organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1321

2,2′-(Ethane-1,2-di­yl)bis­­(1H-benzimidazole)

aZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China, and bCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 16 March 2012; accepted 30 March 2012; online 6 April 2012)

The complete mol­ecule of the title compound, C16H14N4, is generated by crystallographic inversion symmetry. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, generating (001) sheets. Weak aromatic ππ stacking inter­actions [centroid–centroid distances = 3.7383 (13) and 3.7935 (14) Å] are also observed.

Related literature

For background to metal-organic frameworks, see: van Albada et al. (2007[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2007). J. Chem. Cryst. 37, 489-496.]). For the synthesis, see: Wang & Joulli (1957[Wang, L. L.-Y. & Joulli, M. M. (1957). J. Am. Chem. Soc. 79, 5706-5708.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4

  • Mr = 262.31

  • Orthorhombic, P b c a

  • a = 8.4295 (18) Å

  • b = 9.924 (2) Å

  • c = 15.351 (4) Å

  • V = 1284.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.984

  • 10702 measured reflections

  • 1475 independent reflections

  • 966 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.02

  • 1475 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.86 2.04 2.8568 (18) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We present a polyaromatic compoud (1) that contains multiple functional groups that can develop a series of metal-organic frameworks with potential applications (e.g. van Albada et al. (2007)). The molecular struture of (1), shown in Fig.1, consists of two symmetrical benzimidazole rings. The two benzimidazolyl rings are nearly parallel, witha dihedral angle of 2.645 (6)° between them. Molecules are linked via a network of hydrogen bonds (N2—H2B···N1; Table 2). ππ stacking interactions are observed between nearly parallel benzimidazolyl benzene rings. The centroid-to-centroid distance between C1—C6 benzene rings is 3.7379 Å, while between C1A—C6A benzene rings it is 3.7944 Å (the symmetry operation: -x + 1,-y,-z). The hydrogen bonds and ππ weak non-covalent interactions lend stability to the structure. The stacking plot of this compound was shown in Fig. 2.

Related literature top

For background to metal-organic frameworks, see: van Albada et al. (2007). For the synthesis, see: Wang & Joulli (1957).

Experimental top

ο-Phenylenediamine (1.081 g, 10 mmol) and succinic acid (0.590 g, 5 mmol) were refluxed for 4 h in 30 ml of 10% hydrochloric acid solution. The reaction mixture was cooled to room temperature, the precipitation that formed was filtered and then recrystallized from water. The colourless crystals were obtained from water after a week (Wang et al., 1957).

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms with suffix A are at the symmetry position (1–x, 1–y, –z).
[Figure 2] Fig. 2. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and ππ stacking interactions.
2,2'-(Ethane-1,2-diyl)bis(1H-benzimidazole) top
Crystal data top
C16H14N4F(000) = 552
Mr = 262.31Dx = 1.357 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 2.7–27.6°
a = 8.4295 (18) ŵ = 0.08 mm1
b = 9.924 (2) ÅT = 296 K
c = 15.351 (4) ÅBlock, colourless
V = 1284.2 (5) Å30.32 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1475 independent reflections
Radiation source: fine-focus sealed tube966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.975, Tmax = 0.984k = 1212
10702 measured reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.2274P]
where P = (Fo2 + 2Fc2)/3
1475 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H14N4V = 1284.2 (5) Å3
Mr = 262.31Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.4295 (18) ŵ = 0.08 mm1
b = 9.924 (2) ÅT = 296 K
c = 15.351 (4) Å0.32 × 0.25 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1475 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
966 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.052
10702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
1475 reflectionsΔρmin = 0.21 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.18376 (15)0.39276 (12)0.06131 (8)0.0378 (4)
H2B0.19350.30840.04980.045*
N10.23667 (16)0.61293 (12)0.06218 (9)0.0402 (4)
C50.09915 (18)0.58969 (15)0.11024 (10)0.0357 (4)
C80.28216 (19)0.49246 (14)0.03497 (11)0.0375 (4)
C40.06495 (18)0.45137 (15)0.11012 (10)0.0354 (4)
C70.42738 (19)0.46475 (17)0.01726 (12)0.0452 (4)
H7A0.40920.49320.07690.054*
H7B0.44670.36840.01780.054*
C30.0631 (2)0.39827 (18)0.15503 (11)0.0475 (5)
H3A0.08600.30660.15370.057*
C60.0040 (2)0.67805 (16)0.15747 (11)0.0461 (5)
H6A0.02470.77010.15810.055*
C20.1552 (2)0.48740 (18)0.20187 (12)0.0524 (5)
H2A0.24160.45510.23330.063*
C10.1215 (2)0.62512 (18)0.20317 (12)0.0520 (5)
H1A0.18560.68240.23570.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0346 (8)0.0281 (6)0.0506 (8)0.0003 (5)0.0010 (6)0.0046 (6)
N10.0373 (8)0.0317 (7)0.0515 (8)0.0013 (5)0.0053 (6)0.0039 (6)
C50.0323 (9)0.0347 (8)0.0402 (9)0.0015 (7)0.0014 (7)0.0005 (6)
C80.0328 (9)0.0329 (8)0.0469 (9)0.0014 (6)0.0024 (7)0.0044 (7)
C40.0326 (9)0.0330 (8)0.0407 (9)0.0013 (6)0.0027 (7)0.0005 (6)
C70.0343 (9)0.0450 (9)0.0563 (11)0.0019 (7)0.0050 (8)0.0102 (8)
C30.0458 (11)0.0432 (9)0.0537 (10)0.0071 (8)0.0034 (9)0.0023 (8)
C60.0473 (11)0.0371 (9)0.0541 (11)0.0069 (8)0.0020 (9)0.0036 (7)
C20.0435 (11)0.0626 (12)0.0512 (11)0.0013 (9)0.0105 (9)0.0027 (9)
C10.0458 (11)0.0571 (11)0.0529 (11)0.0130 (9)0.0083 (9)0.0057 (9)
Geometric parameters (Å, º) top
N2—C81.3530 (19)C7—H7A0.9700
N2—C41.3795 (19)C7—H7B0.9700
N2—H2B0.8600C3—C21.379 (2)
N1—C81.3233 (18)C3—H3A0.9300
N1—C51.393 (2)C6—C11.374 (2)
C5—C61.392 (2)C6—H6A0.9300
C5—C41.403 (2)C2—C11.396 (2)
C8—C71.489 (2)C2—H2A0.9300
C4—C31.385 (2)C1—H1A0.9300
C7—C7i1.506 (3)
C8—N2—C4107.40 (12)C8—C7—H7B109.0
C8—N2—H2B126.3C7i—C7—H7B109.0
C4—N2—H2B126.3H7A—C7—H7B107.8
C8—N1—C5104.99 (12)C2—C3—C4117.01 (16)
C6—C5—N1130.61 (14)C2—C3—H3A121.5
C6—C5—C4119.91 (15)C4—C3—H3A121.5
N1—C5—C4109.41 (13)C1—C6—C5117.96 (15)
N1—C8—N2112.88 (14)C1—C6—H6A121.0
N1—C8—C7125.11 (14)C5—C6—H6A121.0
N2—C8—C7122.00 (13)C3—C2—C1121.40 (17)
N2—C4—C3132.51 (15)C3—C2—H2A119.3
N2—C4—C5105.32 (13)C1—C2—H2A119.3
C3—C4—C5122.14 (15)C6—C1—C2121.57 (16)
C8—C7—C7i113.14 (16)C6—C1—H1A119.2
C8—C7—H7A109.0C2—C1—H1A119.2
C7i—C7—H7A109.0
C8—N1—C5—C6176.72 (17)N1—C5—C4—C3178.13 (14)
C8—N1—C5—C40.20 (18)N1—C8—C7—C7i46.1 (3)
C5—N1—C8—N20.41 (18)N2—C8—C7—C7i132.3 (2)
C5—N1—C8—C7178.13 (15)N2—C4—C3—C2176.40 (16)
C4—N2—C8—N10.47 (19)C5—C4—C3—C21.2 (2)
C4—N2—C8—C7178.12 (14)N1—C5—C6—C1176.40 (16)
C8—N2—C4—C3177.62 (17)C4—C5—C6—C10.2 (2)
C8—N2—C4—C50.31 (17)C4—C3—C2—C10.6 (3)
C6—C5—C4—N2177.37 (14)C5—C6—C1—C20.9 (3)
N1—C5—C4—N20.07 (17)C3—C2—C1—C60.4 (3)
C6—C5—C4—C30.8 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1ii0.862.042.8568 (18)159
Symmetry code: (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H14N4
Mr262.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.4295 (18), 9.924 (2), 15.351 (4)
V3)1284.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.25 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10702, 1475, 966
Rint0.052
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.02
No. of reflections1475
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.042.8568 (18)159
Symmetry code: (i) x+1/2, y1/2, z.
 

References

First citationAlbada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2007). J. Chem. Cryst. 37, 489–496.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L. L.-Y. & Joulli, M. M. (1957). J. Am. Chem. Soc. 79, 5706–5708.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1321
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds