metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-μ2-(pyrazine-2-carboxyl­ato)-lithium]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 23 May 2012; accepted 30 May 2012; online 16 June 2012)

The structure of the title compound, [Li(C5H3N2O2)(H2O)]n, contains an LiI ion with a distorted trigonal–bipyramidal coordination environment involving the N and O atoms of pyrazine-2-carboxyl­ate ligands with a bridging carboxyl­ate group, and two aqua O atoms also in a bridging mode. The symmetry-related LiI ions bridged by a carboxyl­ate O atom and a coordinating water O atom form an Li2O2 unit with an Li⋯Li distance of 3.052 (4) Å, which generates mol­ecular ribbons propagating in the c-axis direction. The ribbons are held together by a network of O—H⋯O hydrogen bonds in which the coordinating water mol­ecules act as donors and the carboxyl­ate O atoms as acceptors.

Related literature

For the crystal structure of an LiI complex with a 3-amino­pyrazine-2-carboxyl­ate ligand, see: Starosta & Leciejewicz, (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744-m745.]) and for the crystal structure of an LiI complex with a 5-methyl­pyrazine-2-carboxyl­ate ligand, see: Starosta & Lecieje­wicz, (2011a[Starosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m1000-m1001.]). The structures of complexes with pyrid­azine-3-carboxyl­ate and pyridazine-4-carboxyl­ate ligands were reported by Starosta & Leciejewicz, (2011b[Starosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m202.],c[Starosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m425-m426.]). The structure of a complex with a pyrimidine-2-carboxyl­ate ligand was also determined (Starosta & Leciejewicz, 2011d[Starosta, W. & Leciejewicz, J. (2011d). Acta Cryst. E67, m818.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C5H3N2O2)(H2O)]

  • Mr = 148.05

  • Orthorhombic, P c a 21

  • a = 24.433 (5) Å

  • b = 4.7861 (10) Å

  • c = 5.6385 (11) Å

  • V = 659.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.18 × 0.13 mm

Data collection
  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.972, Tmax = 0.995

  • 1586 measured reflections

  • 1056 independent reflections

  • 813 reflections with I > 2σ(I)

  • Rint = 0.078

  • 3 standard reflections every 200 reflections intensity decay: 4.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.09

  • 1056 reflections

  • 108 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 2.080 (6)
Li1—N1 2.190 (6)
Li1—O3 2.013 (6)
Li1—O3i 2.032 (5)
Li1—O1i 2.237 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1ii 0.83 (5) 1.96 (5) 2.786 (3) 176 (5)
O3—H32⋯O2iii 0.94 (4) 1.75 (4) 2.672 (3) 167 (4)
Symmetry codes: (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title complex is built of LiI ions, each coordinated by ligand with N1,O1 where O atom acts as bidentate and bridging to symmetry related Li1 and Li1i ions, whereas the O2 atom remains chelating inactive. The metal ions are also bridged by coordinated water O3 atom forming a Li1—O1—Li1i—O3—Li1 connectivity with Li1—Li1i distance of 3.052 (4) Å, (Fig.1). The observed bonding pathways –Li—Ocarb—Li- and –Li—Oaqua—Li- give rise to molecular ribbon which propagates in the unit cell c direction (Fig. 2). The Li1 coordination polyhedron is distorted trigonal bipyramid (Fig. 1, Table 1) with an equatorial plane composed of O1, N1i and O3i; the Li1 ion is 0.0405 (2) Å out of the plane, O1 and O3 atoms are at the axial positions. The pyrazine ring is planar with r.m.s. of 0.0019 (1) Å; the dihedral angle between the pyrazine and the carboxylato group (C7/O1/O2) is 12.3 (1)°. Hydrogen bonds are realised through coordinated aqua O3 and carboxylato O2 atoms (Table 2, Fig. 2). Weak C—H···N interactions of 3.518 (5) Å and 3.651 (5) Å are observed. The structures of LiI complexes with diazine monocarboxylate ligands show a variety of polymeric patterns. The structure of a complex with 3-aminopyrazine-2-carboxylato ligand shows a catenated pattern (Starosta & Leciejewicz, 2010) while the structure of a complex with 5-methylpyrazine-2-carboxylato ligand is composed of molecular columns (Starosta & Leciejewicz, 2011a). Molecular layers were reported in the structure of a complex with pyrimidine-2-carboxylato and nitrato ligands (Starosta & Leciejewicz, 2011d) and in the structure of a complex with pyridazine-4-carboxylato ligand (Starosta & Leciejewicz, 2011c). On the other hand, the structure of a complex with pyridazine-3-carboxylato ligand is built of monomeric molecules (Starosta & Leciejewicz, 2011b).

Related literature top

For the crystal structure of an LiI complex with a 3-aminopyrazine-2-carboxylate ligand, see: Starosta & Leciejewicz, (2010) and for the crystal structure of an LiI complex with a 5-methylpyrazine-2-carboxylate ligand, see: Starosta & Leciejewicz, (2011a). The structures of complexes with pyridazine-3-carboxylate and pyridazine-4-carboxylate ligands were reported by Starosta & Leciejewicz, (2011b,c). The structure of a complex with a pyrimidine-2-carboxylate ligand was also determined (Starosta & Leciejewicz, 2011d).

Experimental top

50 mL of a solution containing 1 mmol of LiNO3 and an excess of pyrazine-2-carboxylic acid dihydrate to mantain pH ca 5.1 was boiled under reflux with stirring for 10 h, then left to crystallise at room temperature. After a couple of days single-crystal blocks of the title compound were detected among polycrystalline material. They were washed with methanol and dried in the air.

Refinement top

Water hydrogen atoms were located in a difference map and refined isotropically while H atoms attached to pyrazine-ring C atoms were positioned at calculated positions and were treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two structural units of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x + 1/2, y, z - 1/2; (ii) -x + 1/2, y, z + 1/2.
[Figure 2] Fig. 2. Packing diagram of the structure viewed along the c axis.
Poly[µ2-aqua-µ2-(pyrazine-2-carboxylato)-lithium] top
Crystal data top
[Li(C5H3N2O2)(H2O)]F(000) = 304
Mr = 148.05Dx = 1.491 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 24.433 (5) Åθ = 6–15°
b = 4.7861 (10) ŵ = 0.12 mm1
c = 5.6385 (11) ÅT = 293 K
V = 659.4 (2) Å3Blocks, colourless
Z = 40.35 × 0.18 × 0.13 mm
Data collection top
Kuma KM-4 four-cricle
diffractometer
813 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 30.1°, θmin = 1.7°
profile data from ω/2θ scansh = 2734
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 06
Tmin = 0.972, Tmax = 0.995l = 07
1586 measured reflections3 standard reflections every 200 reflections
1056 independent reflections intensity decay: 4.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0244P)2 + 0.4211P]
where P = (Fo2 + 2Fc2)/3
1056 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
[Li(C5H3N2O2)(H2O)]V = 659.4 (2) Å3
Mr = 148.05Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.433 (5) ŵ = 0.12 mm1
b = 4.7861 (10) ÅT = 293 K
c = 5.6385 (11) Å0.35 × 0.18 × 0.13 mm
Data collection top
Kuma KM-4 four-cricle
diffractometer
813 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.078
Tmin = 0.972, Tmax = 0.9953 standard reflections every 200 reflections
1586 measured reflections intensity decay: 4.4%
1056 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
1056 reflectionsΔρmin = 0.30 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28627 (9)1.1874 (4)0.7415 (4)0.0324 (4)
O20.35150 (10)1.3781 (5)0.5168 (5)0.0480 (7)
N10.36091 (10)0.8665 (5)0.9601 (5)0.0320 (5)
C20.37639 (11)1.0110 (5)0.7680 (5)0.0258 (5)
C70.33500 (11)1.2093 (5)0.6658 (5)0.0281 (5)
C50.44910 (14)0.6601 (7)0.9486 (7)0.0453 (8)
H50.47350.53461.01670.054*
N20.46487 (12)0.8025 (6)0.7586 (6)0.0462 (7)
C60.39802 (14)0.6901 (7)1.0492 (6)0.0414 (7)
H60.38920.58511.18250.050*
C30.42814 (12)0.9788 (7)0.6705 (6)0.0364 (6)
H30.43751.08480.53830.044*
Li10.2739 (2)0.9324 (11)1.0354 (10)0.0338 (10)
O30.22904 (9)0.6809 (4)0.8254 (4)0.0282 (4)
H310.247 (3)0.538 (8)0.796 (9)0.051 (11)*
H320.1986 (18)0.599 (8)0.901 (7)0.046 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (8)0.0332 (9)0.0358 (10)0.0041 (8)0.0052 (9)0.0123 (10)
O20.0369 (11)0.0567 (13)0.0504 (15)0.0051 (10)0.0081 (11)0.0333 (12)
N10.0324 (12)0.0371 (11)0.0265 (11)0.0009 (10)0.0033 (11)0.0109 (10)
C20.0244 (10)0.0276 (10)0.0254 (11)0.0016 (10)0.0010 (10)0.0055 (10)
C70.0288 (11)0.0282 (11)0.0274 (12)0.0006 (10)0.0000 (11)0.0069 (12)
C50.0361 (16)0.0481 (17)0.0517 (19)0.0118 (14)0.0062 (17)0.0153 (16)
N20.0333 (13)0.0540 (16)0.0514 (17)0.0105 (12)0.0064 (13)0.0105 (16)
C60.0388 (16)0.0493 (17)0.0362 (15)0.0036 (13)0.0019 (14)0.0205 (15)
C30.0311 (13)0.0433 (15)0.0347 (14)0.0014 (12)0.0098 (13)0.0093 (14)
Li10.036 (3)0.040 (2)0.026 (2)0.002 (2)0.001 (2)0.007 (2)
O30.0328 (9)0.0287 (9)0.0230 (8)0.0004 (8)0.0014 (8)0.0075 (9)
Geometric parameters (Å, º) top
O1—C71.269 (4)N2—C31.328 (4)
Li1—O12.080 (6)C6—H60.9300
O1—Li1i2.237 (6)C3—H30.9300
O2—C71.233 (4)Li1—O32.013 (6)
N1—C61.337 (4)Li1—O3ii2.032 (5)
N1—C21.340 (4)Li1—O1ii2.237 (6)
Li1—N12.190 (6)Li1—Li1i3.052 (4)
C2—C31.387 (4)Li1—Li1ii3.052 (4)
C2—C71.502 (4)O3—Li1i2.032 (5)
C5—N21.327 (5)O3—H310.83 (5)
C5—C61.379 (5)O3—H320.94 (4)
C5—H50.9300
C7—O1—Li1116.9 (2)O3—Li1—N1109.2 (3)
C7—O1—Li1i119.2 (2)O3ii—Li1—N196.0 (2)
Li1—O1—Li1i89.92 (19)O1—Li1—N177.8 (2)
C6—N1—C2116.0 (3)O3—Li1—O1ii105.9 (3)
C6—N1—Li1132.6 (3)O3ii—Li1—O1ii83.2 (2)
C2—N1—Li1110.9 (2)O1—Li1—O1ii100.9 (2)
N1—C2—C3121.4 (3)N1—Li1—O1ii144.8 (3)
N1—C2—C7116.5 (2)O3—Li1—Li1i41.25 (17)
C3—C2—C7122.1 (2)O3ii—Li1—Li1i136.9 (2)
O2—C7—O1126.1 (3)O1—Li1—Li1i47.12 (13)
O2—C7—C2117.1 (3)N1—Li1—Li1i101.1 (2)
O1—C7—C2116.8 (2)O1ii—Li1—Li1i103.2 (3)
N2—C5—C6122.8 (3)O3—Li1—Li1ii109.5 (3)
N2—C5—H5118.6O3ii—Li1—Li1ii40.79 (14)
C6—C5—H5118.6O1—Li1—Li1ii142.33 (19)
C5—N2—C3115.6 (3)N1—Li1—Li1ii123.4 (3)
N1—C6—C5121.7 (3)O1ii—Li1—Li1ii42.96 (17)
N1—C6—H6119.2Li1i—Li1—Li1ii135.0 (4)
C5—C6—H6119.2Li1—O3—Li1i98.0 (2)
N2—C3—C2122.5 (3)Li1—O3—H31109 (4)
N2—C3—H3118.7Li1i—O3—H31110 (3)
C2—C3—H3118.7Li1—O3—H32114 (3)
O3—Li1—O3ii95.7 (2)Li1i—O3—H32126 (2)
O3—Li1—O187.8 (2)H31—O3—H32100 (4)
O3ii—Li1—O1173.7 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O1iii0.83 (5)1.96 (5)2.786 (3)176 (5)
O3—H32···O2iv0.94 (4)1.75 (4)2.672 (3)167 (4)
Symmetry codes: (iii) x, y1, z; (iv) x+1/2, y1, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C5H3N2O2)(H2O)]
Mr148.05
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)24.433 (5), 4.7861 (10), 5.6385 (11)
V3)659.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.18 × 0.13
Data collection
DiffractometerKuma KM-4 four-cricle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.972, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
1586, 1056, 813
Rint0.078
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.09
No. of reflections1056
No. of parameters108
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O12.080 (6)Li1—O3i2.032 (5)
Li1—N12.190 (6)Li1—O1i2.237 (6)
Li1—O32.013 (6)
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O1ii0.83 (5)1.96 (5)2.786 (3)176 (5)
O3—H32···O2iii0.94 (4)1.75 (4)2.672 (3)167 (4)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1, z+1/2.
 

References

First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m744–m745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011a). Acta Cryst. E67, m1000–m1001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011b). Acta Cryst. E67, m202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011c). Acta Cryst. E67, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2011d). Acta Cryst. E67, m818.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds