organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1379

2-[(2-Meth­­oxy­eth­yl)sulfan­yl]-4-(2-methyl­prop­yl)-6-oxo-1,6-di­hydro­pyrimidine-5-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: necmid@omu.edu.tr

(Received 21 March 2012; accepted 27 March 2012; online 13 April 2012)

In the title compound, C12H17N3O2S, the 4-methyl-2-methyl­sulfanyl-6-oxo-1,6-dihydro­pyrimidine-5-carbonitrile part of the mol­ecule is almost planar (r.m.s deviation = 0.062 Å). In the crystal, mol­ecules form centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds.

Related literature

For related pyrimidine structures, see: Yan et al. (2011[Yan, W.-L., Guo, Q., Li, C., Ji, X.-Y. & He, Y.-P. (2011). Acta Cryst. E67, o534.]); El-Brollosy et al. (2011[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.]); Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.]); Tiekink (1989[Tiekink, E. R. T. (1989). Z. Kristallogr. 187, 79-84.]); Al-Deeb et al. (2012[Al-Deeb, O. A., El-Emam, A. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o676-o677.]); Durkaya et al. (2011[Durkaya, F., Dege, N., Demirtaş, G. & Uçar, I. (2011). Acta Cryst. E67, m687.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3O2S

  • Mr = 267.35

  • Triclinic, [P \overline 1]

  • a = 5.0379 (5) Å

  • b = 10.5453 (10) Å

  • c = 13.3936 (13) Å

  • α = 85.274 (8)°

  • β = 82.170 (8)°

  • γ = 83.034 (8)°

  • V = 698.14 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.68 × 0.47 × 0.15 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.859, Tmax = 0.966

  • 6663 measured reflections

  • 2725 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.02

  • 2725 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.89 2.747 (2) 175
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to our work on the chemical and pharmacological properties of pyrimidine derivatives, we synthesized the title compound as a potential chemotherapeutic agent. The 4-methyl-2-(methylthio)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile part of the molecule is almost planar. Some pyrimidine structures have been described in the literature (Yan et al., 2011; El-Brollosy et al., 2011; Nasir et al., 2010; Tiekink 1989; Al-Deeb et al., 2012; Durkaya et al., 2011) and the bond distances of our crystal structure is comparable with these structures.

In the crystal, the molecules form centrosymmetric dimers via intermolecular N—H···O hydrogen bonds.

Related literature top

For related pyrimidine structures, see: Yan et al. (2011); El-Brollosy et al. (2011); Nasir et al. (2010); Tiekink (1989); Al-Deeb et al. (2012); Durkaya et al. (2011).

Experimental top

To a solution of 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile (2.09 g, 0.01 mol) in DMF (10 ml), 1-bromo-2-methoxyethane (1.4 g, 0.01 mol) and anhydrous potassium carbonate (1.38 g, 0.01 mol) were added and the mixture was stirred at room temperature for 12 h. Water (15 ml) was then added and the mixture was stirred for further 30 min. The separated solid was filtered, washed with cold water, dried and crystallized from water to yield 1.15 g (43%) of the title compound (C12H17N3O2S) as colorless crystals. M.P.: 113–115 oC. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in EtOH at room temperature. 1H NMR (DMSO-d6, 500.13 MHz): δ 0.93 (d, 6H, CH3, J = 7.0 Hz), 2.12–2.15 (m, 1H, CH), 2.53 (d, 2H, CH2CH, J = 7.0 Hz), 3.27 (s, 3H, CH3O), 3.53 (t, 2H, CH2S, J = 6.5 Hz), 3.56 (t, 2H, OCH2CH2, J = 6.5 Hz), 13.55 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 22.55 (CH3), 27.94 (CH), 30.19 (CH2S), 45.30 (CH2CH), 58.36 (CH3O), 70.25 (OCH2), 95.97 (C-5), 115.55 (CN), 162.05 (C-6), 166.19 (C=O), 174.50 (C-2).

Refinement top

All H atoms were positioned geometrically [N—H = 0.860 Å and C—H = 0.960 Å, 0.970 Å or 0.980 Å] and treated as riding with Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-[(2-Methoxyethyl)sulfanyl]-4-(2-methylpropyl)-6-oxo-1,6-dihydropyrimidine- 5-carbonitrile top
Crystal data top
C12H17N3O2SZ = 2
Mr = 267.35F(000) = 284
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0379 (5) ÅCell parameters from 9417 reflections
b = 10.5453 (10) Åθ = 3.1–27.9°
c = 13.3936 (13) ŵ = 0.23 mm1
α = 85.274 (8)°T = 296 K
β = 82.170 (8)°Prism, colorless
γ = 83.034 (8)°0.68 × 0.47 × 0.15 mm
V = 698.14 (12) Å3
Data collection top
Stoe IPDS 2
diffractometer
2725 independent reflections
Radiation source: fine-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
rotation method scansθmax = 26.0°, θmin = 3.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 66
Tmin = 0.859, Tmax = 0.966k = 1212
6663 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0743P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2725 reflectionsΔρmax = 0.28 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (9)
Crystal data top
C12H17N3O2Sγ = 83.034 (8)°
Mr = 267.35V = 698.14 (12) Å3
Triclinic, P1Z = 2
a = 5.0379 (5) ÅMo Kα radiation
b = 10.5453 (10) ŵ = 0.23 mm1
c = 13.3936 (13) ÅT = 296 K
α = 85.274 (8)°0.68 × 0.47 × 0.15 mm
β = 82.170 (8)°
Data collection top
Stoe IPDS 2
diffractometer
2725 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2090 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.966Rint = 0.062
6663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
2725 reflectionsΔρmin = 0.22 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6121 (4)0.32542 (17)0.13412 (14)0.0433 (4)
C20.9074 (4)0.48214 (16)0.15109 (15)0.0450 (4)
C30.8266 (4)0.46228 (16)0.25758 (15)0.0442 (4)
C40.6474 (4)0.37554 (16)0.29360 (14)0.0437 (4)
C50.9463 (4)0.53342 (18)0.32209 (16)0.0520 (5)
C60.5689 (4)0.34539 (18)0.40400 (14)0.0495 (5)
H6A0.37880.37350.42120.059*
H6B0.66940.39290.44210.059*
C70.6216 (4)0.20252 (19)0.43492 (15)0.0479 (4)
H70.50920.15690.39910.057*
C80.5377 (5)0.1782 (2)0.54676 (17)0.0632 (6)
H8A0.34910.20600.56250.076*
H8B0.63980.22490.58370.076*
H8C0.57100.08830.56520.076*
C90.9103 (5)0.1502 (3)0.4063 (2)0.0851 (9)
H9A1.02530.19460.43930.102*
H9B0.95610.16200.33440.102*
H9C0.93390.06060.42670.102*
C100.3129 (4)0.1261 (2)0.12329 (17)0.0566 (5)
H10A0.18350.17370.17070.068*
H10B0.21180.08530.08080.068*
C110.4729 (5)0.0231 (2)0.18197 (18)0.0646 (6)
H11A0.56730.06210.22780.078*
H11B0.35170.03190.22180.078*
C120.7991 (8)0.1519 (3)0.1697 (3)0.1020 (10)
H12A0.67420.20720.20500.122*
H12B0.89510.11900.21730.122*
H12C0.92460.19930.12220.122*
N10.7874 (3)0.40967 (14)0.09326 (12)0.0468 (4)
H10.82460.41790.02860.056*
N20.5378 (3)0.30759 (14)0.23047 (12)0.0452 (4)
N31.0420 (5)0.5910 (2)0.37314 (18)0.0761 (6)
O11.0717 (3)0.55469 (13)0.11167 (11)0.0575 (4)
O20.6562 (4)0.04885 (17)0.11760 (15)0.0855 (6)
S10.50676 (11)0.23771 (5)0.04486 (4)0.0547 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (9)0.0408 (9)0.0385 (10)0.0040 (7)0.0042 (8)0.0019 (7)
C20.0564 (10)0.0373 (9)0.0396 (10)0.0048 (7)0.0018 (8)0.0007 (7)
C30.0553 (10)0.0365 (9)0.0393 (10)0.0011 (7)0.0048 (8)0.0003 (7)
C40.0518 (10)0.0375 (8)0.0388 (10)0.0004 (7)0.0015 (8)0.0005 (7)
C50.0637 (12)0.0444 (10)0.0473 (11)0.0056 (8)0.0067 (9)0.0014 (9)
C60.0616 (11)0.0483 (10)0.0365 (10)0.0073 (8)0.0017 (8)0.0027 (8)
C70.0479 (10)0.0544 (10)0.0402 (10)0.0077 (8)0.0033 (8)0.0033 (8)
C80.0734 (14)0.0715 (14)0.0423 (12)0.0143 (11)0.0004 (10)0.0074 (10)
C90.0608 (14)0.103 (2)0.0744 (18)0.0151 (13)0.0095 (12)0.0300 (16)
C100.0606 (12)0.0580 (12)0.0512 (12)0.0167 (9)0.0002 (9)0.0007 (9)
C110.0896 (16)0.0523 (11)0.0507 (13)0.0130 (11)0.0013 (11)0.0013 (10)
C120.127 (3)0.0788 (18)0.096 (3)0.0192 (17)0.029 (2)0.0031 (17)
N10.0598 (9)0.0449 (8)0.0347 (8)0.0099 (7)0.0015 (7)0.0027 (6)
N20.0537 (8)0.0448 (8)0.0357 (8)0.0073 (6)0.0008 (7)0.0007 (6)
N30.0948 (15)0.0671 (12)0.0729 (15)0.0169 (11)0.0209 (12)0.0147 (11)
O10.0751 (9)0.0526 (8)0.0456 (8)0.0238 (7)0.0009 (7)0.0019 (6)
O20.1202 (15)0.0712 (11)0.0588 (11)0.0131 (10)0.0080 (10)0.0074 (9)
S10.0701 (4)0.0594 (3)0.0368 (3)0.0201 (2)0.0053 (2)0.0007 (2)
Geometric parameters (Å, º) top
C1—N21.299 (2)C8—H8B0.9600
C1—N11.359 (2)C8—H8C0.9600
C1—S11.744 (2)C9—H9A0.9600
C2—O11.232 (2)C9—H9B0.9600
C2—N11.374 (2)C9—H9C0.9600
C2—C31.434 (3)C10—C111.505 (3)
C3—C41.376 (3)C10—S11.800 (2)
C3—C51.425 (3)C10—H10A0.9700
C4—N21.363 (2)C10—H10B0.9700
C4—C61.496 (3)C11—O21.376 (3)
C5—N31.139 (3)C11—H11A0.9700
C6—C71.530 (3)C11—H11B0.9700
C6—H6A0.9700C12—O21.417 (3)
C6—H6B0.9700C12—H12A0.9600
C7—C91.502 (3)C12—H12B0.9600
C7—C81.510 (3)C12—H12C0.9600
C7—H70.9800N1—H10.8600
C8—H8A0.9600
N2—C1—N1123.67 (18)C7—C9—H9A109.5
N2—C1—S1122.84 (14)C7—C9—H9B109.5
N1—C1—S1113.43 (14)H9A—C9—H9B109.5
O1—C2—N1120.88 (18)C7—C9—H9C109.5
O1—C2—C3125.26 (18)H9A—C9—H9C109.5
N1—C2—C3113.85 (16)H9B—C9—H9C109.5
C4—C3—C5122.88 (18)C11—C10—S1115.59 (16)
C4—C3—C2120.35 (18)C11—C10—H10A108.4
C5—C3—C2116.75 (17)S1—C10—H10A108.4
N2—C4—C3121.83 (17)C11—C10—H10B108.4
N2—C4—C6115.56 (15)S1—C10—H10B108.4
C3—C4—C6122.56 (18)H10A—C10—H10B107.4
N3—C5—C3179.5 (2)O2—C11—C10110.6 (2)
C4—C6—C7112.75 (16)O2—C11—H11A109.5
C4—C6—H6A109.0C10—C11—H11A109.5
C7—C6—H6A109.0O2—C11—H11B109.5
C4—C6—H6B109.0C10—C11—H11B109.5
C7—C6—H6B109.0H11A—C11—H11B108.1
H6A—C6—H6B107.8O2—C12—H12A109.5
C9—C7—C8110.84 (19)O2—C12—H12B109.5
C9—C7—C6112.29 (18)H12A—C12—H12B109.5
C8—C7—C6110.23 (18)O2—C12—H12C109.5
C9—C7—H7107.8H12A—C12—H12C109.5
C8—C7—H7107.8H12B—C12—H12C109.5
C6—C7—H7107.8C1—N1—C2122.62 (16)
C7—C8—H8A109.5C1—N1—H1118.7
C7—C8—H8B109.5C2—N1—H1118.7
H8A—C8—H8B109.5C1—N2—C4117.66 (16)
C7—C8—H8C109.5C11—O2—C12112.2 (2)
H8A—C8—H8C109.5C1—S1—C10102.06 (10)
H8B—C8—H8C109.5
O1—C2—C3—C4177.90 (18)N2—C1—N1—C21.5 (3)
N1—C2—C3—C40.9 (3)S1—C1—N1—C2175.81 (14)
O1—C2—C3—C50.4 (3)O1—C2—N1—C1177.75 (17)
N1—C2—C3—C5179.25 (15)C3—C2—N1—C11.1 (3)
C5—C3—C4—N2179.28 (17)N1—C1—N2—C41.5 (3)
C2—C3—C4—N21.1 (3)S1—C1—N2—C4175.58 (13)
C5—C3—C4—C61.9 (3)C3—C4—N2—C11.3 (3)
C2—C3—C4—C6176.28 (17)C6—C4—N2—C1176.22 (16)
N2—C4—C6—C753.7 (2)C10—C11—O2—C12176.3 (2)
C3—C4—C6—C7123.80 (19)N2—C1—S1—C103.49 (19)
C4—C6—C7—C956.1 (3)N1—C1—S1—C10173.88 (14)
C4—C6—C7—C8179.82 (18)C11—C10—S1—C170.78 (19)
S1—C10—C11—O259.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.892.747 (2)175
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H17N3O2S
Mr267.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.0379 (5), 10.5453 (10), 13.3936 (13)
α, β, γ (°)85.274 (8), 82.170 (8), 83.034 (8)
V3)698.14 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.68 × 0.47 × 0.15
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.859, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6663, 2725, 2090
Rint0.062
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.02
No. of reflections2725
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), WinGX (Farrugia, 1997) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.892.747 (2)175.1
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank Professor Orhan Büyükgüngör for his help with the data collection and acknowledge the Ondokuz Mayıs University Research Fund for financial support. The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated.

References

First citationAl-Deeb, O. A., El-Emam, A. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o676–o677.  CSD CrossRef IUCr Journals Google Scholar
First citationDurkaya, F., Dege, N., Demirtaş, G. & Uçar, I. (2011). Acta Cryst. E67, m687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTiekink, E. R. T. (1989). Z. Kristallogr. 187, 79–84.  CrossRef CAS Web of Science Google Scholar
First citationYan, W.-L., Guo, Q., Li, C., Ji, X.-Y. & He, Y.-P. (2011). Acta Cryst. E67, o534.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1379
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds