organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-2-({2-[(E)-(hy­dr­oxy­imino)­meth­yl]phen­­oxy}meth­yl)-3-(4-methyl­phen­yl)acrylate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 20 April 2012; accepted 27 April 2012; online 5 May 2012)

In the title compound, C19H19NO4, the dihedral angle between the mean planes through the benzene rings is 82.18 (7)°. The C=N double bond is trans-configured. The mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯N hydrogen bonds with the motif R22(6). The crystal packing also features C—H⋯O inter­actions. The methyl group attached to one of the aromatic rings is disordered over two almost equally occupied positions [occpancy ratio = 0.51 (4):0.49 (4)].

Related literature

For information on oximes, see: Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]). For a related structure, see: SakthiMurugesan et al. (2011[SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NO4

  • Mr = 325.35

  • Triclinic, [P \overline 1]

  • a = 8.8683 (2) Å

  • b = 9.3246 (2) Å

  • c = 11.9259 (3) Å

  • α = 75.200 (2)°

  • β = 76.453 (2)°

  • γ = 65.142 (1)°

  • V = 856.04 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.978

  • 20292 measured reflections

  • 4580 independent reflections

  • 3493 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.04

  • 4580 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.11 2.8211 (15) 145
C15—H15⋯O3ii 0.93 2.40 3.247 (2) 151
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Oximes are a classical type of chelating ligands which are widely used in coordination and analytical chemistry (Chaudhuri, 2003). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles in (Fig. 1) agree with those observed in other acrylate derivatives (SakthiMurugesan et al., 2011). the whole molecule is not planar as the dihedral angle between the two phenyl rings is 82.18 (7)°, it shows that both the rings are almost perpendicular to each other. The methoxybutene group connects the two phenyl rings, results in twisting the rings and placed those rings in perpendicular direction. The oxime group having the CN forming an E configuration. The atom C19 is deviated by -0.037 (2) Å from the least squares plane of the C13—C18 ring. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being -0.008 (1) Å for the C2 atom.

The enoate group assumes an extended conformation as can be seen from torsion angles C8—C9—C10—O3 [169.97 (15)°] and C9—C10—O4—C11 [179.55 (14)°]. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the motif R22(6). In addition to van der Waals interactions the crystal packing is stabilized by C–H..O and O–H···N interactions.

Related literature top

For information on oximes, see: Chaudhuri (2003). For a related structure, see: SakthiMurugesan et al. (2011).

Experimental top

To a stirred solution of (E)-methyl 2-((2-formylphenoxy)methyl)-3 - p-tolyacrylate (4 mmol) in 10 ml of EtOH/H2O mixture(1:1) was added NH2OH.HCl(6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature For 1.5 h. After completion of the reaction, solvent was removed and crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3x15ml). The combined organic layer was washed with brine (2x10ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain(E)-methyl 2-((2-((E)-(hydroxyimino) methyl)phenoxy) methyl)-3-p-tolylacrylate as a colourless solid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and an O—H distance of 0.82 Å and with Uiso(H) = 1.5Ueq(Cmethyl, O) or 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2 - x, -y, 1 - z). The dashed lines indicate the hydrogen bonds.
Methyl (E)-2-({2-[(E)-(hydroxyimino)methyl]phenoxy}methyl)- 3-(4-methylphenyl)acrylate top
Crystal data top
C19H19NO4Z = 2
Mr = 325.35F(000) = 344
Triclinic, P1Dx = 1.262 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8683 (2) ÅCell parameters from 6056 reflections
b = 9.3246 (2) Åθ = 2.5–32.5°
c = 11.9259 (3) ŵ = 0.09 mm1
α = 75.200 (2)°T = 293 K
β = 76.453 (2)°Block, white crystalline
γ = 65.142 (1)°0.35 × 0.30 × 0.25 mm
V = 856.04 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4580 independent reflections
Radiation source: fine-focus sealed tube3493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 29.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.970, Tmax = 0.978k = 1212
20292 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1563P]
where P = (Fo2 + 2Fc2)/3
4580 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H19NO4γ = 65.142 (1)°
Mr = 325.35V = 856.04 (3) Å3
Triclinic, P1Z = 2
a = 8.8683 (2) ÅMo Kα radiation
b = 9.3246 (2) ŵ = 0.09 mm1
c = 11.9259 (3) ÅT = 293 K
α = 75.200 (2)°0.35 × 0.30 × 0.25 mm
β = 76.453 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4580 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3493 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.022
20292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
4580 reflectionsΔρmin = 0.20 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.30137 (15)0.78709 (15)0.40342 (11)0.0446 (3)
H10.38390.82440.36070.053*
C20.32860 (14)0.61892 (14)0.41323 (10)0.0397 (3)
C30.24555 (17)0.54149 (16)0.50493 (12)0.0521 (3)
H30.17010.59770.56230.063*
C40.2729 (2)0.38274 (18)0.51246 (13)0.0608 (4)
H40.21610.33250.57430.073*
C50.38495 (19)0.29887 (16)0.42785 (13)0.0569 (3)
H50.40270.19200.43260.068*
C60.47131 (16)0.37155 (15)0.33607 (12)0.0476 (3)
H60.54700.31390.27950.057*
C70.44431 (14)0.53102 (13)0.32886 (10)0.0385 (2)
C80.64247 (16)0.53394 (14)0.15207 (11)0.0450 (3)
H8A0.58490.51350.10170.054*
H8B0.72250.43200.18590.054*
C90.73103 (15)0.64103 (15)0.08311 (11)0.0441 (3)
C100.89857 (17)0.60977 (17)0.11066 (13)0.0532 (3)
C111.0978 (2)0.4600 (3)0.24022 (17)0.0852 (6)
H11A1.18010.45650.17130.128*
H11B1.13070.35710.29080.128*
H11C1.08990.54020.28070.128*
C120.67354 (16)0.76491 (15)0.00294 (11)0.0475 (3)
H120.74500.81930.03590.057*
C130.51907 (16)0.82972 (14)0.05413 (11)0.0456 (3)
C140.37187 (17)0.80613 (17)0.00162 (12)0.0546 (3)
H140.36630.74670.07370.065*
C150.23412 (19)0.86949 (18)0.05950 (14)0.0594 (4)
H150.13780.85060.02280.071*
C160.23571 (19)0.96063 (17)0.17098 (13)0.0578 (4)
C170.3798 (2)0.98842 (18)0.22200 (13)0.0619 (4)
H170.38331.05120.29620.074*
C180.51779 (19)0.92530 (16)0.16541 (12)0.0558 (3)
H180.61290.94660.20200.067*
C190.0852 (3)1.0257 (3)0.23393 (18)0.0884 (6)
H19A0.00300.98400.18860.133*0.51 (4)
H19B0.11920.99370.30930.133*0.51 (4)
H19C0.03761.14080.24400.133*0.51 (4)
H19D0.06180.93820.24330.133*0.49 (4)
H19F0.10821.08580.30960.133*0.49 (4)
H19E0.01021.09450.18900.133*0.49 (4)
N10.16707 (14)0.88269 (13)0.45217 (10)0.0493 (3)
O10.16721 (14)1.03758 (12)0.43411 (11)0.0699 (3)
H1A0.07661.09770.46350.105*
O20.52349 (11)0.61418 (10)0.24323 (7)0.0467 (2)
O30.99150 (15)0.67203 (16)0.05342 (13)0.0872 (4)
O40.93678 (13)0.49931 (16)0.20693 (9)0.0720 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (6)0.0459 (6)0.0413 (6)0.0165 (5)0.0028 (5)0.0081 (5)
C20.0363 (5)0.0416 (6)0.0369 (5)0.0131 (4)0.0052 (4)0.0034 (4)
C30.0498 (7)0.0526 (7)0.0433 (6)0.0177 (6)0.0034 (5)0.0034 (5)
C40.0628 (9)0.0551 (8)0.0556 (8)0.0281 (7)0.0009 (7)0.0061 (6)
C50.0620 (8)0.0428 (6)0.0639 (8)0.0235 (6)0.0082 (7)0.0009 (6)
C60.0480 (7)0.0427 (6)0.0502 (7)0.0160 (5)0.0055 (5)0.0095 (5)
C70.0366 (5)0.0407 (6)0.0362 (5)0.0144 (4)0.0063 (4)0.0032 (4)
C80.0453 (6)0.0428 (6)0.0431 (6)0.0146 (5)0.0033 (5)0.0141 (5)
C90.0415 (6)0.0467 (6)0.0424 (6)0.0162 (5)0.0055 (5)0.0172 (5)
C100.0449 (7)0.0574 (7)0.0560 (8)0.0177 (6)0.0030 (6)0.0205 (6)
C110.0524 (9)0.1224 (16)0.0710 (11)0.0173 (10)0.0144 (8)0.0242 (11)
C120.0462 (7)0.0483 (6)0.0483 (7)0.0221 (5)0.0060 (5)0.0136 (5)
C130.0499 (7)0.0404 (6)0.0446 (6)0.0181 (5)0.0019 (5)0.0110 (5)
C140.0515 (7)0.0568 (7)0.0484 (7)0.0215 (6)0.0001 (6)0.0027 (6)
C150.0504 (8)0.0629 (8)0.0635 (9)0.0243 (7)0.0030 (6)0.0091 (7)
C160.0623 (9)0.0521 (7)0.0576 (8)0.0157 (6)0.0123 (7)0.0148 (6)
C170.0745 (10)0.0535 (8)0.0487 (7)0.0211 (7)0.0075 (7)0.0017 (6)
C180.0600 (8)0.0490 (7)0.0534 (8)0.0246 (6)0.0010 (6)0.0029 (6)
C190.0806 (13)0.1011 (15)0.0808 (12)0.0241 (11)0.0337 (10)0.0105 (11)
N10.0485 (6)0.0423 (5)0.0524 (6)0.0168 (4)0.0037 (5)0.0118 (5)
O10.0685 (7)0.0460 (5)0.0879 (8)0.0241 (5)0.0180 (6)0.0223 (5)
O20.0513 (5)0.0418 (4)0.0421 (4)0.0193 (4)0.0095 (4)0.0118 (3)
O30.0586 (7)0.0883 (9)0.1159 (11)0.0418 (6)0.0146 (7)0.0059 (8)
O40.0507 (6)0.1054 (9)0.0517 (6)0.0264 (6)0.0068 (5)0.0074 (6)
Geometric parameters (Å, º) top
C1—N11.2644 (16)C11—H11B0.9600
C1—C21.4602 (17)C11—H11C0.9600
C1—H10.9300C12—C131.4566 (19)
C2—C31.3879 (17)C12—H120.9300
C2—C71.4027 (16)C13—C141.3902 (18)
C3—C41.378 (2)C13—C181.3964 (18)
C3—H30.9300C14—C151.378 (2)
C4—C51.377 (2)C14—H140.9300
C4—H40.9300C15—C161.383 (2)
C5—C61.3815 (19)C15—H150.9300
C5—H50.9300C16—C171.380 (2)
C6—C71.3860 (17)C16—C191.506 (2)
C6—H60.9300C17—C181.370 (2)
C7—O21.3618 (14)C17—H170.9300
C8—O21.4386 (14)C18—H180.9300
C8—C91.4925 (17)C19—H19A0.9600
C8—H8A0.9700C19—H19B0.9600
C8—H8B0.9700C19—H19C0.9600
C9—C121.3386 (18)C19—H19D0.9600
C9—C101.4886 (19)C19—H19F0.9600
C10—O31.1910 (17)C19—H19E0.9600
C10—O41.3336 (18)N1—O11.4052 (14)
C11—O41.443 (2)O1—H1A0.8200
C11—H11A0.9600
N1—C1—C2120.89 (11)H11A—C11—H11C109.5
N1—C1—H1119.6H11B—C11—H11C109.5
C2—C1—H1119.6C9—C12—C13131.50 (12)
C3—C2—C7118.50 (11)C9—C12—H12114.2
C3—C2—C1122.09 (11)C13—C12—H12114.2
C7—C2—C1119.40 (10)C14—C13—C18116.93 (13)
C4—C3—C2121.16 (13)C14—C13—C12125.81 (12)
C4—C3—H3119.4C18—C13—C12117.26 (12)
C2—C3—H3119.4C15—C14—C13121.00 (13)
C5—C4—C3119.61 (13)C15—C14—H14119.5
C5—C4—H4120.2C13—C14—H14119.5
C3—C4—H4120.2C14—C15—C16121.55 (14)
C4—C5—C6120.81 (13)C14—C15—H15119.2
C4—C5—H5119.6C16—C15—H15119.2
C6—C5—H5119.6C17—C16—C15117.63 (14)
C5—C6—C7119.55 (12)C17—C16—C19121.61 (15)
C5—C6—H6120.2C15—C16—C19120.76 (16)
C7—C6—H6120.2C18—C17—C16121.27 (14)
O2—C7—C6124.60 (11)C18—C17—H17119.4
O2—C7—C2115.05 (10)C16—C17—H17119.4
C6—C7—C2120.35 (11)C17—C18—C13121.57 (14)
O2—C8—C9107.57 (9)C17—C18—H18119.2
O2—C8—H8A110.2C13—C18—H18119.2
C9—C8—H8A110.2C16—C19—H19A109.5
O2—C8—H8B110.2C16—C19—H19B109.5
C9—C8—H8B110.2C16—C19—H19C109.5
H8A—C8—H8B108.5C16—C19—H19D109.5
C12—C9—C10115.91 (12)C16—C19—H19F109.5
C12—C9—C8125.82 (12)H19D—C19—H19F109.5
C10—C9—C8118.27 (11)C16—C19—H19E109.5
O3—C10—O4122.75 (14)H19D—C19—H19E109.5
O3—C10—C9125.04 (14)H19F—C19—H19E109.5
O4—C10—C9112.19 (12)C1—N1—O1111.94 (11)
O4—C11—H11A109.5N1—O1—H1A109.5
O4—C11—H11B109.5C7—O2—C8118.77 (9)
H11A—C11—H11B109.5C10—O4—C11116.22 (14)
O4—C11—H11C109.5
N1—C1—C2—C323.53 (19)C8—C9—C12—C130.6 (2)
N1—C1—C2—C7157.62 (12)C9—C12—C13—C1420.6 (2)
C7—C2—C3—C41.2 (2)C9—C12—C13—C18159.99 (14)
C1—C2—C3—C4179.93 (13)C18—C13—C14—C152.5 (2)
C2—C3—C4—C50.2 (2)C12—C13—C14—C15178.12 (13)
C3—C4—C5—C60.6 (2)C13—C14—C15—C160.9 (2)
C4—C5—C6—C70.3 (2)C14—C15—C16—C171.0 (2)
C5—C6—C7—O2179.27 (12)C14—C15—C16—C19178.59 (15)
C5—C6—C7—C20.80 (19)C15—C16—C17—C181.3 (2)
C3—C2—C7—O2178.54 (11)C19—C16—C17—C18178.27 (15)
C1—C2—C7—O20.35 (16)C16—C17—C18—C130.3 (2)
C3—C2—C7—C61.53 (17)C14—C13—C18—C172.2 (2)
C1—C2—C7—C6179.59 (11)C12—C13—C18—C17178.37 (13)
O2—C8—C9—C1282.19 (15)C2—C1—N1—O1178.81 (11)
O2—C8—C9—C1097.89 (12)C6—C7—O2—C80.84 (17)
C12—C9—C10—O310.0 (2)C2—C7—O2—C8179.09 (10)
C8—C9—C10—O3169.98 (14)C9—C8—O2—C7170.37 (10)
C12—C9—C10—O4171.55 (12)O3—C10—O4—C111.0 (2)
C8—C9—C10—O48.52 (16)C9—C10—O4—C11179.55 (13)
C10—C9—C12—C13179.32 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.112.8211 (15)145
C15—H15···O3ii0.932.403.247 (2)151
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H19NO4
Mr325.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8683 (2), 9.3246 (2), 11.9259 (3)
α, β, γ (°)75.200 (2), 76.453 (2), 65.142 (1)
V3)856.04 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
20292, 4580, 3493
Rint0.022
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.04
No. of reflections4580
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.112.8211 (15)144.8
C15—H15···O3ii0.932.403.247 (2)151
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationSakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds