organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1278

3-[(8-But­­oxy­quinolin-2-yl)meth­yl]-1-(pyridin-2-ylmeth­yl)-1H-imidazol-3-ium hexa­fluoridophosphate

aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: qindabin2005@yahoo.com.cn

(Received 6 March 2012; accepted 28 March 2012; online 4 April 2012)

In the cation of the title compound, C23H25N4O+·PF6, the imidazolium ring make dihedral angles of 87.20 (6) and 79.89 (5)° with the pyridine ring and the quinoline system, respectively. In the crystal, C—H⋯F and C—H⋯N hydrogen bonds are observed.

Related literature

For the first stable N-heterocyclic carbene, see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]). For the synthesis of 8-but­oxy-quinoline-2-carbaldehyde, see: Maffeo et al. (2003[Maffeo, D. & Williams, J. A. G. (2003). Inorg. Chim. Acta, 355, 127-136.]), of 8-but­oxy-2-chloro­methyl-quinoline, see: Fowelin et al. (2007[Fowelin, C., Schuepbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. 6, 1013-1017.]) and of 2-((1H-imidazol-1-yl)meth­yl)pyridine, see: Chiu et al. (2005[Chiu, P. L., Lai, C. L., Chang, C. F., Hu, C. H. & Lee, H. M. (2005). Organometallics, 24, 6169-6178.]). For ionic liquids from imidazolium salts, see: Heller et al. (2010[Heller, W. T., Q'Neill, H. M., Zhang, Q. & Baker, G. A. (2010). J. Phys. Chem. B, 114, 13866-13871.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25N4O+·PF6

  • Mr = 518.44

  • Triclinic, [P \overline 1]

  • a = 9.975 (3) Å

  • b = 11.056 (4) Å

  • c = 12.382 (4) Å

  • α = 99.010 (4)°

  • β = 103.527 (3)°

  • γ = 112.734 (3)°

  • V = 1177.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.967

  • 12352 measured reflections

  • 5531 independent reflections

  • 2844 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.01

  • 5531 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N4i 0.95 2.58 3.343 (2) 138
C14—H14B⋯F1ii 0.99 2.50 3.425 (2) 156
C16—H16⋯F4i 0.95 2.46 3.361 (2) 159
C17—H17⋯F6ii 0.95 2.32 3.223 (2) 158
C23—H23⋯F4iii 0.95 2.52 3.355 (2) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

since the isolation of the first stable derivative of N-heterocyclic carbenes (Arduengo et al., 1991), the chemistry of N-heterocyclic carbenes has been studied intensely, so numerous stable NHC ligands has been prepared. Imidazolium salts are considerable good precursor for the synthesis of N-heterocyclic carbenes. In addition, the study of ionic liquids of imidazolium salts (Heller et al., 2010) have been reported during these years.

We report herein the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles in the cation are normal. The imidazolium ring make dihedral angles with the pyridine ring and the quinoline ring of 87.20 (6)° and 79.89 (5)°, respectively. In the crystal there are weak π···π interactions involving the pyridine ring with centroid-centroid distances, Cg2···Cg4i of 3.692 (9). [symmetry codes: (i) 1 - x, 2 - y, 1 - z] In addition, extensive C—H···F and C—H···N hydrogen bonds which contribute to the stability of molecular structure are observed (Table 1 and Fig. 2).

Related literature top

For the first stable N-heterocyclic carbene, see: Arduengo et al. (1991). For the synthesis of 8-butoxy-quinoline-2-carbaldehyde, see: Maffeo et al. (2003), of 8-butoxy-2-chloromethyl-quinoline, see: Fowelin et al. (2007) and of 2-((1H-imidazol-1-yl)methyl)pyridine, see: Chiu et al. (2005). For ionic liquids from imidazolium salts, see: Heller et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

8-Butoxy-2-chloromethyl-quinoline (Maffeo et al., 2003 and Fowelin et al., 2007) (2.49 g, 10 mmol) was added to a solution of 2-((1H-imidazol-1-yl)methyl)pyridine (Chiu et al., 2005) (1.59 g, 10 mmol) in 50 ml of THF. The mixture was refluxed for 48 h. The resulting precipitate was isolated and washed with THF(2 × 5 ml) and was then dissolved in methanol (20 ml). Adding an excess of NH4PF6 to the aqueous solution yielded the title compound. Colorless single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile and diethyl ether(v/v=1/4).

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.99 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the cations and anions linked via C—H···F interactions (dashed lines). H atoms not involved in these interactions have been omitted for clarity. [symmetry codes: (i) 1 - x,1 - y,1 - z; (ii) 2 - x,1 - y,1 - z; (iii) x,1 + y,1 + z].
3-[(8-Butoxyquinolin-2-yl)methyl]-1-(pyridin-2-ylmethyl)- 1H-imidazol-3-ium hexafluoridophosphate top
Crystal data top
C23H25N4O+·PF6Z = 2
Mr = 518.44F(000) = 536
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.975 (3) ÅCell parameters from 3783 reflections
b = 11.056 (4) Åθ = 1.8–27.9°
c = 12.382 (4) ŵ = 0.19 mm1
α = 99.010 (4)°T = 113 K
β = 103.527 (3)°Prism, colourless
γ = 112.734 (3)°0.24 × 0.20 × 0.18 mm
V = 1177.1 (7) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5531 independent reflections
Radiation source: rotating anode2844 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.037
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω and ϕ scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1314
Tmin = 0.956, Tmax = 0.967l = 1516
12352 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
5531 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C23H25N4O+·PF6γ = 112.734 (3)°
Mr = 518.44V = 1177.1 (7) Å3
Triclinic, P1Z = 2
a = 9.975 (3) ÅMo Kα radiation
b = 11.056 (4) ŵ = 0.19 mm1
c = 12.382 (4) ÅT = 113 K
α = 99.010 (4)°0.24 × 0.20 × 0.18 mm
β = 103.527 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5531 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2844 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.967Rint = 0.037
12352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
5531 reflectionsΔρmin = 0.24 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18574 (14)0.05015 (11)0.50857 (9)0.0261 (3)
N10.46828 (17)0.15399 (13)0.59818 (11)0.0207 (3)
N20.67464 (17)0.44123 (14)0.81155 (11)0.0222 (3)
N30.76044 (18)0.65447 (14)0.89753 (11)0.0243 (3)
N40.7840 (2)0.96366 (16)1.02355 (13)0.0430 (5)
C10.4087 (2)0.10204 (16)0.48018 (13)0.0199 (4)
C20.2576 (2)0.00743 (17)0.43121 (14)0.0230 (4)
C30.1955 (2)0.06110 (18)0.31350 (14)0.0266 (4)
H30.09500.13410.28050.032*
C40.2801 (2)0.00833 (18)0.24126 (14)0.0272 (4)
H40.23560.04720.16000.033*
C50.4231 (2)0.09621 (17)0.28470 (14)0.0258 (4)
H50.47690.13100.23410.031*
C60.4921 (2)0.15361 (17)0.40557 (14)0.0229 (4)
C70.6411 (2)0.26183 (17)0.45754 (15)0.0266 (4)
H70.70050.29930.41090.032*
C80.6998 (2)0.31251 (17)0.57488 (15)0.0275 (4)
H80.80000.38540.61070.033*
C90.6087 (2)0.25439 (17)0.64230 (14)0.0233 (4)
C100.0333 (2)0.15994 (17)0.46166 (14)0.0256 (4)
H10A0.03480.24080.41540.031*
H10B0.03520.13240.41050.031*
C110.0249 (2)0.19441 (17)0.55992 (14)0.0263 (4)
H11A0.01950.11140.60840.032*
H11B0.04210.22530.60870.032*
C120.1897 (2)0.30559 (18)0.51700 (14)0.0288 (4)
H12A0.25540.27710.46420.035*
H12B0.19370.39020.47250.035*
C130.2529 (2)0.33511 (18)0.61483 (15)0.0319 (5)
H13A0.18960.36540.66640.048*
H13B0.35880.40690.58310.048*
H13C0.25120.25210.65830.048*
C140.6703 (2)0.30680 (16)0.77246 (14)0.0252 (4)
H14A0.60450.24140.80590.030*
H14B0.77530.31380.80030.030*
C150.5510 (2)0.47198 (18)0.79151 (14)0.0265 (4)
H150.44740.41050.74790.032*
C160.6041 (2)0.60457 (18)0.84485 (14)0.0267 (4)
H160.54540.65470.84620.032*
C170.7995 (2)0.55370 (17)0.87609 (13)0.0237 (4)
H170.90030.56080.90260.028*
C180.8687 (2)0.79717 (18)0.96022 (16)0.0376 (5)
H18A0.88570.85160.90420.045*
H18B0.96860.80151.00250.045*
C190.8087 (2)0.85781 (17)1.04502 (15)0.0274 (4)
C200.7801 (2)0.80741 (19)1.13636 (15)0.0317 (5)
H200.79680.73081.14810.038*
C210.7279 (2)0.86810 (18)1.20933 (15)0.0320 (5)
H210.70990.83551.27360.038*
C220.7014 (2)0.97635 (19)1.18994 (16)0.0366 (5)
H220.66441.02001.23990.044*
C230.7295 (3)1.0200 (2)1.09668 (18)0.0528 (7)
H230.70961.09441.08250.063*
P10.80855 (6)0.43611 (5)0.15376 (4)0.02658 (13)
F10.93828 (12)0.57111 (10)0.14046 (9)0.0424 (3)
F20.93902 (13)0.42366 (12)0.24704 (9)0.0496 (3)
F30.78373 (14)0.52848 (11)0.25236 (8)0.0464 (3)
F40.68142 (13)0.30267 (10)0.16650 (9)0.0427 (3)
F50.68041 (12)0.45015 (10)0.05947 (8)0.0379 (3)
F60.83460 (13)0.34588 (10)0.05310 (9)0.0395 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (8)0.0272 (7)0.0218 (6)0.0064 (6)0.0117 (6)0.0048 (5)
N10.0231 (9)0.0193 (8)0.0218 (8)0.0122 (7)0.0083 (7)0.0022 (6)
N20.0215 (9)0.0244 (8)0.0206 (8)0.0109 (7)0.0075 (7)0.0034 (7)
N30.0233 (9)0.0214 (8)0.0245 (8)0.0071 (7)0.0104 (7)0.0007 (7)
N40.0672 (14)0.0345 (10)0.0355 (10)0.0252 (10)0.0244 (10)0.0121 (8)
C10.0242 (11)0.0191 (9)0.0205 (9)0.0134 (8)0.0083 (8)0.0048 (8)
C20.0277 (11)0.0234 (10)0.0254 (10)0.0151 (9)0.0135 (9)0.0089 (8)
C30.0263 (11)0.0277 (10)0.0235 (10)0.0108 (9)0.0073 (9)0.0049 (8)
C40.0346 (12)0.0320 (11)0.0180 (10)0.0186 (10)0.0077 (9)0.0060 (8)
C50.0356 (12)0.0277 (10)0.0244 (10)0.0180 (10)0.0173 (9)0.0125 (8)
C60.0290 (11)0.0213 (10)0.0262 (10)0.0162 (9)0.0122 (9)0.0080 (8)
C70.0308 (12)0.0242 (10)0.0340 (11)0.0149 (9)0.0191 (9)0.0121 (9)
C80.0246 (11)0.0208 (10)0.0342 (11)0.0085 (9)0.0093 (9)0.0045 (8)
C90.0281 (11)0.0200 (9)0.0240 (10)0.0141 (9)0.0079 (9)0.0033 (8)
C100.0221 (11)0.0237 (10)0.0257 (10)0.0057 (9)0.0081 (9)0.0035 (8)
C110.0292 (12)0.0269 (10)0.0257 (10)0.0138 (9)0.0120 (9)0.0067 (8)
C120.0290 (12)0.0283 (10)0.0267 (10)0.0091 (9)0.0121 (9)0.0056 (8)
C130.0351 (13)0.0314 (11)0.0372 (11)0.0160 (10)0.0203 (10)0.0136 (9)
C140.0261 (11)0.0226 (9)0.0259 (10)0.0119 (9)0.0068 (9)0.0033 (8)
C150.0181 (10)0.0295 (11)0.0293 (10)0.0102 (9)0.0063 (9)0.0036 (9)
C160.0243 (11)0.0305 (11)0.0308 (11)0.0154 (9)0.0130 (9)0.0078 (9)
C170.0212 (11)0.0310 (10)0.0193 (9)0.0119 (9)0.0085 (8)0.0040 (8)
C180.0336 (13)0.0292 (11)0.0411 (12)0.0054 (10)0.0185 (10)0.0015 (9)
C190.0282 (12)0.0216 (10)0.0280 (10)0.0082 (9)0.0103 (9)0.0007 (8)
C200.0339 (13)0.0289 (11)0.0357 (11)0.0158 (10)0.0114 (10)0.0125 (9)
C210.0320 (12)0.0333 (11)0.0232 (10)0.0074 (10)0.0092 (9)0.0063 (9)
C220.0427 (14)0.0368 (12)0.0326 (11)0.0203 (11)0.0174 (10)0.0002 (10)
C230.090 (2)0.0404 (13)0.0560 (15)0.0466 (14)0.0362 (14)0.0196 (12)
P10.0242 (3)0.0309 (3)0.0284 (3)0.0139 (2)0.0126 (2)0.0076 (2)
F10.0294 (7)0.0331 (6)0.0621 (8)0.0080 (6)0.0193 (6)0.0145 (6)
F20.0400 (8)0.0768 (9)0.0428 (7)0.0351 (7)0.0096 (6)0.0261 (7)
F30.0481 (8)0.0562 (8)0.0369 (7)0.0280 (7)0.0181 (6)0.0014 (6)
F40.0401 (8)0.0363 (6)0.0662 (8)0.0170 (6)0.0334 (6)0.0272 (6)
F50.0286 (7)0.0558 (7)0.0359 (6)0.0209 (6)0.0123 (5)0.0211 (6)
F60.0346 (7)0.0393 (6)0.0431 (6)0.0149 (6)0.0204 (6)0.0012 (5)
Geometric parameters (Å, º) top
O1—C21.3621 (19)C11—H11A0.9900
O1—C101.436 (2)C11—H11B0.9900
N1—C91.320 (2)C12—C131.514 (2)
N1—C11.3729 (19)C12—H12A0.9900
N2—C171.327 (2)C12—H12B0.9900
N2—C151.380 (2)C13—H13A0.9800
N2—C141.470 (2)C13—H13B0.9800
N3—C171.324 (2)C13—H13C0.9800
N3—C161.381 (2)C14—H14A0.9900
N3—C181.471 (2)C14—H14B0.9900
N4—C191.338 (2)C15—C161.341 (2)
N4—C231.348 (2)C15—H150.9500
C1—C61.425 (2)C16—H160.9500
C1—C21.427 (2)C17—H170.9500
C2—C31.372 (2)C18—C191.515 (2)
C3—C41.410 (2)C18—H18A0.9900
C3—H30.9500C18—H18B0.9900
C4—C51.353 (2)C19—C201.377 (2)
C4—H40.9500C20—C211.355 (2)
C5—C61.414 (2)C20—H200.9500
C5—H50.9500C21—C221.366 (2)
C6—C71.411 (2)C21—H210.9500
C7—C81.364 (2)C22—C231.366 (3)
C7—H70.9500C22—H220.9500
C8—C91.417 (2)C23—H230.9500
C8—H80.9500P1—F41.5906 (12)
C9—C141.510 (2)P1—F21.5911 (12)
C10—C111.506 (2)P1—F51.5916 (11)
C10—H10A0.9900P1—F31.5941 (11)
C10—H10B0.9900P1—F61.6058 (11)
C11—C121.524 (2)P1—F11.6165 (12)
C2—O1—C10116.58 (13)H13A—C13—H13B109.5
C9—N1—C1117.78 (15)C12—C13—H13C109.5
C17—N2—C15108.25 (14)H13A—C13—H13C109.5
C17—N2—C14125.14 (15)H13B—C13—H13C109.5
C15—N2—C14126.58 (15)N2—C14—C9111.12 (13)
C17—N3—C16108.55 (15)N2—C14—H14A109.4
C17—N3—C18125.01 (17)C9—C14—H14A109.4
C16—N3—C18126.31 (15)N2—C14—H14B109.4
C19—N4—C23116.48 (16)C9—C14—H14B109.4
N1—C1—C6122.35 (16)H14A—C14—H14B108.0
N1—C1—C2118.46 (15)C16—C15—N2107.39 (16)
C6—C1—C2119.20 (15)C16—C15—H15126.3
O1—C2—C3125.06 (17)N2—C15—H15126.3
O1—C2—C1115.38 (15)C15—C16—N3106.97 (16)
C3—C2—C1119.56 (16)C15—C16—H16126.5
C2—C3—C4120.29 (18)N3—C16—H16126.5
C2—C3—H3119.9N3—C17—N2108.84 (16)
C4—C3—H3119.9N3—C17—H17125.6
C5—C4—C3121.72 (17)N2—C17—H17125.6
C5—C4—H4119.1N3—C18—C19111.41 (15)
C3—C4—H4119.1N3—C18—H18A109.3
C4—C5—C6119.87 (17)C19—C18—H18A109.3
C4—C5—H5120.1N3—C18—H18B109.3
C6—C5—H5120.1C19—C18—H18B109.3
C7—C6—C5123.27 (16)H18A—C18—H18B108.0
C7—C6—C1117.37 (16)N4—C19—C20122.50 (17)
C5—C6—C1119.36 (17)N4—C19—C18114.66 (16)
C8—C7—C6119.95 (17)C20—C19—C18122.83 (16)
C8—C7—H7120.0C21—C20—C19119.39 (17)
C6—C7—H7120.0C21—C20—H20120.3
C7—C8—C9118.76 (17)C19—C20—H20120.3
C7—C8—H8120.6C20—C21—C22119.65 (17)
C9—C8—H8120.6C20—C21—H21120.2
N1—C9—C8123.78 (16)C22—C21—H21120.2
N1—C9—C14115.93 (16)C21—C22—C23118.07 (18)
C8—C9—C14120.29 (17)C21—C22—H22121.0
O1—C10—C11108.68 (13)C23—C22—H22121.0
O1—C10—H10A110.0N4—C23—C22123.88 (18)
C11—C10—H10A110.0N4—C23—H23118.1
O1—C10—H10B110.0C22—C23—H23118.1
C11—C10—H10B110.0F4—P1—F290.58 (7)
H10A—C10—H10B108.3F4—P1—F590.40 (7)
C10—C11—C12111.93 (14)F2—P1—F5178.92 (7)
C10—C11—H11A109.2F4—P1—F390.28 (7)
C12—C11—H11A109.2F2—P1—F390.96 (7)
C10—C11—H11B109.2F5—P1—F389.48 (6)
C12—C11—H11B109.2F4—P1—F690.85 (6)
H11A—C11—H11B107.9F2—P1—F689.68 (7)
C13—C12—C11112.43 (15)F5—P1—F689.86 (6)
C13—C12—H12A109.1F3—P1—F6178.69 (6)
C11—C12—H12A109.1F4—P1—F1179.61 (7)
C13—C12—H12B109.1F2—P1—F189.25 (7)
C11—C12—H12B109.1F5—P1—F189.76 (6)
H12A—C12—H12B107.8F3—P1—F190.07 (7)
C12—C13—H13A109.5F6—P1—F188.80 (6)
C12—C13—H13B109.5
C9—N1—C1—C60.7 (2)C10—C11—C12—C13176.49 (14)
C9—N1—C1—C2179.40 (15)C17—N2—C14—C9122.16 (17)
C10—O1—C2—C30.0 (2)C15—N2—C14—C960.2 (2)
C10—O1—C2—C1179.81 (13)N1—C9—C14—N2106.79 (17)
N1—C1—C2—O10.2 (2)C8—C9—C14—N273.1 (2)
C6—C1—C2—O1179.75 (13)C17—N2—C15—C160.15 (19)
N1—C1—C2—C3180.00 (14)C14—N2—C15—C16178.14 (14)
C6—C1—C2—C30.1 (2)N2—C15—C16—N30.05 (19)
O1—C2—C3—C4179.65 (15)C17—N3—C16—C150.07 (19)
C1—C2—C3—C40.2 (2)C18—N3—C16—C15175.97 (15)
C2—C3—C4—C50.5 (3)C16—N3—C17—N20.16 (19)
C3—C4—C5—C61.1 (3)C18—N3—C17—N2175.93 (14)
C4—C5—C6—C7179.41 (16)C15—N2—C17—N30.19 (19)
C4—C5—C6—C11.2 (2)C14—N2—C17—N3178.22 (13)
N1—C1—C6—C70.1 (2)C17—N3—C18—C19137.01 (17)
C2—C1—C6—C7179.98 (14)C16—N3—C18—C1947.6 (2)
N1—C1—C6—C5179.33 (14)C23—N4—C19—C200.2 (3)
C2—C1—C6—C50.6 (2)C23—N4—C19—C18179.58 (19)
C5—C6—C7—C8179.60 (15)N3—C18—C19—N4117.59 (19)
C1—C6—C7—C80.2 (2)N3—C18—C19—C2061.8 (2)
C6—C7—C8—C90.1 (2)N4—C19—C20—C211.4 (3)
C1—N1—C9—C81.0 (2)C18—C19—C20—C21179.30 (18)
C1—N1—C9—C14179.09 (13)C19—C20—C21—C221.4 (3)
C7—C8—C9—N10.7 (3)C20—C21—C22—C230.3 (3)
C7—C8—C9—C14179.37 (15)C19—N4—C23—C221.0 (4)
C2—O1—C10—C11178.73 (13)C21—C22—C23—N40.9 (4)
O1—C10—C11—C12177.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.952.583.343 (2)138
C14—H14B···F1ii0.992.503.425 (2)156
C16—H16···F4i0.952.463.361 (2)159
C17—H17···F6ii0.952.323.223 (2)158
C23—H23···F4iii0.952.523.355 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H25N4O+·PF6
Mr518.44
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.975 (3), 11.056 (4), 12.382 (4)
α, β, γ (°)99.010 (4), 103.527 (3), 112.734 (3)
V3)1177.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.956, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
12352, 5531, 2844
Rint0.037
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.01
No. of reflections5531
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.952.583.343 (2)138
C14—H14B···F1ii0.992.503.425 (2)156
C16—H16···F4i0.952.463.361 (2)159
C17—H17···F6ii0.952.323.223 (2)158
C23—H23···F4iii0.952.523.355 (2)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Scientific Researching Fund Projects of China West Normal University (grant No. 06B003)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationChiu, P. L., Lai, C. L., Chang, C. F., Hu, C. H. & Lee, H. M. (2005). Organometallics, 24, 6169–6178.  Web of Science CSD CrossRef CAS Google Scholar
First citationFowelin, C., Schuepbach, B. & Terfort, A. (2007). Eur. J. Org. Chem. 6, 1013–1017.  Web of Science CSD CrossRef Google Scholar
First citationHeller, W. T., Q'Neill, H. M., Zhang, Q. & Baker, G. A. (2010). J. Phys. Chem. B, 114, 13866–13871.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaffeo, D. & Williams, J. A. G. (2003). Inorg. Chim. Acta, 355, 127–136.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1278
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds