (17)
O1—Zn—N3—C10124.36 (12)C18—C13—C14—C152.0 (3)
N1—Zn—N3—C108.53 (12)C13—C14—C15—C161.1 (3)
O2—Zn—N3—C1065.92 (14)C14—C15—C16—C170.7 (3)
O3—Zn—N3—C1885.24 (15)C15—C16—C17—C181.5 (3)
O1—Zn—N3—C1849.22 (14)C10—N3—C18—C17178.31 (15)
N1—Zn—N3—C18177.89 (15)Zn—N3—C18—C178.3 (2)
O2—Zn—N3—C18107.66 (14)C10—N3—C18—C131.2 (2)
Zn—O2—C1—O11.76 (17)Zn—N3—C18—C13172.15 (12)
Zn—O2—C1—C2177.01 (16)C16—C17—C18—N3179.02 (16)
Zn—O1—C1—O22.01 (19)C16—C17—C18—C130.5 (3)
Zn—O1—C1—C2176.78 (14)C12—C13—C18—N31.6 (2)
Zn—O3—C3—O45.5 (2)C14—C13—C18—N3179.25 (15)
Zn—O3—C3—C4174.94 (12)C12—C13—C18—C17177.93 (16)
N2—N1—C6—C70.63 (19)C14—C13—C18—C171.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O3i0.982.573.544 (2)176
C5—H5A···O2ii0.982.603.417 (3)141
C7—H7···O2ii0.952.563.235 (2)128
C9—H9C···O4iii0.982.363.274 (2)156
C12—H12···O1iv0.952.513.310 (2)142
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)2(C14H13N3)]
Mr406.73
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6586 (4), 10.7334 (6), 11.5772 (4)
α, β, γ (°)69.437 (4), 81.546 (3), 72.736 (4)
V3)849.93 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.27
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.617, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6205, 3498, 3322
Rint0.021
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.03
No. of reflections3498
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.45

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Zn—O12.0388 (14)Zn—N12.0570 (15)
Zn—O22.3240 (15)Zn—N32.1460 (14)
Zn—O31.9397 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O3i0.982.573.544 (2)176
C5—H5A···O2ii0.982.603.417 (3)141
C7—H7···O2ii0.952.563.235 (2)128
C9—H9C···O4iii0.982.363.274 (2)156
C12—H12···O1iv0.952.513.310 (2)142
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z+2; (iv) x+1, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBai, S.-Q., Young, D. J. & Hor, T. S. A. (2011). Chem. Asian J. 6, 292–304.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBai, S.-Q., Young, A. M., Hu, J. J., Young, D. J., Zhang, X., Zong, Y., Xu, J., Zuo, J.-L. & Hor, T. S. A. (2012). CrystEngComm, 14, 961–971.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChou, P.-T., Chi, Y., Chung, M.-W. & Lin, C.-C. (2011). Coord. Chem. Rev. 255, 2653–2665.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNajib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m571–m572.  CSD CrossRef IUCr Journals Google Scholar
First citationSavel'eva, Z. A., Popov, S. A., Klevtsova, R. F., Glinskaya, L. A., Uskov, E. M., Tkachev, A. V. & Larionov, S. V. (2009). Russ. Chem. Bull., Int. Ed. 58, 1837–1840.  Google Scholar
First citationScott, F. L., Crowley, K. M. & Reilly, J. (1952). J. Am. Chem. Soc. 74, 3444–3445.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. (2001). Coord. Chem. Rev. 215, 79–98.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds