organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Bis[(4-meth­­oxy­phen­yl)sulfan­yl]-1-methyl­piperidin-2-one

aBioMat - Departmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos-SP, Brazil, bChemistry Institute, Universidade de São Paulo, 05508-000 São Paulo-SP, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 30 May 2012; accepted 2 June 2012; online 13 June 2012)

The piperidone ring in the title compound, C20H23NO3S2, has a distorted half-chair conformation with the central methyl­ene atom of the propyl fragment lying 0.696 (1) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.071 Å). One of the S-bound phenyl rings is almost perpendicular to the mean plane through the piperidone ring, whereas the other is splayed [dihedral angles = 71.95 (6) and 38.42 (6)°]. In the crystal, C—H⋯O and C—H⋯π inter­actions lead to the formation of supra­molecular layers in the ab plane.

Related literature

For background to β-thio­carbonyl compounds, see: Vinhato et al. (2011[Vinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97-106.]); Olivato et al. (2009[Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393-400.]). For related structures, see: Caracelli et al. (2012[Caracelli, I., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1793-o1794.]); Zukerman-Schpector et al. (2010[Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.], 2011[Zukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2759.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Hashmat & McDermott, (2002[Hashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271-6273.]); Zoretic & Soja (1976[Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587-3589.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO3S2

  • Mr = 389.53

  • Monoclinic, P 21 /n

  • a = 8.5802 (1) Å

  • b = 9.4744 (1) Å

  • c = 23.3732 (2) Å

  • β = 91.018 (1)°

  • V = 1899.76 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.70 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual (Cu at zero) Atlas detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.498, Tmax = 0.614

  • 7011 measured reflections

  • 3763 independent reflections

  • 3484 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.06

  • 3763 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.95 2.50 3.4211 (16) 165
C9—H9⋯O3ii 0.95 2.48 3.3473 (17) 151
C6—H6b⋯Cg1ii 0.98 2.93 3.5232 (17) 120
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (Chemaxon, 2009[Chemaxon (2009). MarvinSketch. www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our on-going research on the conformational behaviour and electronic interactions in β-thio-carbonyl (Vinhato et al., 2011) and β-bis-thio-carbonyl compounds, e.g. N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides and 3,3-bis[(4'- substituted) phenylthio]-1-methyl-2-piperidones, using spectroscopic, theoretical and X-ray diffraction methods (Olivato et al., 2009; Zukerman-Schpector et al., 2010, 2011; Caracelli et al., 2012), the title compound, (I), was synthesized and its crystal structure is reported herein.

In (I), Fig. 1, the piperidone ring is in a distorted half-chair conformation with the C4 atom lying 0.696 (1) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.071 Å). The ring puckering parameters are: q2 = 0.4418 (14) Å, q3 = -0.2835 (14) Å, QT = 0.5249 (15) Å, φ2 = 38.90 (18) ° (Cremer & Pople, 1975). The S2-bound phenyl ring is almost perpendicular to the mean plane through the piperidone ring [dihedral angle = 71.95 (6) °] whereas the S1-bond phenyl ring makes dihedral angles of 38.42 (6) and 69.65 (6)° with the mean planes of the piperidone and S2-bound phenyl rings, respectively. The overall molecular conformation observed for (I) resembles that seen in the species without methoxy groups in the 4-positions of the benzene rings (Caracelli et al., 2012).

The crystal packing of (I) features C—H···O and C—H···π interactions that lead to the formation of supramolecular layers (Table 1 and Fig. 2). These stack along the c axis without specific intermolecular interactions between them (Fig. 3).

Related literature top

For background to β-thiocarbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Caracelli et al. (2012); Zukerman-Schpector et al. (2010, 2011). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Hashmat & McDermott, (2002); Zoretic & Soja (1976).

Experimental top

4-Methoxylthiophenol (4.9 ml, 40 mmol) was oxidized with bromine (1.1 ml, 20 mmol) in dichloromethane (250 ml) on hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4-methoxylphenyl disulfide (4.8 g, yield = 85%). A white solid was obtained after filtration and evaporation without further purification (Hashmat & McDermott, 2002). 1-Methyl-2-piperidinone (1.9 g, 17 mmol) was added drop-wise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.1 ml, 17 mmol), diisopropylamine (2.4 ml, 17 mmol) and butyllithium (11.2 ml, 1.52 mol L-1 hexane solution) in THF (50 ml). After 20 minutes, 4-methoxylphenyl disulfide (4.8 g, 17 mmol) dissolved in THF (15 ml) was added drop-wise to the enolate solution (Zoretic & Soja, 1976). After the mixture was stirred for 4 h at 195 K, water (100 ml) was added at room temperature and extraction with dichloromethane was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (2.5 g, yield = 37%). Colourless crystals of (I), suitable for X-ray diffraction analysis, were obtained by vapour diffusion of n-hexane into a chloroform solution held at 283 K; M.pt: 430–431 K. Analysis found: C 61.68, H 5.66, N 3.55%. C20H23ONS2 requires: C 61.66, H 5.95, N 3.60%. Spectroscopic data for compound (I) are given in the archived CIF.

Refinement top

The H atoms were included in calculated positions (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

As part of our on-going research on the conformational behaviour and electronic interactions in β-thio-carbonyl (Vinhato et al., 2011) and β-bis-thio-carbonyl compounds, e.g. N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides and 3,3-bis[(4'- substituted) phenylthio]-1-methyl-2-piperidones, using spectroscopic, theoretical and X-ray diffraction methods (Olivato et al., 2009; Zukerman-Schpector et al., 2010, 2011; Caracelli et al., 2012), the title compound, (I), was synthesized and its crystal structure is reported herein.

In (I), Fig. 1, the piperidone ring is in a distorted half-chair conformation with the C4 atom lying 0.696 (1) Å out of the plane defined by the other five atoms (r.m.s. deviation = 0.071 Å). The ring puckering parameters are: q2 = 0.4418 (14) Å, q3 = -0.2835 (14) Å, QT = 0.5249 (15) Å, φ2 = 38.90 (18) ° (Cremer & Pople, 1975). The S2-bound phenyl ring is almost perpendicular to the mean plane through the piperidone ring [dihedral angle = 71.95 (6) °] whereas the S1-bond phenyl ring makes dihedral angles of 38.42 (6) and 69.65 (6)° with the mean planes of the piperidone and S2-bound phenyl rings, respectively. The overall molecular conformation observed for (I) resembles that seen in the species without methoxy groups in the 4-positions of the benzene rings (Caracelli et al., 2012).

The crystal packing of (I) features C—H···O and C—H···π interactions that lead to the formation of supramolecular layers (Table 1 and Fig. 2). These stack along the c axis without specific intermolecular interactions between them (Fig. 3).

For background to β-thiocarbonyl compounds, see: Vinhato et al. (2011); Olivato et al. (2009). For related structures, see: Caracelli et al. (2012); Zukerman-Schpector et al. (2010, 2011). For ring conformational analysis, see: Cremer & Pople (1975). For the synthesis, see: Hashmat & McDermott, (2002); Zoretic & Soja (1976).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom labelling and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of a supramolecular layer in the ab plane in (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The C—H···O and C—H···π interactions are shown as orange and purple dashed lines, respectively.
3,3-Bis[(4-methoxyphenyl)sulfanyl]-1-methylpiperidin-2-one top
Crystal data top
C20H23NO3S2F(000) = 824
Mr = 389.53Dx = 1.362 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 4644 reflections
a = 8.5802 (1) Åθ = 3.8–74.3°
b = 9.4744 (1) ŵ = 2.70 mm1
c = 23.3732 (2) ÅT = 100 K
β = 91.018 (1)°Prism, colourless
V = 1899.76 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas detector
diffractometer
3763 independent reflections
Radiation source: fine-focus sealed tube3484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 74.5°, θmin = 3.8°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 711
Tmin = 0.498, Tmax = 0.614l = 2828
7011 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.7353P]
where P = (Fo2 + 2Fc2)/3
3763 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H23NO3S2V = 1899.76 (3) Å3
Mr = 389.53Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.5802 (1) ŵ = 2.70 mm1
b = 9.4744 (1) ÅT = 100 K
c = 23.3732 (2) Å0.30 × 0.25 × 0.20 mm
β = 91.018 (1)°
Data collection top
Agilent SuperNova Dual (Cu at zero) Atlas detector
diffractometer
3763 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3484 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.614Rint = 0.016
7011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3763 reflectionsΔρmin = 0.35 e Å3
238 parameters
Special details top

Experimental. Spectroscopic data for compound (I):

IR (cm-1): ν(C=O) 1662. NMR (CDCl3, p.p.m.): δ 1.86–1.90 (2H, multiplet), 1.93–1.95 (2H, multiplet), 2.89 (3H, singlet), 3.12–3.14 (2H, triplet, J = 6.0 Hz), 3.82 (6H, singlet) 6.84–6.87 (4H, multiplet, Aryl-H), 7.53–7.55 (4H, multiplet, Aryl-H).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65880 (15)0.88587 (14)0.83750 (5)0.0156 (3)
C20.55775 (15)0.79082 (13)0.79859 (5)0.0149 (3)
C30.64992 (16)0.68485 (14)0.76382 (6)0.0171 (3)
H3A0.67830.60300.78820.021*
H3B0.58460.65030.73140.021*
C40.79668 (16)0.75248 (15)0.74115 (6)0.0201 (3)
H4A0.85190.68500.71630.024*
H4B0.76930.83680.71810.024*
C50.90077 (17)0.79433 (16)0.79111 (6)0.0234 (3)
H5A0.94560.70840.80900.028*
H5B0.98800.85260.77710.028*
C60.90807 (18)0.95375 (17)0.87618 (7)0.0280 (3)
H6A0.88350.92150.91480.042*
H6B0.88411.05450.87260.042*
H6C1.01910.93850.86920.042*
C70.39879 (16)0.82787 (14)0.69129 (5)0.0164 (3)
C80.48089 (16)0.85797 (15)0.64178 (6)0.0197 (3)
H80.56230.92590.64290.024*
C90.44427 (17)0.78940 (15)0.59104 (6)0.0205 (3)
H90.50070.81030.55750.025*
C100.32476 (16)0.68970 (14)0.58905 (5)0.0166 (3)
C110.24152 (15)0.65820 (14)0.63809 (6)0.0161 (3)
H110.16020.59020.63690.019*
C120.27956 (15)0.72801 (14)0.68886 (6)0.0169 (3)
H120.22320.70720.72250.020*
C130.52232 (15)0.59131 (14)0.88711 (6)0.0167 (3)
C140.52403 (16)0.44562 (15)0.87749 (6)0.0192 (3)
H140.47020.40780.84510.023*
C150.60328 (16)0.35581 (15)0.91466 (6)0.0208 (3)
H150.60350.25700.90780.025*
C160.68264 (15)0.41136 (15)0.96214 (6)0.0181 (3)
C170.68445 (16)0.55632 (15)0.97184 (6)0.0185 (3)
H170.74090.59421.00360.022*
C180.60273 (16)0.64528 (15)0.93459 (6)0.0184 (3)
H180.60180.74400.94160.022*
C190.18049 (18)0.52401 (17)0.53274 (6)0.0269 (3)
H19A0.17660.48580.49380.040*
H19B0.08030.56810.54140.040*
H19C0.20150.44750.56000.040*
C200.84281 (17)0.36600 (17)1.04494 (6)0.0247 (3)
H20A0.88420.28631.06720.037*
H20B0.77590.42371.06920.037*
H20C0.92940.42361.03120.037*
N0.81502 (13)0.87439 (12)0.83427 (5)0.0190 (2)
O10.59763 (11)0.96898 (10)0.87087 (4)0.0203 (2)
O20.30155 (12)0.62711 (11)0.53720 (4)0.0226 (2)
O30.75382 (12)0.31405 (11)0.99716 (4)0.0225 (2)
S10.44547 (4)0.92077 (3)0.755059 (13)0.01775 (9)
S20.40881 (4)0.70322 (4)0.841568 (14)0.01771 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (6)0.0141 (6)0.0138 (6)0.0017 (5)0.0000 (5)0.0019 (5)
C20.0174 (6)0.0146 (6)0.0127 (6)0.0002 (5)0.0004 (5)0.0012 (5)
C30.0229 (7)0.0139 (6)0.0146 (6)0.0017 (5)0.0006 (5)0.0001 (5)
C40.0243 (7)0.0181 (7)0.0181 (7)0.0040 (6)0.0066 (5)0.0011 (5)
C50.0194 (7)0.0217 (7)0.0292 (8)0.0019 (6)0.0043 (6)0.0015 (6)
C60.0228 (7)0.0278 (8)0.0330 (8)0.0062 (6)0.0067 (6)0.0042 (7)
C70.0195 (6)0.0153 (6)0.0142 (6)0.0019 (5)0.0028 (5)0.0010 (5)
C80.0218 (7)0.0185 (7)0.0188 (7)0.0047 (5)0.0028 (5)0.0046 (5)
C90.0229 (7)0.0249 (7)0.0136 (6)0.0032 (6)0.0013 (5)0.0053 (5)
C100.0189 (6)0.0169 (6)0.0139 (6)0.0023 (5)0.0025 (5)0.0014 (5)
C110.0148 (6)0.0164 (6)0.0170 (6)0.0006 (5)0.0014 (5)0.0018 (5)
C120.0164 (6)0.0192 (7)0.0151 (6)0.0022 (5)0.0013 (5)0.0023 (5)
C130.0170 (6)0.0192 (6)0.0141 (6)0.0030 (5)0.0028 (5)0.0022 (5)
C140.0214 (7)0.0215 (7)0.0149 (6)0.0061 (6)0.0018 (5)0.0002 (5)
C150.0236 (7)0.0176 (7)0.0213 (7)0.0041 (5)0.0051 (5)0.0002 (5)
C160.0162 (6)0.0218 (7)0.0165 (6)0.0004 (5)0.0044 (5)0.0048 (5)
C170.0198 (6)0.0221 (7)0.0136 (6)0.0032 (5)0.0013 (5)0.0002 (5)
C180.0216 (7)0.0180 (7)0.0157 (6)0.0024 (5)0.0029 (5)0.0007 (5)
C190.0302 (8)0.0282 (8)0.0223 (7)0.0073 (7)0.0015 (6)0.0068 (6)
C200.0228 (7)0.0324 (8)0.0187 (7)0.0002 (6)0.0004 (5)0.0074 (6)
N0.0175 (6)0.0182 (6)0.0212 (6)0.0028 (5)0.0003 (4)0.0020 (5)
O10.0235 (5)0.0196 (5)0.0178 (5)0.0006 (4)0.0007 (4)0.0053 (4)
O20.0264 (5)0.0271 (5)0.0143 (5)0.0055 (4)0.0002 (4)0.0029 (4)
O30.0241 (5)0.0221 (5)0.0213 (5)0.0003 (4)0.0003 (4)0.0063 (4)
S10.02349 (18)0.01403 (16)0.01560 (16)0.00191 (12)0.00321 (12)0.00080 (11)
S20.01626 (16)0.02082 (17)0.01604 (16)0.00271 (12)0.00022 (12)0.00262 (12)
Geometric parameters (Å, º) top
C1—O11.2323 (16)C10—O21.3607 (16)
C1—N1.3483 (17)C10—C111.3936 (18)
C1—C21.5368 (18)C11—C121.3922 (18)
C2—C31.5220 (18)C11—H110.9500
C2—S21.8376 (13)C12—H120.9500
C2—S11.8558 (13)C13—C181.3935 (18)
C3—C41.5168 (19)C13—C141.3986 (19)
C3—H3A0.9900C13—S21.7801 (14)
C3—H3B0.9900C14—C151.386 (2)
C4—C51.510 (2)C14—H140.9500
C4—H4A0.9900C15—C161.395 (2)
C4—H4B0.9900C15—H150.9500
C5—N1.4700 (18)C16—O31.3694 (16)
C5—H5A0.9900C16—C171.392 (2)
C5—H5B0.9900C17—C181.3923 (19)
C6—N1.4610 (18)C17—H170.9500
C6—H6A0.9800C18—H180.9500
C6—H6B0.9800C19—O21.4283 (18)
C6—H6C0.9800C19—H19A0.9800
C7—C121.3939 (19)C19—H19B0.9800
C7—C81.3947 (19)C19—H19C0.9800
C7—S11.7708 (13)C20—O31.4290 (17)
C8—C91.3835 (19)C20—H20A0.9800
C8—H80.9500C20—H20B0.9800
C9—C101.394 (2)C20—H20C0.9800
C9—H90.9500
O1—C1—N121.47 (12)C11—C10—C9120.33 (12)
O1—C1—C2120.46 (12)C12—C11—C10118.92 (12)
N—C1—C2118.07 (11)C12—C11—H11120.5
C3—C2—C1114.17 (11)C10—C11—H11120.5
C3—C2—S2111.53 (9)C11—C12—C7121.19 (12)
C1—C2—S2109.37 (9)C11—C12—H12119.4
C3—C2—S1114.48 (9)C7—C12—H12119.4
C1—C2—S1102.57 (8)C18—C13—C14118.93 (13)
S2—C2—S1103.89 (7)C18—C13—S2121.03 (11)
C4—C3—C2110.50 (11)C14—C13—S2119.92 (11)
C4—C3—H3A109.5C15—C14—C13120.77 (13)
C2—C3—H3A109.5C15—C14—H14119.6
C4—C3—H3B109.5C13—C14—H14119.6
C2—C3—H3B109.5C14—C15—C16119.63 (13)
H3A—C3—H3B108.1C14—C15—H15120.2
C5—C4—C3108.91 (11)C16—C15—H15120.2
C5—C4—H4A109.9O3—C16—C17124.28 (13)
C3—C4—H4A109.9O3—C16—C15115.33 (12)
C5—C4—H4B109.9C17—C16—C15120.38 (13)
C3—C4—H4B109.9C16—C17—C18119.43 (13)
H4A—C4—H4B108.3C16—C17—H17120.3
N—C5—C4111.70 (11)C18—C17—H17120.3
N—C5—H5A109.3C17—C18—C13120.84 (13)
C4—C5—H5A109.3C17—C18—H18119.6
N—C5—H5B109.3C13—C18—H18119.6
C4—C5—H5B109.3O2—C19—H19A109.5
H5A—C5—H5B107.9O2—C19—H19B109.5
N—C6—H6A109.5H19A—C19—H19B109.5
N—C6—H6B109.5O2—C19—H19C109.5
H6A—C6—H6B109.5H19A—C19—H19C109.5
N—C6—H6C109.5H19B—C19—H19C109.5
H6A—C6—H6C109.5O3—C20—H20A109.5
H6B—C6—H6C109.5O3—C20—H20B109.5
C12—C7—C8119.09 (12)H20A—C20—H20B109.5
C12—C7—S1121.77 (10)O3—C20—H20C109.5
C8—C7—S1119.12 (10)H20A—C20—H20C109.5
C9—C8—C7120.31 (13)H20B—C20—H20C109.5
C9—C8—H8119.8C1—N—C6116.94 (12)
C7—C8—H8119.8C1—N—C5126.17 (12)
C8—C9—C10120.16 (13)C6—N—C5116.84 (12)
C8—C9—H9119.9C10—O2—C19117.24 (11)
C10—C9—H9119.9C16—O3—C20117.50 (11)
O2—C10—C11124.76 (12)C7—S1—C2103.84 (6)
O2—C10—C9114.89 (12)C13—S2—C2102.56 (6)
O1—C1—C2—C3174.73 (12)O3—C16—C17—C18177.42 (12)
N—C1—C2—C34.69 (17)C15—C16—C17—C181.8 (2)
O1—C1—C2—S248.98 (15)C16—C17—C18—C131.5 (2)
N—C1—C2—S2130.43 (11)C14—C13—C18—C170.4 (2)
O1—C1—C2—S160.84 (14)S2—C13—C18—C17176.48 (10)
N—C1—C2—S1119.75 (11)O1—C1—N—C66.26 (19)
C1—C2—C3—C440.74 (15)C2—C1—N—C6173.14 (12)
S2—C2—C3—C4165.34 (9)O1—C1—N—C5171.00 (13)
S1—C2—C3—C477.07 (12)C2—C1—N—C59.59 (19)
C2—C3—C4—C563.62 (14)C4—C5—N—C113.72 (19)
C3—C4—C5—N49.55 (15)C4—C5—N—C6163.55 (12)
C12—C7—C8—C90.0 (2)C11—C10—O2—C191.48 (19)
S1—C7—C8—C9178.44 (11)C9—C10—O2—C19179.98 (13)
C7—C8—C9—C100.1 (2)C17—C16—O3—C203.66 (19)
C8—C9—C10—O2178.68 (12)C15—C16—O3—C20177.13 (12)
C8—C9—C10—C110.1 (2)C12—C7—S1—C277.37 (12)
O2—C10—C11—C12178.54 (12)C8—C7—S1—C2104.27 (11)
C9—C10—C11—C120.1 (2)C3—C2—S1—C730.09 (11)
C10—C11—C12—C70.1 (2)C1—C2—S1—C7154.33 (8)
C8—C7—C12—C110.1 (2)S2—C2—S1—C791.77 (7)
S1—C7—C12—C11178.42 (10)C18—C13—S2—C277.44 (12)
C18—C13—C14—C150.5 (2)C14—C13—S2—C2106.48 (11)
S2—C13—C14—C15175.69 (10)C3—C2—S2—C1361.21 (10)
C13—C14—C15—C160.2 (2)C1—C2—S2—C1366.04 (10)
C14—C15—C16—O3178.31 (12)S1—C2—S2—C13174.98 (6)
C14—C15—C16—C170.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.503.4211 (16)165
C9—H9···O3ii0.952.483.3473 (17)151
C6—H6b···Cg1ii0.982.933.5232 (17)120
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H23NO3S2
Mr389.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.5802 (1), 9.4744 (1), 23.3732 (2)
β (°) 91.018 (1)
V3)1899.76 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.70
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual (Cu at zero) Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.498, 0.614
No. of measured, independent and
observed [I > 2σ(I)] reflections
7011, 3763, 3484
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.06
No. of reflections3763
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.35

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.952.503.4211 (16)165
C9—H9···O3ii0.952.483.3473 (17)151
C6—H6b···Cg1ii0.982.933.5232 (17)120
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq and CAPES (808/2009 to IC) for financial support, CNPq for fellowships to IC and PRO, and scholarships for CRCJ and JMMS. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12 to ERTT).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaracelli, I., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1793–o1794.  CSD CrossRef IUCr Journals Google Scholar
First citationChemaxon (2009). MarvinSketch. www.chemaxon.comGoogle Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett. 43, 6271–6273.  Google Scholar
First citationOlivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct. 920, 393–400.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinhato, E., Olivato, P. R., Rodrigues, A., Zukerman-Schpector, J. & Dal Colle, M. (2011). J. Mol. Struct. 1002, 97–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.  CrossRef CAS Web of Science Google Scholar
First citationZukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Olivato, P. R., Cerqueira Jr, C. R., Santos, J. M. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds