metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m609-m610

Bis[μ-1-hexyl-3-(2,3,5,6,8,9,11,12-octa­hydro-1,4,7,10,13-benzo­penta­oxa­cyclo­penta­decin-15-yl)urea]bis­­(azido­sodium) chloro­form disolvate

aInstitut Européen des Membranes, Université de Montpellier II, 34000 Montpellier, France
*Correspondence e-mail: avderlee@univ-montp2.fr

(Received 13 January 2012; accepted 10 April 2012; online 18 April 2012)

In the title compound, [Na2(N3)2(C21H34N2O6)2]·2CHCl3, the sodium cation is hepta­coordinated by five O atoms of the crown ether unit of the 1-hexyl-3-(2,3,5,6,8,9,11,12-octa­hydro-1,4,7,10,13-benzopenta­oxacyclo­penta­decin-15-yl)urea (L) ligand, the O atom of the urea group of the second, symmetry-related L ligand, and one N atom of the azide anion. The experimentally determined distance 2.472 (2) Å between the terminal azide N atom and the sodium cation is substanti­ally longer than that predicted from density functional theory (DFT) calculations (2.263 Å). The crown ethers complexing the sodium cation are related by an inversion centre and form dimers. The urea groups of the two L ligands are connected in a head-to-tail fashion by classical N—H⋯N hydrogen-bonding inter­actions and form a ribbon-like structure parallel to the b axis. Parallel ribbons are weakly linked through C—H⋯N, C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis and characterization of other alkali metal azide-crown ether complexes, see: Brown et al. (2006[Brown, M. D., Dyke, J. M., Ferrante, F., Levason, W. J., Ogden, S. & Webster, M. (2006). Chem. Eur. J. 12, 2620-2629.], 2008[Brown, M. D., Davis, M. F., Dyke, J. M., Ferrante, F., Levason, W., Ogden, J. S. & Webster, M. (2008). Chem. Eur. J. 14, 2615-2624.]). For single-crystal structure determinations of other compounds with 4-hexyl­urea-benzo-15-crown-5, see: Cazacu et al. (2006[Cazacu, A., Tong, C., Van der Lee, A., Fyles, T. M. & Barboiu, M. (2006). J. Am. Chem. Soc. 128, 9541-9548.], 2009[Cazacu, A., Legrand, Y.-M., Pasc, A., Nasr, G., Van der Lee, A., Mahon, E. & Barboiu, M. (2009). Proc. Natl Acad. Sci. USA, 106, 8117-8122.]).

[Scheme 1]

Experimental

Crystal data
  • [Na2(N3)2(C21H34N2O6)2]·2CHCl3

  • Mr = 1189.78

  • Triclinic, [P \overline 1]

  • a = 7.8168 (3) Å

  • b = 9.9342 (3) Å

  • c = 18.5202 (7) Å

  • α = 82.320 (3)°

  • β = 83.459 (3)°

  • γ = 87.784 (3)°

  • V = 1415.58 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 175 K

  • 0.45 × 0.20 × 0.03 mm

Data collection
  • Agilent Xcalibur Sapphire-3 CCD Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.895, Tmax = 1.000

  • 11317 measured reflections

  • 6470 independent reflections

  • 5176 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 0.91

  • 6470 reflections

  • 340 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C16–C19/C33/C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H21⋯O23 0.96 2.46 3.244 (3) 138
C2—H21⋯N35 0.96 2.58 3.320 (3) 134
N8—H81⋯N37i 0.83 (2) 2.39 (3) 3.156 (3) 154 (2)
N15—H151⋯N37i 0.86 (2) 2.03 (2) 2.872 (3) 166 (2)
C31—H311⋯O29ii 0.97 2.56 3.479 (3) 159
C28—H281⋯Cgii 0.99 2.79 3.507 (2) 131
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

In this contribution we present the structure of a 15 C5 crown ether (4-hexylurea-benzo-15-crown-5) co-crystallized with sodium azide and chloroform as solvate. Structures with 4-hexylurea-benzo-15-crown-5 have been recently described (Brown et al., 2006; 2008). These authors focused in particular on the M–Nterminal metal-azide bond length and charge densities on the metal (M) and terminal nitrogen centre (Nterminal) by X-ray crystallography and DFT calculations. They failed however to get the intended crystal structure of the coordinated sodium azide with the crown ether, obtaining only a crown ether coordination with water. In this paper, we describe the crown ether derivative, bearing a benzene ring along with a urea and hexyl alkyl chain, coordinated with sodium azide. Examples of such derivatives have been reported, but with different salts such as potassium nitrate (Cazacu et al., 2009) or without any salts (Cazacu et al., 2006).

In the asymmetric unit of the title compound, one 15 C5 crown ether molecules, one sodium cation, one azide molecule and one solvent chloroform molecule are present (Fig. 1). The crown ethers appear as a head-to-tail dimer, the crown ether facing the urea portion of the second molecule. Sodium is hepta-coordinated by the five oxygen atoms of the crown ether, one of the N atoms of the azide group and with the oxygen of the urea group from the second molecule. The experimental Na–N distance (2.472 (2)Å) is significantly longer than the DFT calculated Na–N distance (2.263 Å; Brown et al., 2006). A possible explanation is that the azide group in the present structure is also linked through H-bonds to NH from the urea function of the second molecule, one branch being significantly stronger than the other (N15H151···N37ii = 2.03 (2)Å versus N8H81···N37i = 2.39 (3)Å). This will pull the azide group slightly outside the interaction sphere of the sodium cation. In this way coordination and H-bonds are forming a ribbon like structure along the b-axis (Fig. 2). The individual ribbons are weakly linked through CH···π interactions (centroid Cg to H281 distance 2.79Å and C28–H281···Cg angle 131°, where Cg is the centroid formed by the aromatic ring C16-C19/C33/C34). A weak CH···O non-classical interaction is present between C31 and O29 - C31H311···O29iii = 2.56Å. Symmetry codes: (ii) -x+1, -y, -z;(iii) -x+2, -y+1, -z.

Related literature top

For the synthesis and characterization of other alkali metal azide-crown ether complexes, see: Brown et al. (2006, 2008). For single-crystal structure determinations of other compounds with 4-hexylurea-benzo-15-crown-5, see: Cazacu et al. (2006, 2009).

Experimental top

To a solution of 4'-aminobenzo-15-crown-5 (300 mg, 1.06 mmol, 1eq.) in acetonitrile was added hexyl isocyanate (175 mg, 1.38 mmol, 1.3 eq.). After 12 h under reflux, the solution was evaporated. The residue was dissolved in chloroform and precipitated by addition of hexane. The resulting precipitate was isolated by filtration and washed with hexane to give the crude title compound (302 mg, 70% yield). The compound was dissolved in chloroform, a small amount of NaN3 was added and the mixture was sonicated for 30 minutes. The compound crystallized after a few hours.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms attached to carbon atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry - C–H in the range 0.93Å-0.98Å) and Uiso(H) = 1.2(1.5)Ueq(C), after which the positions were refined with riding constraints. The positions of the H atoms attached to nitrogen atoms were freely refined, but their isotropic atomic displacement parameter were constrained as for the other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the title complex with hydrogen bonds between urea groups and azide anions indicated by dotted lines. Symmetry code: (ii) -x+1, -y, -z.
Bis[µ-1-hexyl-3-(2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13- benzopentaoxacyclopentadecin-15-yl)urea]bis(azidosodium) chloroform disolvate top
Crystal data top
[Na2(N3)2(C21H34N2O6)2]·2CHCl3Z = 1
Mr = 1189.78F(000) = 624
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8168 (3) ÅCell parameters from 3569 reflections
b = 9.9342 (3) Åθ = 2.1–29.0°
c = 18.5202 (7) ŵ = 0.38 mm1
α = 82.320 (3)°T = 175 K
β = 83.459 (3)°Needle, colourless
γ = 87.784 (3)°0.45 × 0.20 × 0.03 mm
V = 1415.58 (9) Å3
Data collection top
Agilent Xcalibur Sapphire-3 CCD Gemini
diffractometer
6470 independent reflections
Radiation source: Enhance (Mo) X-ray Source5176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0143 pixels mm-1θmax = 29.1°, θmin = 2.1°
ω scansh = 106
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1213
Tmin = 0.895, Tmax = 1.000l = 2124
11317 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.91 Modified Sheldrick method w = 1/[σ2(F2) + (0.07P)2 + 0.69P],
where P = (max(Fo2,0) + 2Fc2)/3
6470 reflections(Δ/σ)max < 0.001
340 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Na2(N3)2(C21H34N2O6)2]·2CHCl3γ = 87.784 (3)°
Mr = 1189.78V = 1415.58 (9) Å3
Triclinic, P1Z = 1
a = 7.8168 (3) ÅMo Kα radiation
b = 9.9342 (3) ŵ = 0.38 mm1
c = 18.5202 (7) ÅT = 175 K
α = 82.320 (3)°0.45 × 0.20 × 0.03 mm
β = 83.459 (3)°
Data collection top
Agilent Xcalibur Sapphire-3 CCD Gemini
diffractometer
6470 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5176 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 1.000Rint = 0.018
11317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.58 e Å3
6470 reflectionsΔρmin = 0.75 e Å3
340 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29314 (7)0.12610 (6)0.36316 (4)0.0548
C20.4561 (2)0.23861 (19)0.37104 (11)0.0356
Cl30.36653 (10)0.38944 (6)0.39926 (4)0.0680
Cl40.59472 (7)0.16173 (6)0.43316 (3)0.0512
H210.52000.25810.32350.0434*
Na50.68726 (8)0.47918 (6)0.16960 (4)0.0242
O60.48814 (15)0.33622 (11)0.18581 (7)0.0285
C70.5384 (2)0.21761 (16)0.18696 (10)0.0242
N80.5406 (2)0.15234 (17)0.24686 (9)0.0374
C90.4602 (3)0.20770 (19)0.31162 (11)0.0355
C100.2949 (2)0.13728 (18)0.31851 (10)0.0313
C110.2103 (2)0.19461 (19)0.38655 (10)0.0333
C120.0434 (3)0.1250 (2)0.39224 (12)0.0389
C130.0472 (3)0.1801 (2)0.45926 (12)0.0418
C140.1142 (3)0.3249 (2)0.45882 (13)0.0478
H1430.17990.35390.49900.0713*
H1420.02210.38630.46140.0704*
H1410.18820.33250.41370.0719*
H1320.03310.17640.50280.0512*
H1310.14630.12260.46240.0506*
H1220.03520.13300.34820.0473*
H1210.07060.02980.39330.0470*
H1120.29020.18610.43060.0398*
H1110.18880.29190.38520.0400*
H1020.21420.14410.27550.0370*
H1010.31820.04180.32000.0371*
H920.54330.19980.35470.0427*
H910.43720.30080.30780.0431*
N150.59760 (19)0.13769 (14)0.12871 (8)0.0269
C160.64335 (19)0.17637 (15)0.06340 (9)0.0214
C170.6957 (2)0.07199 (15)0.01212 (10)0.0249
C180.7524 (2)0.10018 (15)0.05227 (9)0.0258
C190.7575 (2)0.23293 (15)0.06711 (9)0.0218
O200.82203 (15)0.27206 (11)0.12686 (6)0.0260
C210.8591 (3)0.16670 (17)0.18375 (10)0.0334
C220.9369 (3)0.23127 (19)0.24011 (11)0.0349
O230.81354 (16)0.32292 (13)0.27110 (7)0.0309
C240.8829 (3)0.3975 (2)0.32158 (10)0.0346
C251.0045 (2)0.50500 (19)0.28352 (10)0.0335
O260.91448 (15)0.58835 (12)0.23138 (7)0.0299
C271.0246 (2)0.68301 (18)0.18535 (10)0.0306
C280.9298 (2)0.74580 (16)0.12253 (10)0.0268
O290.89393 (14)0.64030 (11)0.08208 (6)0.0247
C300.8041 (2)0.68851 (15)0.02080 (9)0.0224
C310.7725 (2)0.57005 (15)0.01825 (9)0.0220
O320.69444 (14)0.46654 (10)0.03651 (6)0.0217
C330.69806 (19)0.33699 (14)0.01680 (9)0.0193
C340.64267 (19)0.31041 (15)0.04782 (9)0.0209
H3410.60640.38120.08010.0243*
H3110.87890.53490.04180.0259*
H3120.69310.59780.05620.0255*
H3020.69270.73080.03800.0260*
H3010.87540.75320.01290.0261*
H2820.99760.81530.09100.0316*
H2810.82130.78960.14140.0311*
H2721.13040.63440.16710.0363*
H2711.05650.75400.21370.0370*
H2521.10980.46760.25850.0386*
H2511.04130.55670.31990.0395*
H2420.94000.33650.35740.0420*
H2410.78390.44240.34650.0405*
H2220.97310.16000.27750.0429*
H2211.03660.27860.21780.0406*
H2120.75210.12020.20380.0389*
H2110.94140.10310.16380.0403*
H1810.78640.02710.08600.0310*
H1710.69280.01780.02170.0294*
N350.4334 (2)0.33243 (16)0.19341 (10)0.0391
N360.38153 (18)0.22991 (14)0.18164 (8)0.0282
N370.3246 (3)0.12827 (17)0.17006 (11)0.0481
H810.575 (3)0.072 (3)0.2411 (14)0.0500*
H1510.620 (3)0.054 (3)0.1333 (14)0.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0435 (3)0.0650 (4)0.0582 (4)0.0145 (3)0.0086 (3)0.0103 (3)
C20.0341 (10)0.0398 (10)0.0324 (10)0.0002 (7)0.0050 (8)0.0023 (8)
Cl30.0774 (5)0.0451 (3)0.0827 (5)0.0180 (3)0.0132 (4)0.0146 (3)
Cl40.0505 (3)0.0560 (3)0.0489 (3)0.0066 (2)0.0208 (2)0.0026 (2)
Na50.0251 (3)0.0210 (3)0.0265 (3)0.0023 (2)0.0035 (3)0.0037 (2)
O60.0289 (6)0.0231 (6)0.0352 (7)0.0056 (4)0.0089 (5)0.0076 (5)
C70.0184 (7)0.0236 (8)0.0321 (9)0.0002 (6)0.0042 (6)0.0074 (6)
N80.0505 (10)0.0286 (8)0.0380 (9)0.0108 (7)0.0195 (8)0.0134 (7)
C90.0438 (11)0.0340 (9)0.0313 (10)0.0015 (8)0.0114 (8)0.0070 (7)
C100.0341 (10)0.0335 (9)0.0264 (9)0.0031 (7)0.0035 (7)0.0054 (7)
C110.0371 (10)0.0356 (10)0.0279 (9)0.0000 (7)0.0082 (8)0.0036 (7)
C120.0429 (11)0.0351 (10)0.0400 (11)0.0029 (8)0.0135 (9)0.0016 (8)
C130.0465 (12)0.0432 (11)0.0391 (11)0.0019 (9)0.0163 (9)0.0080 (8)
C140.0553 (14)0.0410 (11)0.0503 (13)0.0002 (9)0.0238 (11)0.0032 (9)
N150.0322 (8)0.0185 (6)0.0325 (8)0.0029 (5)0.0095 (6)0.0083 (5)
C160.0166 (7)0.0198 (7)0.0281 (9)0.0000 (5)0.0013 (6)0.0052 (6)
C170.0255 (8)0.0154 (7)0.0342 (9)0.0003 (6)0.0029 (7)0.0045 (6)
C180.0290 (9)0.0175 (7)0.0297 (9)0.0023 (6)0.0040 (7)0.0015 (6)
C190.0211 (7)0.0207 (7)0.0230 (8)0.0011 (5)0.0013 (6)0.0018 (6)
O200.0355 (6)0.0193 (5)0.0235 (6)0.0033 (4)0.0085 (5)0.0009 (4)
C210.0457 (11)0.0228 (8)0.0319 (10)0.0072 (7)0.0139 (8)0.0017 (7)
C220.0406 (10)0.0310 (9)0.0346 (10)0.0115 (7)0.0151 (8)0.0040 (7)
O230.0302 (6)0.0373 (7)0.0258 (6)0.0011 (5)0.0063 (5)0.0045 (5)
C240.0383 (10)0.0424 (10)0.0245 (9)0.0026 (8)0.0078 (7)0.0063 (7)
C250.0298 (9)0.0417 (10)0.0319 (10)0.0023 (7)0.0114 (7)0.0091 (8)
O260.0224 (6)0.0370 (7)0.0298 (7)0.0016 (5)0.0035 (5)0.0024 (5)
C270.0218 (8)0.0374 (9)0.0337 (10)0.0064 (7)0.0013 (7)0.0087 (7)
C280.0229 (8)0.0242 (8)0.0346 (10)0.0043 (6)0.0005 (7)0.0092 (7)
O290.0251 (6)0.0207 (5)0.0300 (6)0.0021 (4)0.0068 (5)0.0069 (4)
C300.0213 (8)0.0167 (7)0.0287 (9)0.0009 (5)0.0020 (6)0.0017 (6)
C310.0258 (8)0.0173 (7)0.0218 (8)0.0005 (5)0.0017 (6)0.0003 (6)
O320.0287 (6)0.0140 (5)0.0221 (6)0.0003 (4)0.0011 (4)0.0023 (4)
C330.0178 (7)0.0154 (7)0.0240 (8)0.0013 (5)0.0005 (6)0.0030 (5)
C340.0174 (7)0.0179 (7)0.0270 (8)0.0022 (5)0.0023 (6)0.0025 (6)
N350.0396 (9)0.0360 (9)0.0428 (10)0.0108 (7)0.0045 (7)0.0059 (7)
N360.0255 (7)0.0263 (7)0.0318 (8)0.0053 (5)0.0007 (6)0.0041 (6)
N370.0555 (11)0.0273 (8)0.0625 (13)0.0011 (7)0.0042 (9)0.0189 (8)
Geometric parameters (Å, º) top
Cl1—C21.758 (2)C17—H1710.934
C2—Cl31.747 (2)C18—C191.385 (2)
C2—Cl41.751 (2)C18—H1810.943
C2—H210.962C19—O201.374 (2)
Na5—O6i2.2786 (12)C19—C331.399 (2)
Na5—O202.4592 (12)O20—C211.4284 (19)
Na5—O232.5380 (14)C21—C221.492 (3)
Na5—O262.5658 (13)C21—H2120.981
Na5—O292.5902 (13)C21—H2110.963
Na5—O322.4790 (13)C22—O231.426 (2)
Na5—N352.4718 (17)C22—H2220.979
O6—C71.2298 (19)C22—H2210.950
C7—N81.356 (2)O23—C241.432 (2)
C7—N151.365 (2)C24—C251.505 (3)
N8—C91.450 (2)C24—H2420.973
N8—H810.83 (2)C24—H2410.979
C9—C101.519 (3)C25—O261.417 (2)
C9—H920.979C25—H2520.983
C9—H910.946C25—H2510.973
C10—C111.522 (2)O26—C271.426 (2)
C10—H1020.966C27—C281.503 (3)
C10—H1010.963C27—H2720.990
C11—C121.521 (3)C27—H2710.989
C11—H1120.980C28—O291.4209 (19)
C11—H1110.978C28—H2820.974
C12—C131.526 (3)C28—H2810.988
C12—H1220.975O29—C301.4216 (19)
C12—H1210.964C30—C311.503 (2)
C13—C141.513 (3)C30—H3020.990
C13—H1320.967C30—H3010.977
C13—H1310.992C31—O321.4446 (18)
C14—H1430.959C31—H3110.969
C14—H1420.954C31—H3120.995
C14—H1410.970O32—C331.3823 (17)
N15—C161.404 (2)C33—C341.379 (2)
N15—H1510.86 (2)C34—H3410.918
C16—C171.392 (2)N35—N361.166 (2)
C16—C341.399 (2)N36—N371.174 (2)
C17—C181.384 (2)
Cl1—C2—Cl3110.46 (11)C18—C17—H171120.1
Cl1—C2—Cl4109.86 (11)C17—C18—C19120.63 (15)
Cl3—C2—Cl4110.45 (11)C17—C18—H181118.6
Cl1—C2—H21107.5C19—C18—H181120.7
Cl3—C2—H21109.4C18—C19—O20125.05 (14)
Cl4—C2—H21109.1C18—C19—C33118.40 (15)
O6i—Na5—O20164.07 (5)O20—C19—C33116.52 (13)
O6i—Na5—O23125.34 (5)Na5—O20—C19114.99 (9)
O20—Na5—O2367.50 (4)Na5—O20—C21114.92 (10)
O6i—Na5—O2688.32 (4)C19—O20—C21116.83 (12)
O20—Na5—O26106.72 (4)O20—C21—C22107.44 (14)
O23—Na5—O2665.51 (4)O20—C21—H212109.0
O6i—Na5—O2987.68 (4)C22—C21—H212112.3
O20—Na5—O2993.92 (4)O20—C21—H211109.2
O23—Na5—O29117.85 (4)C22—C21—H211109.0
O26—Na5—O2964.89 (4)H212—C21—H211109.9
O6i—Na5—O32102.87 (5)C21—C22—O23109.09 (15)
O20—Na5—O3264.24 (4)C21—C22—H222108.9
O23—Na5—O32131.59 (4)O23—C22—H222111.5
O26—Na5—O32125.91 (4)C21—C22—H221109.3
O29—Na5—O3262.98 (4)O23—C22—H221110.2
O6i—Na5—N3589.71 (5)H222—C22—H221107.7
O20—Na5—N3581.26 (5)C22—O23—Na5109.80 (10)
O23—Na5—N3586.68 (5)C22—O23—C24112.56 (14)
O26—Na5—N35143.72 (6)Na5—O23—C24111.84 (10)
O29—Na5—N35151.19 (6)O23—C24—C25112.33 (15)
O32—Na5—N3589.77 (5)O23—C24—H242110.7
Na5i—O6—C7161.14 (11)C25—C24—H242110.3
O6—C7—N8123.10 (16)O23—C24—H241105.6
O6—C7—N15124.07 (15)C25—C24—H241108.4
N8—C7—N15112.83 (14)H242—C24—H241109.4
C7—N8—C9123.28 (16)C24—C25—O26107.30 (14)
C7—N8—H81114.7 (18)C24—C25—H252113.3
C9—N8—H81121.2 (18)O26—C25—H252109.3
N8—C9—C10112.91 (16)C24—C25—H251108.9
N8—C9—H92108.2O26—C25—H251111.7
C10—C9—H92110.2H252—C25—H251106.4
N8—C9—H91106.4C25—O26—Na5118.39 (10)
C10—C9—H91110.2C25—O26—C27111.97 (13)
H92—C9—H91108.9Na5—O26—C27116.52 (10)
C9—C10—C11113.14 (16)O26—C27—C28108.37 (13)
C9—C10—H102109.7O26—C27—H272109.0
C11—C10—H102109.3C28—C27—H272110.5
C9—C10—H101109.7O26—C27—H271109.7
C11—C10—H101108.4C28—C27—H271110.2
H102—C10—H101106.3H272—C27—H271109.0
C10—C11—C12112.71 (16)C27—C28—O29107.72 (13)
C10—C11—H112109.9C27—C28—H282111.4
C12—C11—H112109.3O29—C28—H282110.2
C10—C11—H111108.1C27—C28—H281109.9
C12—C11—H111110.2O29—C28—H281110.0
H112—C11—H111106.5H282—C28—H281107.6
C11—C12—C13114.65 (17)C28—O29—Na5106.07 (9)
C11—C12—H122109.0C28—O29—C30112.59 (12)
C13—C12—H122108.9Na5—O29—C30106.28 (9)
C11—C12—H121107.3O29—C30—C31108.55 (12)
C13—C12—H121109.3O29—C30—H302109.4
H122—C12—H121107.4C31—C30—H302109.7
C12—C13—C14113.81 (17)O29—C30—H301109.2
C12—C13—H132108.7C31—C30—H301108.5
C14—C13—H132108.2H302—C30—H301111.3
C12—C13—H131109.8C30—C31—O32106.77 (12)
C14—C13—H131107.7C30—C31—H311111.4
H132—C13—H131108.4O32—C31—H311109.9
C13—C14—H143112.0C30—C31—H312110.3
C13—C14—H142111.2O32—C31—H312109.9
H143—C14—H142108.0H311—C31—H312108.6
C13—C14—H141109.7C31—O32—Na5122.13 (9)
H143—C14—H141108.0C31—O32—C33115.81 (11)
H142—C14—H141107.8Na5—O32—C33115.59 (9)
C7—N15—C16128.58 (14)C19—C33—O32116.18 (14)
C7—N15—H151117.3 (17)C19—C33—C34121.49 (13)
C16—N15—H151113.8 (17)O32—C33—C34122.31 (13)
N15—C16—C17116.26 (14)C16—C34—C33119.62 (14)
N15—C16—C34124.69 (15)C16—C34—H341121.0
C17—C16—C34119.04 (15)C33—C34—H341119.3
C16—C17—C18120.72 (14)Na5—N35—N36143.11 (14)
C16—C17—H171119.2N35—N36—N37178.08 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C19/C33/C34 ring.
D—H···AD—HH···AD···AD—H···A
C2—H21···O230.962.463.244 (3)138
C2—H21···N350.962.583.320 (3)134
N8—H81···N37ii0.83 (2)2.39 (3)3.156 (3)154 (2)
N15—H151···N37ii0.86 (2)2.03 (2)2.872 (3)166 (2)
C31—H311···O29iii0.972.563.479 (3)159
C28—H281···Cgiii0.992.793.507 (2)131
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Na2(N3)2(C21H34N2O6)2]·2CHCl3
Mr1189.78
Crystal system, space groupTriclinic, P1
Temperature (K)175
a, b, c (Å)7.8168 (3), 9.9342 (3), 18.5202 (7)
α, β, γ (°)82.320 (3), 83.459 (3), 87.784 (3)
V3)1415.58 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.45 × 0.20 × 0.03
Data collection
DiffractometerAgilent Xcalibur Sapphire-3 CCD Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.895, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11317, 6470, 5176
Rint0.018
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 0.91
No. of reflections6470
No. of parameters340
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.75

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C19/C33/C34 ring.
D—H···AD—HH···AD···AD—H···A
C2—H21···O230.962.463.244 (3)138
C2—H21···N350.962.583.320 (3)134
N8—H81···N37i0.83 (2)2.39 (3)3.156 (3)154 (2)
N15—H151···N37i0.86 (2)2.03 (2)2.872 (3)166 (2)
C31—H311···O29ii0.972.563.479 (3)159
C28—H281···Cgii0.9882.793.507 (2)131
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrown, M. D., Davis, M. F., Dyke, J. M., Ferrante, F., Levason, W., Ogden, J. S. & Webster, M. (2008). Chem. Eur. J. 14, 2615–2624.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrown, M. D., Dyke, J. M., Ferrante, F., Levason, W. J., Ogden, S. & Webster, M. (2006). Chem. Eur. J. 12, 2620–2629.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCazacu, A., Legrand, Y.-M., Pasc, A., Nasr, G., Van der Lee, A., Mahon, E. & Barboiu, M. (2009). Proc. Natl Acad. Sci. USA, 106, 8117–8122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCazacu, A., Tong, C., Van der Lee, A., Fyles, T. M. & Barboiu, M. (2006). J. Am. Chem. Soc. 128, 9541–9548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m609-m610
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds