metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m815-m816

Di­chloridobis(methanol-κO)[cis-(±)-2,4,5-tris­­(pyridin-2-yl)-2-imidazoline-κ3N2,N3,N4]ytterbium(III) chloride

aFacultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, Mexico, bCentro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, Mexico, and cCentro de Graduados del Instituto Tecnologico de Tijuana, Blvd. Industrial S/N, Col. Otay, CP 22500, Tijuana, BC, Mexico
*Correspondence e-mail: gaxiolajose@yahoo.com.mx

(Received 7 May 2012; accepted 15 May 2012; online 26 May 2012)

In the crystal structure of the title complex, [YbCl2(C18H15N5)(CH3OH)2]Cl, the pseudo-penta­gonal–bipyramidal coordination geometry of the YbIII cation is composed of three N atoms from one cis-(±)-2,4,5-tris­(pyridin-2-yl)imidazoline (HL) ligand, two O atoms from two methanol mol­ecules and two Cl anions. Chains are formed along [010] through N—H⋯Cl, O—H⋯Cl and O—H⋯N hydrogen bonds.

Related literature

For background to the synthesis of HL, see: Later et al. (1998[Later, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785-4788.]); Fernandes et al. (2007[Fernandes, C., Horn, A. Jr, Howie, A. R., Schripsema, J., Skakle, J. M. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274-283.]). For metal complexes with HL, see: Parra-Hake et al. (2000[Parra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400-5403.]); Campos-Gaxiola et al. (2007[Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2007). J. Mex. Chem. Soc. 51, 27-32.], 2008[Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2008). Inorg. Chim. Acta, 361, 248-254.], 2010[Campos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2010). Inorg. Chim. Acta, 363, 1179-1185.]). For related Yb (III) complexes, see: Li et al. (2007[Li, X. L., Dai, F. R., Zhang, L. Y., Zhu, Y. M., Peng, Q. & Chen, Z. N. (2007). Organometallics, 26, 4483-4490.]); Xu et al. (2009[Xu, H. B., Zhang, L. Y., Chen, X. M., Li, X. L. & Chen, Z. N. (2009). Cryst. Growth Des. 9, 569-576.]); Stojanovic et al. (2010[Stojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933-939.]); Okawara et al. (2012[Okawara, T., Feng, J., Abe, M. & Hisaeda, Y. (2012). Acta Cryst. E68, m29-m30.]). For potential applications of polypyridyl chelating ligands in magnetic, electronic and luminescent devices, see: Freidzon et al. (2011[Freidzon, A. Y., Scherbinin, A. V., Bagaturyants, A. A. & Alfimov, M. V. (2011). J. Phys. Chem. A, 115, 4565-4573.]); Maynard et al. (2009[Maynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425-6453.]); Thomas et al. (2012[Thomas, R. B., Smith, P. A., Jaleel, A., Vogel, P., Crawford, C., Assefa, Z. & Sykora, R. E. (2012). Inorg. Chem. 51, 3399-3408.]).

[Scheme 1]

Experimental

Crystal data
  • [YbCl2(C18H15N5)(CH4O)2]Cl

  • Mr = 644.82

  • Triclinic, [P \overline 1]

  • a = 9.2401 (13) Å

  • b = 9.8390 (14) Å

  • c = 13.3765 (19) Å

  • α = 99.978 (2)°

  • β = 94.616 (2)°

  • γ = 92.145 (2)°

  • V = 1192.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 293 K

  • 0.34 × 0.29 × 0.24 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.32, Tmax = 0.43

  • 11582 measured reflections

  • 4178 independent reflections

  • 3995 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.08

  • 4178 reflections

  • 292 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Selected bond lengths (Å)

Yb1—Cl1 2.5220 (19)
Yb1—Cl2 2.5834 (18)
Yb1—N1 2.268 (5)
Yb1—N3 2.579 (5)
Yb1—N4 2.556 (6)
Yb1—O1 2.289 (5)
Yb1—O2 2.287 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H10′⋯N5i 0.84 1.86 2.681 (3) 164
O2—H20′⋯Cl3i 0.84 2.19 2.956 (3) 152
N2—H2′⋯Cl3 0.86 2.25 3.096 (3) 167
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and characterization of lanthanide complexes supported by polypiridyl chelating ligands has attracted continuous interest, due to the potential application of these compounds in magnetic, electronic and luminescent devices (Maynard et al., 2009; Freidzon et al., 2011; Thomas et al., 2012). A handful of transition metal complexes based on the HL ligand have been prepared (Parra-Hake et al. Campos-Gaxiola et al., 2007, 2008 and 2010), but to date there are no reports on complexes containing rare earth elements. Herein, we report on the structure of a mononuclear YbIII complex (Scheme 1), which was synthesized by reaction of YbCl3.6H2O with cis-(±)-2,4,5-tri(2-pyridyl)imidazoline at room temperature in methanol.

In the title complex, the central YbIII ion is seven-coordinated by three nitrogen atoms from one tridentate chelate ligand, two oxygen atoms from two methanol molecules and two Cl- anions [Yb—N, 2.268 (5)–2.579 (5) Å; Yb—O 2.287 (4)–2.289 (4) Å; Yb—Cl 2.5219 (18)–2.5834 (17) Å (Table 1)] and displays a pseudo-pentagonal-bipyramidal geometry (Fig. 1). In the crystal structure the complex molecules are linked through N—H···Cl, O—H···Cl and O—H···N hydrogen bonds to form linear supramolecular chains along [010] (Table 2, Fig 2).

Related literature top

For background to the synthesis of HL, see: Later et al. (1998); Fernandes et al. (2007). For metal complexes with HL, see: Parra-Hake et al. (2000); Campos-Gaxiola et al. (2007, 2008, 2010). For related Yb (III) complexes, see: Li et al. (2007); Xu et al. (2009); Stojanovic et al. (2010); Okawara et al. (2012). For potential applications of polypiridyl chelating ligands in magnetic, electronic and

luminescent devices, see: Freidzon et al. (2011); Maynard et al. (2009); Thomas et al. (2012).

Experimental top

A mixture of cis-(±)-2,4,5-tri(2-pyridyl)imidazoline (HL) (0.05 g, 0.166 mmol) and YbCl3.6H2O (0.063 g, 0.166 mmol) dissolved in methanol (3 ml) was stirred for 2 h at room temperature to give a colorless solution. The product was crystallized at room temperature by gas phase diffusion of diethyl ether into the reaction mixture, providing colorless crystals which were dried under vacuo. Yield: 71%. IR (KBr): 3320, 3060, 3155, 2894, 1631, 1592, 1471, 1437, 1338, 1280, 1260, 1162, 1007 and 691 cm-1. TGA Calcd for 2CH3OH: 9.94. Found: 8.76% (30–200 °C).

Refinement top

C—H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl) = 1.2 Ueq(C)]. The coordinates of the O—H and N—H hydrogen atoms were refined with distances restraints: O—H = 0.840±0.001 Å, N—H = 0.860±0.001 Å and [Uiso(H) = 1.5 Ueq(O,N)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker 2001); data reduction: SAINT-Plus-NT (Bruker 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view of a fragment of the linear supramolecular chain along [010] with the N—H···Cl, O—H···Cl and O—H···N hydrogen bonds shown as dashed lines.
Dichloridobis(methanol-κO)[cis-(±)-2,4,5-tris(pyridin-2-yl)-2- imidazoline-κ3N2,N3,N4]ytterbium(III) chloride top
Crystal data top
[YbCl2(C18H15N5)(CH4O)2]ClZ = 2
Mr = 644.82F(000) = 630
Triclinic, P1Dx = 1.796 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2401 (13) ÅCell parameters from 7905 reflections
b = 9.8390 (14) Åθ = 2.2–28.3°
c = 13.3765 (19) ŵ = 4.29 mm1
α = 99.978 (2)°T = 293 K
β = 94.616 (2)°Rectangular prism, colorless
γ = 92.145 (2)°0.34 × 0.29 × 0.24 mm
V = 1192.2 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
4178 independent reflections
Radiation source: fine-focus sealed tube3995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.6°
phi and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.32, Tmax = 0.43l = 1515
11582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0428P)2 + 3.5218P]
where P = (Fo2 + 2Fc2)/3
4178 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 1.10 e Å3
3 restraintsΔρmin = 1.35 e Å3
Crystal data top
[YbCl2(C18H15N5)(CH4O)2]Clγ = 92.145 (2)°
Mr = 644.82V = 1192.2 (3) Å3
Triclinic, P1Z = 2
a = 9.2401 (13) ÅMo Kα radiation
b = 9.8390 (14) ŵ = 4.29 mm1
c = 13.3765 (19) ÅT = 293 K
α = 99.978 (2)°0.34 × 0.29 × 0.24 mm
β = 94.616 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4178 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3995 reflections with I > 2σ(I)
Tmin = 0.32, Tmax = 0.43Rint = 0.031
11582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.10 e Å3
4178 reflectionsΔρmin = 1.35 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.21176 (3)0.30381 (2)0.204195 (19)0.02770 (10)
Cl10.3560 (2)0.3299 (2)0.37530 (14)0.0560 (5)
Cl20.05316 (18)0.26855 (19)0.03273 (13)0.0444 (4)
Cl30.57461 (18)0.96378 (19)0.21144 (15)0.0486 (4)
N10.2212 (5)0.5280 (5)0.1839 (4)0.0333 (12)
N20.3278 (6)0.7350 (5)0.1816 (5)0.0383 (13)
H2'0.400 (5)0.794 (6)0.199 (6)0.057*
N30.4539 (6)0.3892 (5)0.1471 (4)0.0381 (13)
N40.0248 (6)0.4541 (6)0.2944 (4)0.0406 (13)
N50.1688 (7)0.9593 (6)0.3636 (4)0.0458 (14)
O10.0623 (5)0.1401 (5)0.2518 (4)0.0382 (10)
H10'0.099 (8)0.097 (7)0.296 (4)0.057*
O20.3170 (5)0.1033 (5)0.1423 (4)0.0411 (11)
H20'0.380 (6)0.076 (8)0.182 (5)0.062*
C10.3387 (7)0.5981 (6)0.1703 (5)0.0343 (14)
C20.1917 (7)0.7706 (6)0.2265 (5)0.0339 (14)
H20.14150.83510.18940.041*
C30.1082 (6)0.6265 (6)0.2014 (5)0.0331 (14)
H30.04960.62230.13640.040*
C40.4686 (7)0.5258 (6)0.1447 (5)0.0343 (14)
C50.5934 (7)0.5880 (7)0.1193 (5)0.0394 (15)
H50.60060.68270.11980.047*
C60.7078 (7)0.5061 (8)0.0931 (5)0.0443 (17)
H60.79250.54430.07390.053*
C70.6944 (8)0.3692 (8)0.0961 (6)0.0490 (18)
H70.77090.31310.07950.059*
C80.5684 (7)0.3130 (8)0.1235 (6)0.0476 (18)
H80.56190.21900.12580.057*
C90.0099 (7)0.5825 (7)0.2750 (5)0.0362 (14)
C100.0956 (8)0.6658 (7)0.3153 (6)0.0475 (18)
H100.10440.75390.29980.057*
C110.1872 (9)0.6178 (8)0.3785 (7)0.061 (2)
H110.25920.67270.40580.073*
C120.1719 (10)0.4893 (9)0.4010 (7)0.066 (2)
H120.23200.45500.44440.079*
C130.0643 (9)0.4108 (8)0.3574 (6)0.057 (2)
H130.05350.32300.37300.068*
C140.2201 (7)0.8352 (7)0.3373 (5)0.0366 (14)
C150.2982 (9)0.7722 (8)0.4064 (6)0.0537 (19)
H150.33180.68470.38630.064*
C160.3266 (10)0.8398 (10)0.5062 (6)0.068 (2)
H160.38000.79940.55410.082*
C170.2734 (11)0.9683 (10)0.5321 (6)0.072 (3)
H170.29101.01730.59820.087*
C180.1945 (12)1.0233 (9)0.4596 (6)0.072 (3)
H180.15711.10960.47830.087*
C190.0775 (8)0.0814 (9)0.2119 (7)0.064 (2)
H19A0.13740.15240.19380.096*
H19B0.12110.03900.26250.096*
H19C0.06840.01280.15260.096*
C200.2876 (9)0.0171 (8)0.0451 (6)0.060 (2)
H20A0.18520.00630.03280.090*
H20B0.33960.06580.04370.090*
H20C0.31830.06540.00670.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.02727 (15)0.02462 (15)0.03167 (16)0.00041 (10)0.00363 (10)0.00598 (10)
Cl10.0528 (11)0.0726 (13)0.0401 (10)0.0067 (9)0.0046 (8)0.0065 (9)
Cl20.0398 (9)0.0511 (10)0.0430 (9)0.0013 (7)0.0055 (7)0.0154 (8)
Cl30.0381 (9)0.0455 (10)0.0607 (11)0.0070 (7)0.0054 (8)0.0111 (8)
N10.030 (3)0.027 (3)0.044 (3)0.002 (2)0.006 (2)0.006 (2)
N20.038 (3)0.026 (3)0.053 (3)0.003 (2)0.007 (3)0.013 (3)
N30.036 (3)0.034 (3)0.046 (3)0.001 (2)0.007 (2)0.010 (2)
N40.042 (3)0.039 (3)0.042 (3)0.006 (3)0.010 (3)0.007 (3)
N50.065 (4)0.033 (3)0.037 (3)0.006 (3)0.006 (3)0.003 (2)
O10.035 (2)0.036 (3)0.045 (3)0.0003 (19)0.000 (2)0.016 (2)
O20.041 (3)0.035 (3)0.043 (3)0.005 (2)0.002 (2)0.004 (2)
C10.040 (4)0.032 (3)0.033 (3)0.002 (3)0.004 (3)0.009 (3)
C20.039 (3)0.029 (3)0.035 (3)0.006 (3)0.000 (3)0.009 (3)
C30.030 (3)0.031 (3)0.038 (3)0.001 (3)0.000 (3)0.006 (3)
C40.035 (3)0.033 (3)0.035 (3)0.001 (3)0.004 (3)0.006 (3)
C50.036 (4)0.042 (4)0.039 (4)0.007 (3)0.003 (3)0.007 (3)
C60.027 (3)0.057 (5)0.048 (4)0.007 (3)0.002 (3)0.009 (3)
C70.037 (4)0.058 (5)0.055 (5)0.011 (3)0.010 (3)0.014 (4)
C80.041 (4)0.039 (4)0.067 (5)0.010 (3)0.016 (3)0.014 (4)
C90.030 (3)0.035 (4)0.041 (4)0.002 (3)0.001 (3)0.001 (3)
C100.043 (4)0.038 (4)0.059 (5)0.005 (3)0.012 (3)0.003 (3)
C110.058 (5)0.051 (5)0.071 (6)0.009 (4)0.033 (4)0.007 (4)
C120.073 (6)0.058 (5)0.071 (6)0.001 (4)0.045 (5)0.007 (4)
C130.065 (5)0.049 (5)0.062 (5)0.008 (4)0.025 (4)0.018 (4)
C140.040 (4)0.032 (3)0.038 (4)0.004 (3)0.003 (3)0.010 (3)
C150.064 (5)0.047 (4)0.050 (4)0.012 (4)0.007 (4)0.013 (4)
C160.079 (6)0.079 (6)0.048 (5)0.003 (5)0.013 (4)0.024 (4)
C170.107 (8)0.065 (6)0.040 (5)0.004 (5)0.008 (5)0.004 (4)
C180.128 (9)0.043 (5)0.043 (5)0.013 (5)0.002 (5)0.000 (4)
C190.044 (4)0.063 (5)0.088 (6)0.017 (4)0.010 (4)0.036 (5)
C200.071 (5)0.057 (5)0.049 (5)0.024 (4)0.003 (4)0.001 (4)
Geometric parameters (Å, º) top
Yb1—Cl12.5220 (19)C5—C61.384 (10)
Yb1—Cl22.5834 (18)C5—H50.93
Yb1—N12.268 (5)C6—C71.355 (11)
Yb1—N32.579 (5)C6—H60.93
Yb1—N42.556 (6)C7—C81.373 (10)
Yb1—O12.289 (5)C7—H70.9301
Yb1—O22.287 (5)C8—H80.9303
N1—C11.306 (8)C9—C101.380 (10)
N1—C31.457 (8)C10—C111.370 (12)
N2—C11.338 (8)C10—H100.9302
N2—C21.465 (9)C11—C121.359 (12)
N2—H2'0.86 (6)C11—H110.9302
N3—C41.352 (9)C12—C131.386 (12)
N3—C81.346 (9)C12—H120.9294
N4—C131.333 (10)C13—H130.9303
N4—C91.343 (9)C14—C151.373 (10)
N5—C141.326 (9)C15—C161.384 (11)
N5—C181.327 (10)C15—H150.9294
O1—C191.419 (9)C16—C171.372 (14)
O1—H10'0.84 (6)C16—H160.9303
O2—C201.424 (10)C17—C181.365 (13)
O2—H20'0.84 (6)C17—H170.9295
C1—C41.453 (9)C18—H180.9304
C2—C141.506 (9)C19—H19A0.9601
C2—C31.559 (9)C19—H19B0.9598
C2—H20.9797C19—H19C0.9595
C3—C91.496 (9)C20—H20A0.96
C3—H30.9797C20—H20B0.9599
C4—C51.379 (9)C20—H20C0.96
N1—Yb1—O2138.18 (18)N1—C3—H3107.27
N1—Yb1—O1141.84 (17)C2—C3—H3107.27
O2—Yb1—O177.76 (17)C9—C3—H3107.29
N1—Yb1—Cl199.05 (14)N3—C4—C5123.1 (6)
O2—Yb1—Cl192.85 (12)N3—C4—C1112.6 (5)
O1—Yb1—Cl189.06 (12)C5—C4—C1124.3 (6)
N1—Yb1—N464.63 (18)C4—C5—C6118.3 (6)
O2—Yb1—N4156.52 (18)C4—C5—H5120.84
O1—Yb1—N478.77 (17)C6—C5—H5120.83
Cl1—Yb1—N487.06 (14)C7—C6—C5118.9 (6)
N1—Yb1—N365.20 (17)C5—C6—H6120.5
O2—Yb1—N376.74 (17)C7—C6—H6120.57
O1—Yb1—N3152.94 (17)C6—C7—C8120.3 (7)
Cl1—Yb1—N383.32 (13)C6—C7—H7119.81
N4—Yb1—N3126.44 (17)C8—C7—H7119.9
N1—Yb1—Cl283.18 (14)N3—C8—C7122.3 (7)
O2—Yb1—Cl286.99 (12)N3—C8—H8118.86
O1—Yb1—Cl287.74 (12)C7—C8—H8118.87
Cl1—Yb1—Cl2176.75 (6)N4—C9—C10122.1 (6)
N4—Yb1—Cl291.79 (13)N4—C9—C3115.9 (5)
N3—Yb1—Cl299.79 (13)C10—C9—C3121.9 (6)
N1—Yb1—C119.51 (17)C11—C10—C9119.5 (7)
O2—Yb1—C1121.66 (17)C9—C10—H10120.28
O1—Yb1—C1160.52 (16)C11—C10—H10120.24
Cl1—Yb1—C191.30 (12)C12—C11—C10119.4 (7)
N4—Yb1—C181.80 (17)C10—C11—H11120.3
N3—Yb1—C146.10 (16)C12—C11—H11120.28
Cl2—Yb1—C191.55 (12)C11—C12—C13118.2 (7)
C1—N1—C3106.9 (5)C11—C12—H12120.93
C1—N1—Yb1125.0 (4)C13—C12—H12120.96
C3—N1—Yb1127.2 (4)N4—C13—C12123.6 (7)
C1—N2—H2'124 (4)N4—C13—H13118.21
C2—N2—H2'116 (4)C12—C13—H13118.1
C1—N2—C2108.6 (5)N5—C14—C15121.8 (6)
C8—N3—C4117.0 (6)N5—C14—C2115.8 (5)
C8—N3—Yb1126.7 (4)C15—C14—C2122.4 (6)
C4—N3—Yb1116.2 (4)C14—C15—C16119.7 (7)
C13—N4—C9117.2 (6)C14—C15—H15120.18
C13—N4—Yb1123.8 (5)C16—C15—H15120.2
C9—N4—Yb1119.0 (4)C17—C16—C15117.8 (8)
C14—N5—C18118.5 (6)C15—C16—H16121.05
C19—O1—Yb1132.4 (4)C17—C16—H16121.09
Yb1—O1—H10'116 (5)C18—C17—C16119.2 (8)
C19—O1—H10'111 (5)C16—C17—H17120.4
C20—O2—Yb1128.2 (4)C18—C17—H17120.42
Yb1—O2—H20'116 (5)N5—C18—C17122.9 (8)
C20—O2—H20'116 (5)O1—C19—H19C109.45
N1—C1—N2115.4 (6)H19A—C19—H19C109.51
N1—C1—C4119.7 (6)H19B—C19—H19C109.53
N2—C1—C4124.9 (6)O1—C19—H19B109.44
N2—C2—C14111.0 (5)H19A—C19—H19B109.48
N2—C2—C399.8 (5)O1—C19—H19A109.42
C14—C2—C3117.1 (5)O2—C20—H20C109.44
N2—C2—H2109.54H20A—C20—H20C109.47
C3—C2—H2109.5H20B—C20—H20C109.47
C14—C2—H2109.48O2—C20—H20B109.48
N1—C3—C9109.5 (5)H20A—C20—H20B109.48
N1—C3—C2104.6 (5)O2—C20—H20A109.48
C9—C3—C2120.3 (5)
O2—Yb1—N1—C137.1 (6)N4—Yb1—C1—N127.2 (5)
O1—Yb1—N1—C1167.7 (4)N3—Yb1—C1—N1166.5 (6)
Cl1—Yb1—N1—C167.6 (5)C1—N2—C2—C14104.9 (6)
N4—Yb1—N1—C1150.0 (6)C1—N2—C2—C319.3 (6)
N3—Yb1—N1—C110.7 (5)C1—N1—C3—C9146.0 (5)
Cl2—Yb1—N1—C1114.8 (5)Yb1—N1—C3—C923.8 (7)
O2—Yb1—N1—C3154.9 (4)C1—N1—C3—C215.8 (6)
O1—Yb1—N1—C30.3 (6)Yb1—N1—C3—C2154.0 (4)
Cl1—Yb1—N1—C3100.4 (5)N2—C2—C3—N120.8 (6)
N4—Yb1—N1—C318.1 (5)C14—C2—C3—N199.1 (6)
N3—Yb1—N1—C3178.7 (5)N2—C2—C3—C9144.2 (6)
Cl2—Yb1—N1—C377.2 (5)C14—C2—C3—C924.4 (8)
N1—Yb1—N3—C8176.1 (6)C8—N3—C4—C50.1 (10)
O2—Yb1—N3—C813.8 (6)Yb1—N3—C4—C5177.6 (5)
O1—Yb1—N3—C86.1 (8)C8—N3—C4—C1179.4 (6)
Cl1—Yb1—N3—C880.7 (6)Yb1—N3—C4—C13.0 (7)
N4—Yb1—N3—C8162.1 (5)N1—C1—C4—N35.8 (9)
Cl2—Yb1—N3—C898.3 (6)N2—C1—C4—N3174.4 (6)
N1—Yb1—N3—C46.7 (4)N1—C1—C4—C5173.5 (6)
O2—Yb1—N3—C4168.9 (5)N2—C1—C4—C56.3 (10)
O1—Yb1—N3—C4171.1 (4)N3—C4—C5—C61.4 (10)
Cl1—Yb1—N3—C496.5 (4)C1—C4—C5—C6177.9 (6)
N4—Yb1—N3—C415.2 (5)C4—C5—C6—C71.8 (10)
Cl2—Yb1—N3—C484.4 (4)C5—C6—C7—C80.7 (11)
N1—Yb1—N4—C13173.7 (7)C4—N3—C8—C71.2 (11)
O2—Yb1—N4—C1318.1 (9)Yb1—N3—C8—C7178.4 (5)
O1—Yb1—N4—C1317.3 (6)C6—C7—C8—N30.8 (12)
Cl1—Yb1—N4—C1372.3 (6)C13—N4—C9—C102.0 (10)
N3—Yb1—N4—C13151.8 (6)Yb1—N4—C9—C10175.4 (5)
Cl2—Yb1—N4—C13104.7 (6)C13—N4—C9—C3178.1 (6)
N1—Yb1—N4—C99.0 (4)Yb1—N4—C9—C30.7 (7)
O2—Yb1—N4—C9159.1 (4)N1—C3—C9—N412.3 (8)
O1—Yb1—N4—C9159.9 (5)C2—C3—C9—N4133.4 (6)
Cl1—Yb1—N4—C9110.5 (5)N1—C3—C9—C10171.6 (6)
N3—Yb1—N4—C931.0 (6)C2—C3—C9—C1050.5 (9)
Cl2—Yb1—N4—C972.5 (5)N4—C9—C10—C111.0 (11)
N1—Yb1—O1—C1960.5 (8)C3—C9—C10—C11176.9 (7)
O2—Yb1—O1—C19102.9 (7)C9—C10—C11—C120.5 (13)
Cl1—Yb1—O1—C19164.0 (7)C10—C11—C12—C130.9 (14)
N4—Yb1—O1—C1976.8 (7)C9—N4—C13—C121.7 (12)
N3—Yb1—O1—C19122.7 (7)Yb1—N4—C13—C12175.6 (7)
Cl2—Yb1—O1—C1915.4 (7)C11—C12—C13—N40.2 (14)
N1—Yb1—O2—C2075.2 (7)C18—N5—C14—C150.0 (11)
O1—Yb1—O2—C2089.4 (6)C18—N5—C14—C2177.9 (7)
Cl1—Yb1—O2—C20177.9 (6)N2—C2—C14—N5123.6 (6)
N4—Yb1—O2—C2088.7 (7)C3—C2—C14—N5122.8 (6)
N3—Yb1—O2—C2099.7 (6)N2—C2—C14—C1554.3 (8)
Cl2—Yb1—O2—C201.1 (6)C3—C2—C14—C1559.4 (9)
C3—N1—C1—N23.7 (8)N5—C14—C15—C160.9 (12)
Yb1—N1—C1—N2166.4 (4)C2—C14—C15—C16176.9 (7)
C3—N1—C1—C4176.1 (5)C14—C15—C16—C170.5 (13)
Yb1—N1—C1—C413.8 (8)C15—C16—C17—C180.6 (15)
C2—N2—C1—N111.2 (8)C14—N5—C18—C171.2 (14)
C2—N2—C1—C4169.0 (6)C16—C17—C18—N51.5 (16)
Cl1—Yb1—C1—N1114.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10···N5i0.841.862.681 (3)164
O2—H20···Cl3i0.842.192.956 (3)152
N2—H2···Cl30.862.253.096 (3)167
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[YbCl2(C18H15N5)(CH4O)2]Cl
Mr644.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2401 (13), 9.8390 (14), 13.3765 (19)
α, β, γ (°)99.978 (2), 94.616 (2), 92.145 (2)
V3)1192.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.34 × 0.29 × 0.24
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.32, 0.43
No. of measured, independent and
observed [I > 2σ(I)] reflections
11582, 4178, 3995
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.08
No. of reflections4178
No. of parameters292
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 1.35

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker 2001), SHELXTL-NT (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Yb1—Cl12.5220 (19)Yb1—N42.556 (6)
Yb1—Cl22.5834 (18)Yb1—O12.289 (5)
Yb1—N12.268 (5)Yb1—O22.287 (5)
Yb1—N32.579 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H10'···N5i0.8401.8642.681 (3)164
O2—H20'···Cl3i0.8402.1882.956 (3)152
N2—H2'···Cl30.8602.2533.096 (3)167
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported financially by the Secretaria de Educacion Publica (PROMEP-UAS, PTC-033) and the Universidad Autonoma de Sinaloa (PROFAPI 2011/033). AB-C thanks the Consejo Nacional de Ciencia y Tecnologia (CONACYT) for support in the form of a scholarship.

References

First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2007). J. Mex. Chem. Soc. 51, 27–32.  CAS Google Scholar
First citationCampos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2008). Inorg. Chim. Acta, 361, 248–254.  CAS Google Scholar
First citationCampos-Gaxiola, J. J., Höpfl, H. & Parra-Hake, M. (2010). Inorg. Chim. Acta, 363, 1179–1185.  CAS Google Scholar
First citationFernandes, C., Horn, A. Jr, Howie, A. R., Schripsema, J., Skakle, J. M. & Wardell, J. L. (2007). J. Mol. Struct. 837, 274–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationFreidzon, A. Y., Scherbinin, A. V., Bagaturyants, A. A. & Alfimov, M. V. (2011). J. Phys. Chem. A, 115, 4565–4573.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLater, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785–4788.  Google Scholar
First citationLi, X. L., Dai, F. R., Zhang, L. Y., Zhu, Y. M., Peng, Q. & Chen, Z. N. (2007). Organometallics, 26, 4483–4490.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaynard, B. A., Smith, P. A., Ladner, L., Jaleel, A., Beedoe, N., Crawford, C., Assefa, Z. & Sykora, R. E. (2009). Inorg. Chem. 48, 6425–6453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOkawara, T., Feng, J., Abe, M. & Hisaeda, Y. (2012). Acta Cryst. E68, m29–m30.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400–5403.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933–939.  Web of Science CrossRef CAS Google Scholar
First citationThomas, R. B., Smith, P. A., Jaleel, A., Vogel, P., Crawford, C., Assefa, Z. & Sykora, R. E. (2012). Inorg. Chem. 51, 3399–3408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. B., Zhang, L. Y., Chen, X. M., Li, X. L. & Chen, Z. N. (2009). Cryst. Growth Des. 9, 569–576.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 6| June 2012| Pages m815-m816
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds