organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4′,5-di­chloro-2-hy­dr­oxy-4,6-di­methyl­bi­phenyl-3-carboxyl­ate

aGomal University, Department of Chemistry, Dera Ismail Khan (KPK), Pakistan, bUniversität Rostock, Institut für Chemie, Abteilung für Organische Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany, and cUniversität Rostock, Institut für Chemie, Abteilung für Anorganische Chemie, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
*Correspondence e-mail: muhammad_adeel2000@yahoo.com

(Received 23 February 2012; accepted 23 March 2012; online 28 March 2012)

In the title compound, C16H14Cl2O3, the dihedral angle between the mean planes of the two benzene rings is 55.30 (5)°. The methyl ester group lies within the ring plane due to an intra­molecular O—H⋯O hydrogen bond [maximum deviation from the C8O2 mean plane is 0.0383 (13) Å]. In the crystal, mol­ecules are held together by rather weak C—H⋯O hydrogen bonds.

Related literature

For pharmacological relevance of salicylates and the synthesis of the title compound, see: Adeel, Rashid et al. (2009[Adeel, M., Rashid, M. A., Rasool, N., Ahmad, R., Villinger, A., Reinke, H., Fischer, C. & Langer, P. (2009). Synthesis, pp. 243-250.]). For related structures, see: Adeel, Ali et al. (2009[Adeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176.]); Adeel, Langer et al. (2011[Adeel, M., Langer, P. & Villinger, A. (2011). Acta Cryst. E67, o2336.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Cl2O3

  • Mr = 325.19

  • Monoclinic, P 21

  • a = 4.0956 (5) Å

  • b = 13.3066 (17) Å

  • c = 13.3656 (16) Å

  • β = 92.711 (7)°

  • V = 727.59 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 173 K

  • 0.65 × 0.50 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker-Nonius Inc., Madison, Wisconsin, USA.]) Tmin = 0.758, Tmax = 0.973

  • 9311 measured reflections

  • 3754 independent reflections

  • 3331 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.04

  • 3754 reflections

  • 197 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1569 Friedel pairs

  • Flack parameter: 0.05 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1 0.77 (3) 1.80 (3) 2.523 (2) 156 (3)
C12—H12⋯O3i 0.95 2.53 3.306 (2) 139
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker-Nonius Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker-Nonius Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Functionalized biaryls containing a 3-arylsalicylate substructure occur in a variety of pharmacologically relevant natural products (Adeel, Rashid & et al., 2009). A sterically encumbered and functionalized biaryl, the title compound, was synthesized from 4-(4-methoxyphenyl)-1,3-bis(trimethylsilyloxy)-1,3-butadiene. In this paper, the crystal structure of the title compound has been presented.

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 55.30 (5)°. The methyl ester group lies within the ring plane due to an intramolecular O—H···O hydrogen bond; the maximum deviation of any atom from the mean-plane of atoms C1–C8/O1/O2 is 0.0383 (13) Å for C2. In the crystal, molecules are held together by rather weak intermolecular C—H···O hydrogen bonds along the a-axis (Fig. 2 & Table 1).

Related literature top

For pharmacological relevance of salicylates and the synthesis of the title compound, see: Adeel, Rashid et al. (2009). For related structures, see: Adeel, Ali et al. (2009); Adeel, Langer et al. (2011).

Experimental top

The title compound was prepared according to a previously published procedure (Adeel, Rashid et al., 2009) using 3-(Silyloxy)-2-en-1-ones (332 mg, 1.65 mmol), 1,3-bis(silyl enol ethers) (612 mg, 1.65 mmol) and TiCl4 (0.18 ml, 1.65 mmol) in CH2Cl2 (4 mL). The title compound was isolated as a colorless prisms; (190 mg, 40%, m.p. = 367–369 K). Crystallization from a saturated dichloromethane/methanol (9:1) solution at ambient temperature gave colourless crystals suitable for X-ray crystallographic studies.

Refinement top

An absolute structure was determined by using 1569 Friedel pairs. The H atom bonded to O1 was located from a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 (methyl) or 0.95 Å (aryl) with Uiso(H) = 1.5 times Ueq(C) (methyl H) or 1.2 times Ueq(C) (aryl H); torsion angles of all methyl groups were allowed to refine.

Structure description top

Functionalized biaryls containing a 3-arylsalicylate substructure occur in a variety of pharmacologically relevant natural products (Adeel, Rashid & et al., 2009). A sterically encumbered and functionalized biaryl, the title compound, was synthesized from 4-(4-methoxyphenyl)-1,3-bis(trimethylsilyloxy)-1,3-butadiene. In this paper, the crystal structure of the title compound has been presented.

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 55.30 (5)°. The methyl ester group lies within the ring plane due to an intramolecular O—H···O hydrogen bond; the maximum deviation of any atom from the mean-plane of atoms C1–C8/O1/O2 is 0.0383 (13) Å for C2. In the crystal, molecules are held together by rather weak intermolecular C—H···O hydrogen bonds along the a-axis (Fig. 2 & Table 1).

For pharmacological relevance of salicylates and the synthesis of the title compound, see: Adeel, Rashid et al. (2009). For related structures, see: Adeel, Ali et al. (2009); Adeel, Langer et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular (C—-H···O) and intramolecular (O—H···O and C—H···Cl) hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
Methyl 4',5-dichloro-2-hydroxy-4,6-dimethylbiphenyl-3-carboxylate top
Crystal data top
C16H14Cl2O3F(000) = 336
Mr = 325.19Dx = 1.484 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4567 reflections
a = 4.0956 (5) Åθ = 2.2–29.8°
b = 13.3066 (17) ŵ = 0.45 mm1
c = 13.3656 (16) ÅT = 173 K
β = 92.711 (7)°Plate, colourless
V = 727.59 (16) Å30.65 × 0.50 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3754 independent reflections
Radiation source: fine-focus sealed tube3331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 29.9°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.758, Tmax = 0.973k = 1815
9311 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.0613P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3754 reflectionsΔρmax = 0.32 e Å3
197 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1569 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (5)
Crystal data top
C16H14Cl2O3V = 727.59 (16) Å3
Mr = 325.19Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.0956 (5) ŵ = 0.45 mm1
b = 13.3066 (17) ÅT = 173 K
c = 13.3656 (16) Å0.65 × 0.50 × 0.06 mm
β = 92.711 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3331 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.973Rint = 0.022
9311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.32 e Å3
S = 1.04Δρmin = 0.18 e Å3
3754 reflectionsAbsolute structure: Flack (1983), 1569 Friedel pairs
197 parametersAbsolute structure parameter: 0.05 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.12949 (11)0.03726 (3)0.31348 (3)0.02951 (11)
Cl20.24707 (13)0.25736 (5)0.35858 (3)0.04068 (13)
O10.4723 (4)0.47523 (11)0.24494 (11)0.0385 (3)
O20.4797 (4)0.39445 (11)0.39014 (10)0.0397 (4)
O30.1939 (3)0.40131 (10)0.08937 (10)0.0257 (3)
H3O0.278 (6)0.437 (2)0.1272 (19)0.046 (8)*
C10.2187 (4)0.31271 (13)0.24869 (12)0.0179 (3)
C20.1324 (4)0.31873 (13)0.14433 (12)0.0187 (3)
C30.0198 (3)0.23718 (12)0.09202 (11)0.0167 (3)
C40.1037 (4)0.15145 (12)0.14643 (12)0.0168 (3)
C50.0227 (4)0.14812 (13)0.25056 (12)0.0182 (3)
C60.1376 (4)0.22493 (13)0.30390 (12)0.0190 (3)
C70.3994 (4)0.40092 (14)0.29314 (13)0.0219 (3)
C80.6450 (6)0.48150 (18)0.43503 (17)0.0449 (5)
H8A0.85410.49180.40370.067*
H8B0.68460.47010.50700.067*
H8C0.50760.54120.42450.067*
C90.2826 (4)0.06380 (13)0.09765 (13)0.0218 (3)
H9A0.34750.08100.02820.033*
H9B0.47790.04860.13450.033*
H9C0.13880.00490.09850.033*
C100.2165 (5)0.21357 (15)0.41504 (13)0.0309 (4)
H10A0.11660.15170.43910.046*
H10B0.12990.27140.45070.046*
H10C0.45400.21020.42730.046*
C110.0770 (4)0.24329 (12)0.01993 (11)0.0173 (3)
C120.2543 (4)0.32261 (13)0.06551 (12)0.0192 (3)
H120.34020.37410.02510.023*
C130.3060 (4)0.32687 (14)0.16939 (12)0.0221 (3)
H130.42800.38050.19950.026*
C140.1769 (4)0.25169 (15)0.22847 (12)0.0225 (3)
C150.0039 (4)0.17324 (14)0.18631 (13)0.0235 (3)
H150.09420.12310.22740.028*
C160.0510 (4)0.16929 (13)0.08213 (13)0.0221 (3)
H160.17250.11520.05260.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0416 (2)0.02195 (19)0.0246 (2)0.00629 (19)0.00240 (16)0.00732 (18)
Cl20.0571 (3)0.0497 (3)0.01488 (19)0.0008 (3)0.00219 (17)0.0013 (2)
O10.0570 (9)0.0258 (7)0.0317 (7)0.0156 (6)0.0074 (6)0.0003 (6)
O20.0599 (9)0.0338 (8)0.0244 (7)0.0174 (7)0.0105 (6)0.0054 (6)
O30.0398 (7)0.0188 (6)0.0184 (6)0.0080 (5)0.0001 (5)0.0008 (5)
C10.0206 (7)0.0157 (8)0.0173 (7)0.0005 (6)0.0005 (6)0.0032 (6)
C20.0214 (7)0.0175 (8)0.0174 (7)0.0018 (6)0.0028 (6)0.0005 (6)
C30.0175 (7)0.0176 (8)0.0148 (7)0.0043 (6)0.0007 (5)0.0005 (6)
C40.0163 (6)0.0159 (7)0.0180 (7)0.0027 (6)0.0002 (5)0.0014 (6)
C50.0217 (7)0.0160 (7)0.0168 (7)0.0020 (6)0.0007 (6)0.0038 (6)
C60.0192 (6)0.0222 (8)0.0152 (7)0.0035 (6)0.0017 (5)0.0009 (6)
C70.0231 (8)0.0214 (8)0.0212 (8)0.0000 (6)0.0005 (6)0.0049 (6)
C80.0619 (14)0.0381 (13)0.0331 (11)0.0169 (10)0.0135 (10)0.0141 (10)
C90.0226 (7)0.0184 (8)0.0239 (8)0.0016 (6)0.0039 (6)0.0010 (6)
C100.0473 (10)0.0283 (10)0.0163 (8)0.0045 (8)0.0079 (7)0.0034 (7)
C110.0189 (7)0.0181 (8)0.0148 (7)0.0018 (6)0.0013 (5)0.0002 (6)
C120.0221 (7)0.0186 (8)0.0167 (7)0.0010 (6)0.0012 (6)0.0007 (6)
C130.0274 (8)0.0201 (8)0.0184 (8)0.0007 (6)0.0023 (6)0.0025 (6)
C140.0237 (7)0.0297 (9)0.0139 (7)0.0046 (7)0.0002 (5)0.0003 (7)
C150.0238 (7)0.0256 (9)0.0211 (8)0.0011 (7)0.0010 (6)0.0083 (7)
C160.0205 (7)0.0222 (9)0.0231 (8)0.0030 (6)0.0028 (6)0.0036 (7)
Geometric parameters (Å, º) top
Cl1—C51.7633 (17)C8—H8B0.9800
Cl2—C141.7507 (16)C8—H8C0.9800
O1—C71.225 (2)C9—H9A0.9800
O2—C71.325 (2)C9—H9B0.9800
O2—C81.457 (2)C9—H9C0.9800
O3—C21.352 (2)C10—H10A0.9800
O3—H3O0.77 (3)C10—H10B0.9800
C1—C21.425 (2)C10—H10C0.9800
C1—C61.429 (2)C11—C121.404 (2)
C1—C71.496 (2)C11—C161.406 (2)
C2—C31.419 (2)C12—C131.396 (2)
C3—C41.404 (2)C12—H120.9500
C3—C111.506 (2)C13—C141.394 (2)
C4—C51.416 (2)C13—H130.9500
C4—C91.509 (2)C14—C151.384 (3)
C5—C61.393 (2)C15—C161.398 (2)
C6—C101.513 (2)C15—H150.9500
C8—H8A0.9800C16—H160.9500
C7—O2—C8116.13 (16)C4—C9—H9B109.5
C2—O3—H3O104 (2)H9A—C9—H9B109.5
C2—C1—C6119.90 (14)C4—C9—H9C109.5
C2—C1—C7116.10 (15)H9A—C9—H9C109.5
C6—C1—C7123.99 (14)H9B—C9—H9C109.5
O3—C2—C3116.27 (14)C6—C10—H10A109.5
O3—C2—C1122.25 (15)C6—C10—H10B109.5
C3—C2—C1121.47 (15)H10A—C10—H10B109.5
C4—C3—C2118.60 (14)C6—C10—H10C109.5
C4—C3—C11121.88 (14)H10A—C10—H10C109.5
C2—C3—C11119.49 (14)H10B—C10—H10C109.5
C3—C4—C5118.87 (14)C12—C11—C16118.01 (14)
C3—C4—C9121.99 (14)C12—C11—C3121.66 (14)
C5—C4—C9119.13 (15)C16—C11—C3120.33 (14)
C6—C5—C4124.26 (15)C13—C12—C11120.89 (15)
C6—C5—Cl1119.44 (12)C13—C12—H12119.6
C4—C5—Cl1116.29 (13)C11—C12—H12119.6
C5—C6—C1116.81 (14)C14—C13—C12119.38 (15)
C5—C6—C10120.19 (15)C14—C13—H13120.3
C1—C6—C10123.00 (14)C12—C13—H13120.3
O1—C7—O2120.77 (16)C15—C14—C13121.36 (15)
O1—C7—C1123.58 (16)C15—C14—Cl2119.75 (13)
O2—C7—C1115.66 (15)C13—C14—Cl2118.88 (14)
O2—C8—H8A109.5C14—C15—C16118.68 (15)
O2—C8—H8B109.5C14—C15—H15120.7
H8A—C8—H8B109.5C16—C15—H15120.7
O2—C8—H8C109.5C15—C16—C11121.67 (15)
H8A—C8—H8C109.5C15—C16—H16119.2
H8B—C8—H8C109.5C11—C16—H16119.2
C4—C9—H9A109.5
C6—C1—C2—O3177.81 (15)C2—C1—C6—C10179.09 (15)
C7—C1—C2—O33.4 (2)C7—C1—C6—C102.3 (2)
C6—C1—C2—C33.0 (2)C8—O2—C7—O12.3 (3)
C7—C1—C2—C3175.71 (14)C8—O2—C7—C1177.79 (17)
O3—C2—C3—C4176.93 (14)C2—C1—C7—O10.1 (2)
C1—C2—C3—C43.9 (2)C6—C1—C7—O1178.84 (16)
O3—C2—C3—C115.0 (2)C2—C1—C7—O2179.73 (14)
C1—C2—C3—C11174.17 (14)C6—C1—C7—O21.0 (2)
C2—C3—C4—C52.3 (2)C4—C3—C11—C12125.94 (16)
C11—C3—C4—C5175.72 (14)C2—C3—C11—C1256.1 (2)
C2—C3—C4—C9176.59 (14)C4—C3—C11—C1654.8 (2)
C11—C3—C4—C95.4 (2)C2—C3—C11—C16123.15 (16)
C3—C4—C5—C60.2 (2)C16—C11—C12—C131.0 (2)
C9—C4—C5—C6179.04 (14)C3—C11—C12—C13179.75 (14)
C3—C4—C5—Cl1178.97 (11)C11—C12—C13—C140.6 (2)
C9—C4—C5—Cl12.1 (2)C12—C13—C14—C150.5 (2)
C4—C5—C6—C11.0 (2)C12—C13—C14—Cl2179.39 (13)
Cl1—C5—C6—C1179.78 (12)C13—C14—C15—C161.2 (2)
C4—C5—C6—C10179.32 (16)Cl2—C14—C15—C16178.73 (13)
Cl1—C5—C6—C100.5 (2)C14—C15—C16—C110.8 (2)
C2—C1—C6—C50.6 (2)C12—C11—C16—C150.3 (2)
C7—C1—C6—C5178.07 (15)C3—C11—C16—C15179.57 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O10.77 (3)1.80 (3)2.523 (2)156 (3)
C12—H12···O3i0.952.533.306 (2)139
C10—H10A···Cl10.982.453.029 (2)118
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14Cl2O3
Mr325.19
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)4.0956 (5), 13.3066 (17), 13.3656 (16)
β (°) 92.711 (7)
V3)727.59 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.65 × 0.50 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.758, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
9311, 3754, 3331
Rint0.022
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.04
No. of reflections3754
No. of parameters197
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.18
Absolute structureFlack (1983), 1569 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O10.77 (3)1.80 (3)2.523 (2)156 (3)
C12—H12···O3i0.952.533.306 (2)139
C10—H10A···Cl10.982.453.029 (2)118
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Higher Education Commission of Pakistan (HEC) under the resource grant programe and the World University Service, Deutsches Kommitee, is gratefully acknowledged.

References

First citationAdeel, M., Ali, I., Langer, P. & Villinger, A. (2009). Acta Cryst. E65, o2176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAdeel, M., Langer, P. & Villinger, A. (2011). Acta Cryst. E67, o2336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAdeel, M., Rashid, M. A., Rasool, N., Ahmad, R., Villinger, A., Reinke, H., Fischer, C. & Langer, P. (2009). Synthesis, pp. 243–250.  Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker–Nonius Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker–Nonius Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds