metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[μ-3,3′-(di­methyl­silanedi­yl)dibenzoato][μ-1,1′-(1,4-phenyl­ene)di-1H-imidazole]­zinc] monohydrate]

aKey Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemcail Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: beiyiling@yahoo.com.cn

(Received 26 March 2012; accepted 2 May 2012; online 2 June 2012)

The asymmetric unit of the title compound, {[Zn(C16H16O4Si)(C12H10N4)]·H2O}n, consists of one ZnII ion, two half 3,3′-(dimethyl­silanedi­yl)dibenzoate ligands and two half 1,1′-(1,4-phenyl­ene)di-1H-imidazole ligands. The ZnII ion is four-coordinated by two O atoms from two carboxlate ligands, two N atoms from two imidazole ligands. Two ZnII ions are bridged by two carboxyl­ate groups in chelating mode, generating a binuclear secondary building unit (SBU), which is further coordinated by two N atoms from two imidazole ligands in monodentate mode. Thus, the binuclear SBUs are further bridged by imidazole ligands in two different directions, giving rise to a chain. The water solvent mol­ecules are hydrogen bonded within the chain along the c axis.

Related literature

For a similar presentation where the binuclear SBUs are further bridged by phenylenedicarboxylate ligands in different directions to give a three-dimensional porous framework containing three-dimensional channels, see: He et al. (2010[He, H.-Y., Yuan, D.-Q., Ma, H.-Q., Sun, D.-F., Zhang, G.-Q. & Zhou, H.-C. (2010). Inorg. Chem. 49, 7605-7607.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C16H14O4Si)(C12H10N4)]·H2O

  • Mr = 591.99

  • Monoclinic, P 21 /c

  • a = 9.4480 (11) Å

  • b = 23.959 (3) Å

  • c = 12.3083 (13) Å

  • β = 110.029 (2)°

  • V = 2617.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.950

  • 15353 measured reflections

  • 5881 independent reflections

  • 3694 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.02

  • 5881 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2i 0.79 1.90 2.696 (8) 178
O1W—H1WA⋯O2 0.78 2.08 2.852 (8) 171
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For the similar presentation which is the binuclear SBUs are further bridged by BDC ligands in different directions to give rise to a 3D porous framework containing 3D channels.see:He et al. (2010).

Experimental top

4,4'-(Dimethylsilanediyl)dibenzoate (1 mg,0.0033 mmol), 1,4-bis(1-imidazolyl)benzene (10.8,0.0038 mmol) and Zn(NO3)2.6H2O (4 mg, 0.0159 mmol) were dissolved into 1 ml a mixed solution (DMF–EtOH–H2O = 1:1:1). The mixed solution was sealed into a Pyrex glass tube. The mixed solution was heated to 75 centigrade degree in 10 h, and kept the temperature at 75 centigrade degree for 72 h, and then was cooled down to room temperature in 10 h. colourless rod crystals were obtained. The crystals were filtered, washed with water and dried in air.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.78 (2) Å and H···H = 1.37 (2) Å, and with Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions [C—H (aromatic) = 0.93 Å and C—H (methyl) = 0.96 Å] and were included in the refinement in the ridingmodel approximation, with Uiso(H) = 1.2Ueq(C)and 1.5Ueq(C) for methylene C—H.

Structure description top

For the similar presentation which is the binuclear SBUs are further bridged by BDC ligands in different directions to give rise to a 3D porous framework containing 3D channels.see:He et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound.
[Figure 2] Fig. 2. The one-dimensional chain of the title compound viewed by a axis.
[Figure 3] Fig. 3. The one-dimensional chain of the title compound viewed by b axis.
[Figure 4] Fig. 4. The packed structure of the title compound viewed by b axis.
Poly[[[µ-4,4'-(dimethylsilanediyl)dibenzoato][µ-1,1'-(1,4- phenylene)di-1H-imidazole]zinc] monohydrate] top
Crystal data top
[Zn(C16H14O4Si)(C12H10N4)]·H2OF(000) = 1224
Mr = 591.99Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2106 reflections
a = 9.4480 (11) Åθ = 2.3–23.3°
b = 23.959 (3) ŵ = 1.03 mm1
c = 12.3083 (13) ÅT = 298 K
β = 110.029 (2)°Rod, colourless
V = 2617.7 (5) Å30.15 × 0.10 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5881 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.861, Tmax = 0.950k = 2930
15353 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.2685P]
where P = (Fo2 + 2Fc2)/3
5881 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Zn(C16H14O4Si)(C12H10N4)]·H2OV = 2617.7 (5) Å3
Mr = 591.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4480 (11) ŵ = 1.03 mm1
b = 23.959 (3) ÅT = 298 K
c = 12.3083 (13) Å0.15 × 0.10 × 0.05 mm
β = 110.029 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5881 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3694 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.950Rint = 0.054
15353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.69 e Å3
5881 reflectionsΔρmin = 0.74 e Å3
352 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.55041 (5)0.072654 (19)0.85116 (4)0.03338 (16)
Si0.77758 (13)0.22634 (5)0.67361 (9)0.0332 (3)
O10.6985 (3)0.01204 (12)0.8930 (2)0.0470 (8)
O20.5877 (4)0.01169 (15)0.7116 (3)0.0737 (12)
O30.4631 (3)0.13056 (12)0.2612 (2)0.0443 (7)
O40.2206 (4)0.13460 (18)0.2361 (3)0.0769 (12)
N20.6888 (3)0.10157 (14)1.2029 (2)0.0316 (7)
N10.5830 (4)0.09931 (13)1.0146 (3)0.0324 (7)
N30.3262 (4)0.05579 (14)0.7877 (3)0.0355 (8)
C10.6826 (5)0.02014 (18)0.8076 (4)0.0406 (10)
C20.7819 (4)0.07052 (16)0.8297 (3)0.0309 (8)
C30.9083 (4)0.07470 (16)0.9284 (3)0.0322 (9)
H30.93470.04500.98020.039*
C40.9954 (4)0.12246 (17)0.9508 (3)0.0359 (9)
H41.08120.12471.01660.043*
C50.9539 (4)0.16695 (17)0.8745 (3)0.0369 (9)
H51.01220.19920.89080.044*
C60.8268 (4)0.16490 (15)0.7735 (3)0.0285 (8)
C70.7439 (4)0.11537 (16)0.7529 (3)0.0306 (9)
H70.66060.11220.68570.037*
C80.9110 (5)0.2296 (2)0.5922 (4)0.0617 (14)
H8A0.90260.19610.54760.093*
H8B1.01210.23320.64560.093*
H8C0.88710.26130.54130.093*
C90.7933 (6)0.29139 (19)0.7606 (4)0.0599 (14)
H9A0.72440.28950.80260.090*
H9B0.76920.32310.71000.090*
H9C0.89430.29500.81410.090*
C100.5782 (4)0.21887 (15)0.5732 (3)0.0328 (9)
C110.4595 (5)0.24408 (19)0.5982 (4)0.0447 (11)
H110.48070.26450.66620.054*
C130.2791 (5)0.2091 (2)0.4252 (4)0.0489 (11)
H130.17970.20620.37590.059*
C140.3906 (4)0.18279 (17)0.3963 (3)0.0352 (9)
C150.5394 (4)0.18807 (16)0.4710 (3)0.0323 (9)
H150.61530.17040.45190.039*
C160.3508 (5)0.14646 (18)0.2886 (3)0.0400 (10)
C180.5100 (5)0.13739 (19)1.0587 (3)0.0452 (11)
H180.42820.15881.01490.054*
C190.5730 (5)0.13969 (19)1.1743 (4)0.0466 (11)
H190.54440.16231.22460.056*
C170.6897 (4)0.07880 (16)1.1052 (3)0.0333 (9)
H170.75760.05151.10110.040*
C200.7923 (4)0.08999 (16)1.3165 (3)0.0320 (9)
C250.9402 (4)0.08007 (18)1.3314 (3)0.0393 (10)
H250.97180.07971.26760.047*
C210.7454 (5)0.0894 (2)1.4111 (4)0.0515 (13)
H210.64440.09501.40120.062*
C220.8485 (5)0.0804 (2)1.5203 (3)0.0482 (12)
H220.81690.08011.58400.058*
C230.9971 (4)0.07189 (16)1.5350 (3)0.0308 (8)
C241.0435 (5)0.07055 (19)1.4409 (3)0.0431 (11)
H241.14370.06331.45060.052*
C270.0798 (5)0.06543 (18)0.7533 (3)0.0413 (10)
H270.01250.06910.76400.050*
C260.2541 (4)0.05871 (17)0.6749 (3)0.0375 (10)
H260.30110.05690.61980.045*
C280.2151 (5)0.05982 (18)0.8359 (3)0.0401 (10)
H280.23150.05880.91480.048*
N40.1048 (3)0.06458 (13)0.6492 (2)0.0309 (7)
O1W0.4293 (9)0.0453 (4)0.5016 (6)0.227 (4)
H1WA0.48080.03080.55800.272*
H1WB0.42480.03480.43930.272*
C120.3113 (5)0.2396 (2)0.5253 (4)0.0567 (13)
H120.23460.25710.54380.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0337 (3)0.0394 (3)0.0205 (2)0.0083 (2)0.00091 (18)0.00123 (19)
Si0.0376 (6)0.0302 (6)0.0275 (6)0.0039 (5)0.0057 (5)0.0010 (4)
O10.0557 (19)0.0427 (18)0.0385 (17)0.0169 (15)0.0109 (14)0.0076 (14)
O20.080 (3)0.069 (2)0.0442 (19)0.038 (2)0.0149 (18)0.0108 (17)
O30.0414 (17)0.0526 (19)0.0376 (16)0.0095 (14)0.0118 (14)0.0159 (14)
O40.0359 (19)0.131 (4)0.053 (2)0.016 (2)0.0016 (16)0.033 (2)
N20.0305 (18)0.0401 (19)0.0190 (16)0.0025 (14)0.0016 (13)0.0018 (13)
N10.0345 (18)0.0347 (18)0.0237 (16)0.0047 (15)0.0045 (14)0.0007 (14)
N30.0342 (19)0.045 (2)0.0221 (17)0.0042 (15)0.0037 (14)0.0011 (14)
C10.042 (3)0.040 (2)0.034 (2)0.0089 (19)0.0054 (19)0.0005 (19)
C20.031 (2)0.033 (2)0.0274 (19)0.0024 (17)0.0079 (16)0.0009 (16)
C30.036 (2)0.035 (2)0.0247 (19)0.0021 (18)0.0091 (16)0.0038 (16)
C40.027 (2)0.048 (3)0.025 (2)0.0016 (18)0.0008 (16)0.0034 (18)
C50.036 (2)0.035 (2)0.036 (2)0.0087 (18)0.0074 (18)0.0048 (18)
C60.030 (2)0.029 (2)0.0262 (19)0.0001 (16)0.0088 (16)0.0032 (15)
C70.028 (2)0.037 (2)0.0257 (19)0.0011 (17)0.0069 (16)0.0021 (16)
C80.058 (3)0.081 (4)0.047 (3)0.010 (3)0.019 (2)0.014 (3)
C90.068 (3)0.041 (3)0.051 (3)0.003 (2)0.004 (2)0.007 (2)
C100.041 (2)0.027 (2)0.026 (2)0.0022 (17)0.0070 (17)0.0051 (16)
C110.050 (3)0.046 (3)0.040 (2)0.006 (2)0.017 (2)0.005 (2)
C130.035 (2)0.063 (3)0.045 (3)0.004 (2)0.008 (2)0.002 (2)
C140.034 (2)0.040 (2)0.030 (2)0.0005 (18)0.0079 (17)0.0005 (17)
C150.032 (2)0.035 (2)0.029 (2)0.0008 (17)0.0090 (17)0.0001 (16)
C160.039 (3)0.051 (3)0.026 (2)0.006 (2)0.0060 (19)0.0020 (18)
C180.045 (3)0.053 (3)0.030 (2)0.022 (2)0.0032 (19)0.0019 (19)
C190.047 (3)0.056 (3)0.032 (2)0.017 (2)0.008 (2)0.003 (2)
C170.032 (2)0.041 (2)0.0226 (19)0.0068 (17)0.0039 (16)0.0017 (17)
C200.032 (2)0.037 (2)0.0217 (19)0.0009 (17)0.0030 (16)0.0003 (16)
C250.034 (2)0.059 (3)0.025 (2)0.005 (2)0.0097 (17)0.0044 (18)
C210.032 (2)0.091 (4)0.029 (2)0.012 (2)0.0069 (19)0.002 (2)
C220.039 (3)0.083 (4)0.021 (2)0.011 (2)0.0096 (18)0.001 (2)
C230.031 (2)0.034 (2)0.0217 (18)0.0015 (17)0.0008 (15)0.0006 (16)
C240.030 (2)0.068 (3)0.028 (2)0.000 (2)0.0059 (17)0.007 (2)
C270.035 (2)0.063 (3)0.024 (2)0.003 (2)0.0081 (17)0.0039 (19)
C260.036 (2)0.050 (3)0.025 (2)0.0019 (19)0.0077 (17)0.0018 (17)
C280.043 (3)0.052 (3)0.020 (2)0.002 (2)0.0039 (18)0.0032 (17)
N40.0306 (18)0.0365 (19)0.0209 (15)0.0005 (14)0.0029 (13)0.0005 (13)
O1W0.238 (9)0.309 (11)0.153 (6)0.097 (8)0.092 (6)0.052 (7)
C120.042 (3)0.075 (4)0.054 (3)0.017 (3)0.017 (2)0.010 (3)
Geometric parameters (Å, º) top
Zn—O3i1.932 (3)C9—H9C0.9600
Zn—O11.959 (3)C10—C151.395 (5)
Zn—N12.031 (3)C10—C111.398 (6)
Zn—N32.032 (3)C11—C121.384 (6)
Si—C81.862 (5)C11—H110.9300
Si—C91.868 (5)C13—C121.374 (6)
Si—C61.872 (4)C13—C141.375 (6)
Si—C101.875 (4)C13—H130.9300
O1—C11.271 (5)C14—C151.397 (5)
O2—C11.231 (5)C14—C161.522 (6)
O3—C161.276 (5)C15—H150.9300
O3—Zni1.932 (3)C18—C191.342 (5)
O4—C161.212 (5)C18—H180.9300
N2—C171.324 (5)C19—H190.9300
N2—C191.375 (5)C17—H170.9300
N2—C201.432 (4)C20—C251.367 (5)
N1—C171.316 (5)C20—C211.380 (5)
N1—C181.363 (5)C25—C241.386 (5)
N3—C261.322 (5)C25—H250.9300
N3—C281.375 (5)C21—C221.380 (6)
C1—C21.495 (5)C21—H210.9300
C2—C31.385 (5)C22—C231.368 (6)
C2—C71.394 (5)C22—H220.9300
C3—C41.381 (5)C23—C241.372 (5)
C3—H30.9300C23—N4ii1.436 (4)
C4—C51.386 (5)C24—H240.9300
C4—H40.9300C27—C281.339 (5)
C5—C61.403 (5)C27—N41.380 (5)
C5—H50.9300C27—H270.9300
C6—C71.396 (5)C26—N41.343 (5)
C7—H70.9300C26—H260.9300
C8—H8A0.9600C28—H280.9300
C8—H8B0.9600N4—C23iii1.436 (4)
C8—H8C0.9600O1W—H1WA0.7791
C9—H9A0.9600O1W—H1WB0.7946
C9—H9B0.9600C12—H120.9300
O3i—Zn—O1125.92 (13)C12—C11—C10122.2 (4)
O3i—Zn—N1115.69 (13)C12—C11—H11118.9
O1—Zn—N196.91 (12)C10—C11—H11118.9
O3i—Zn—N393.61 (13)C12—C13—C14121.5 (4)
O1—Zn—N3120.70 (13)C12—C13—H13119.3
N1—Zn—N3103.17 (13)C14—C13—H13119.3
C8—Si—C9109.8 (3)C13—C14—C15118.4 (4)
C8—Si—C6109.0 (2)C13—C14—C16120.4 (4)
C9—Si—C6109.04 (19)C15—C14—C16121.2 (4)
C8—Si—C10111.2 (2)C10—C15—C14122.4 (4)
C9—Si—C10108.8 (2)C10—C15—H15118.8
C6—Si—C10108.99 (17)C14—C15—H15118.8
C1—O1—Zn111.1 (3)O4—C16—O3125.0 (4)
C16—O3—Zni123.1 (3)O4—C16—C14120.1 (4)
C17—N2—C19107.0 (3)O3—C16—C14114.9 (4)
C17—N2—C20126.3 (3)C19—C18—N1110.4 (4)
C19—N2—C20126.6 (3)C19—C18—H18124.8
C17—N1—C18104.9 (3)N1—C18—H18124.8
C17—N1—Zn122.3 (3)C18—C19—N2105.6 (4)
C18—N1—Zn132.8 (3)C18—C19—H19127.2
C26—N3—C28104.7 (3)N2—C19—H19127.2
C26—N3—Zn119.2 (3)N1—C17—N2112.0 (3)
C28—N3—Zn132.0 (3)N1—C17—H17124.0
O2—C1—O1122.4 (4)N2—C17—H17124.0
O2—C1—C2120.8 (4)C25—C20—C21119.6 (4)
O1—C1—C2116.7 (3)C25—C20—N2119.3 (3)
C3—C2—C7118.9 (3)C21—C20—N2121.1 (4)
C3—C2—C1121.1 (3)C20—C25—C24120.4 (4)
C7—C2—C1120.0 (3)C20—C25—H25119.8
C4—C3—C2120.7 (4)C24—C25—H25119.8
C4—C3—H3119.6C22—C21—C20120.0 (4)
C2—C3—H3119.6C22—C21—H21120.0
C3—C4—C5119.4 (4)C20—C21—H21120.0
C3—C4—H4120.3C23—C22—C21120.1 (4)
C5—C4—H4120.3C23—C22—H22119.9
C4—C5—C6122.1 (4)C21—C22—H22119.9
C4—C5—H5118.9C24—C23—C22120.1 (3)
C6—C5—H5118.9C24—C23—N4ii120.0 (3)
C7—C6—C5116.6 (3)C22—C23—N4ii119.9 (3)
C7—C6—Si123.5 (3)C23—C24—C25119.7 (4)
C5—C6—Si120.0 (3)C23—C24—H24120.1
C2—C7—C6122.3 (3)C25—C24—H24120.1
C2—C7—H7118.9C28—C27—N4106.3 (4)
C6—C7—H7118.9C28—C27—H27126.8
Si—C8—H8A109.5N4—C27—H27126.8
Si—C8—H8B109.5N3—C26—N4112.0 (4)
H8A—C8—H8B109.5N3—C26—H26124.0
Si—C8—H8C109.5N4—C26—H26124.0
H8A—C8—H8C109.5C27—C28—N3110.5 (4)
H8B—C8—H8C109.5C27—C28—H28124.7
Si—C9—H9A109.5N3—C28—H28124.7
Si—C9—H9B109.5C26—N4—C27106.4 (3)
H9A—C9—H9B109.5C26—N4—C23iii125.3 (3)
Si—C9—H9C109.5C27—N4—C23iii128.1 (3)
H9A—C9—H9C109.5H1WA—O1W—H1WB122.0
H9B—C9—H9C109.5C13—C12—C11119.2 (4)
C15—C10—C11116.4 (4)C13—C12—H12120.4
C15—C10—Si122.7 (3)C11—C12—H12120.4
C11—C10—Si121.0 (3)
O3i—Zn—O1—C164.2 (3)C12—C13—C14—C16176.4 (4)
N1—Zn—O1—C1166.9 (3)C11—C10—C15—C140.6 (6)
N3—Zn—O1—C157.1 (3)Si—C10—C15—C14179.8 (3)
O3i—Zn—N1—C17129.7 (3)C13—C14—C15—C100.1 (6)
O1—Zn—N1—C175.8 (3)C16—C14—C15—C10176.8 (4)
N3—Zn—N1—C17129.6 (3)Zni—O3—C16—O412.7 (6)
O3i—Zn—N1—C1851.9 (4)Zni—O3—C16—C14167.1 (3)
O1—Zn—N1—C18172.6 (4)C13—C14—C16—O49.6 (7)
N3—Zn—N1—C1848.7 (4)C15—C14—C16—O4167.2 (4)
O3i—Zn—N3—C2636.1 (3)C13—C14—C16—O3170.6 (4)
O1—Zn—N3—C26100.1 (3)C15—C14—C16—O312.6 (6)
N1—Zn—N3—C26153.5 (3)C17—N1—C18—C190.3 (5)
O3i—Zn—N3—C28117.6 (4)Zn—N1—C18—C19178.9 (3)
O1—Zn—N3—C28106.3 (4)N1—C18—C19—N20.2 (5)
N1—Zn—N3—C280.2 (4)C17—N2—C19—C180.1 (5)
Zn—O1—C1—O22.0 (6)C20—N2—C19—C18178.1 (4)
Zn—O1—C1—C2176.0 (3)C18—N1—C17—N20.2 (5)
O2—C1—C2—C3166.5 (4)Zn—N1—C17—N2179.0 (3)
O1—C1—C2—C315.5 (6)C19—N2—C17—N10.1 (5)
O2—C1—C2—C716.5 (6)C20—N2—C17—N1177.9 (4)
O1—C1—C2—C7161.5 (4)C17—N2—C20—C2536.5 (6)
C7—C2—C3—C40.1 (6)C19—N2—C20—C25141.1 (4)
C1—C2—C3—C4177.0 (4)C17—N2—C20—C21144.3 (4)
C2—C3—C4—C51.2 (6)C19—N2—C20—C2138.0 (6)
C3—C4—C5—C61.0 (6)C21—C20—C25—C241.3 (7)
C4—C5—C6—C70.5 (6)N2—C20—C25—C24177.9 (4)
C4—C5—C6—Si179.7 (3)C25—C20—C21—C221.9 (7)
C8—Si—C6—C7104.7 (3)N2—C20—C21—C22177.3 (4)
C9—Si—C6—C7135.5 (3)C20—C21—C22—C230.2 (7)
C10—Si—C6—C716.9 (4)C21—C22—C23—C242.0 (7)
C8—Si—C6—C574.5 (4)C21—C22—C23—N4ii177.7 (4)
C9—Si—C6—C545.3 (4)C22—C23—C24—C252.6 (6)
C10—Si—C6—C5164.0 (3)N4ii—C23—C24—C25177.2 (4)
C3—C2—C7—C61.6 (6)C20—C25—C24—C230.9 (7)
C1—C2—C7—C6175.5 (4)C28—N3—C26—N40.3 (5)
C5—C6—C7—C21.8 (5)Zn—N3—C26—N4159.8 (3)
Si—C6—C7—C2179.0 (3)N4—C27—C28—N30.4 (5)
C8—Si—C10—C1535.2 (4)C26—N3—C28—C270.4 (5)
C9—Si—C10—C15156.2 (3)Zn—N3—C28—C27156.0 (3)
C6—Si—C10—C1585.0 (3)N3—C26—N4—C270.1 (5)
C8—Si—C10—C11145.2 (4)N3—C26—N4—C23iii176.5 (3)
C9—Si—C10—C1124.2 (4)C28—C27—N4—C260.2 (5)
C6—Si—C10—C1194.6 (4)C28—C27—N4—C23iii176.7 (4)
C15—C10—C11—C120.9 (6)C14—C13—C12—C110.3 (8)
Si—C10—C11—C12179.5 (4)C10—C11—C12—C130.5 (7)
C12—C13—C14—C150.5 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2i0.791.902.696 (8)178
O1W—H1WA···O20.782.082.852 (8)171
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C16H14O4Si)(C12H10N4)]·H2O
Mr591.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4480 (11), 23.959 (3), 12.3083 (13)
β (°) 110.029 (2)
V3)2617.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.861, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
15353, 5881, 3694
Rint0.054
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.153, 1.02
No. of reflections5881
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.74

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2i0.791.902.696 (8)178.3
O1W—H1WA···O20.782.082.852 (8)171.2
Symmetry code: (i) x+1, y, z+1.
 

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, H.-Y., Yuan, D.-Q., Ma, H.-Q., Sun, D.-F., Zhang, G.-Q. & Zhou, H.-C. (2010). Inorg. Chem. 49, 7605–7607.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds