metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(benzoato-κO)bis­­[4,4,5,5-tetra­methyl-2-(pyridin-4-yl-κN)imidazoline-1-oxyl 3-oxide]cobalt(II)

aKey Lab of Tobacco Chemistry of Yunnan, Yunnan Academy of Tobacco Science, Kunming 650106, People's Republic of China, and bSchool of Chemical Science and Engineering, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: wangkunmiao@163.com

(Received 6 March 2012; accepted 21 March 2012; online 31 March 2012)

The title compound, [Co(C7H5O2)2(C12H16N3O2)2(H2O)2], was obtained from a conventional solvent evaporation method. The complex mol­ecule is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octa­hedral CoN2O4 geometry. The CoII ion is coordinated by the pyridine N atoms from NITpPy ligands [NITpPy is 4,4,5,5-tetra­methyl-2-(pyridin-4-yl)imidazoline-1-oxyl 3-oxide), water O atoms and two monodentate benzoate O atoms. The complex mol­ecules are connected by O—H⋯O hydrogen bonds between water mol­ecules and benzoate ligands, forming chains parallel to [100]. ππ stacking inter­actions between the benzoate ligands with centroid–centroid distances of 3.752 (2) Å connect the chains into layers parallel to (10-1).

Related literature

For isotypic structures, see: Fettouhi et al. (1999[Fettouhi, M., Khaled, M., Waheed, A., Golhen, S., Ouahab, L., Sutter, J. P. & Kahn, O. (1999). Inorg. Chem. 38, 3967-3971.]); Zhao et al. (2003[Zhao, Q., Wang, X., Fang, R. & Tiekink, E. R. T. (2003). Acta Cryst. E59, m719-m721.]). For other metal nitronyl nitroxides, see: Zhou et al. (2006[Zhou, H.-B., Wang, S.-P., Liu, Z.-Q., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2006). Inorg. Chim. Acta, 359, 533-540.]); Zhang & Zhang (2006[Zhang, C.-X. & Zhang, Y.-Y. (2006). Acta Cryst. E62, m3293-m3294.]); Zhu et al. (2010[Zhu, L.-L., Chen, X.-D., Zhao, Q.-H., Li, Z.-S., Zhang, X.-Y. & Sun, B.-W. (2010). Z. Anorg. Allg. Chem. 636, 1441-1443.]); Zhang et al. (2010[Zhang, C.-X., Zhang, Y.-Y. & Sun, Y.-Q. (2010). Polyhedron, 29, 1387-1392.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H5O2)2(C12H16N3O2)2(H2O)2]

  • Mr = 805.74

  • Triclinic, [P \overline 1]

  • a = 6.778 (1) Å

  • b = 11.3381 (13) Å

  • c = 12.9109 (15) Å

  • α = 87.903 (2)°

  • β = 88.622 (2)°

  • γ = 79.088 (1)°

  • V = 973.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.49 × 0.40 × 0.38 mm

Data collection
  • Bruker APEXII 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.790, Tmax = 0.831

  • 6131 measured reflections

  • 4321 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.00

  • 4321 reflections

  • 250 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O2 2.0586 (15)
Co1—O5 2.1521 (13)
Co1—N1 2.1743 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1i 0.87 2.06 2.857 (2) 152
O5—H5C⋯O1ii 0.88 1.78 2.635 (2) 165
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, nitronyl nitroxides were widely used in the design and synthesis of new molecule-based magnetic materials because of their ability to act as magnetic couplers. Various metal nitronyl nitroxides complexes have been reported (Zhou et al., 2006; Zhang & Zhang 2006; Zhu et al., 2010; Zhang et al. 2010). In this paper, we report the CoII complex with NITpPy (NITpPy is 2-(4-pyridyl-κN)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, nitronyl nitroxide) and an additional benzoate anion.

The title compound is isotypic with the analogous MnII (Fettouhi et al., 1999) and NiII structures (Zhao et al., 2003). It is a centrosymmetric monoculear compound (Fig. 1). The CoII ion is located on a crystallographic center of inversion and adopts a slightly distorted octahedral coordination environment defined by two pyridine N atoms from the NITpPy ligands [Co—N = 2.1743 (17) Å] and four oxygen atoms from carboxylate anions [Co—O = 2.0590 (15) Å] and water molecules [Co—O = 2.1521 (13) Å]. The benzoate ligands exhibit a mondentate coordination mode. The dihedral angle between the mean-planes of the benzoate and the pyridine-imidazolin rings is 76.97 (8) °. In the crystal structure, O—H···O hydrogen-bonding interactions between water molecules and benzoate anions are observed which join the mononuclear units into a chain structure along [100] (Fig. 2, Table 2). Furthermore, ππ stacking interactions among the benzoate aromatic rings with a Cg···Cg distance of 3.752 (2) Å connect neighbouring chains into a layered structure parallel to (101) (Fig. 3).

Related literature top

For isotypic structures, see: Fettouhi et al. (1999); Zhao et al. (2003). For other metal nitronyl nitroxides, see: Zhou et al. (2006); Zhang & Zhang (2006); Zhu et al. (2010); Zhang et al. (2010).

Experimental top

The title compound was prepared by dropwise adding a methanol solution (15 ml) of cobalt(II) benzoate (0.0067 g, 0.2 mmol) to a solution of NITpPy (0.0468 g, 0.2 mmol) in dichloromethane (10 ml). The mixture was then stirred for 0.5 h and filtered. The clear blue filtrate was kept in the dark and was slowly evaporated at room temperature. A few weeks later, dark-blue crystals suitable for X-ray analysis were obtained.

Refinement top

The H atoms of aromatic ring and methyl groups were generated geometrically and were included in the refinement in the riding model approximationwith d(C—H) = 0.93 Å, Uiso= 1.2 Ueq(C) and d(C—H) = 0.96 Å, Uiso= 1.5 Ueq(C), respectively. The H atoms of water molecules were located in difference Fourier maps and were constrained with d(O—H) =0.88 Å, Uiso= 1.2 Ueq(O).

Structure description top

In recent years, nitronyl nitroxides were widely used in the design and synthesis of new molecule-based magnetic materials because of their ability to act as magnetic couplers. Various metal nitronyl nitroxides complexes have been reported (Zhou et al., 2006; Zhang & Zhang 2006; Zhu et al., 2010; Zhang et al. 2010). In this paper, we report the CoII complex with NITpPy (NITpPy is 2-(4-pyridyl-κN)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, nitronyl nitroxide) and an additional benzoate anion.

The title compound is isotypic with the analogous MnII (Fettouhi et al., 1999) and NiII structures (Zhao et al., 2003). It is a centrosymmetric monoculear compound (Fig. 1). The CoII ion is located on a crystallographic center of inversion and adopts a slightly distorted octahedral coordination environment defined by two pyridine N atoms from the NITpPy ligands [Co—N = 2.1743 (17) Å] and four oxygen atoms from carboxylate anions [Co—O = 2.0590 (15) Å] and water molecules [Co—O = 2.1521 (13) Å]. The benzoate ligands exhibit a mondentate coordination mode. The dihedral angle between the mean-planes of the benzoate and the pyridine-imidazolin rings is 76.97 (8) °. In the crystal structure, O—H···O hydrogen-bonding interactions between water molecules and benzoate anions are observed which join the mononuclear units into a chain structure along [100] (Fig. 2, Table 2). Furthermore, ππ stacking interactions among the benzoate aromatic rings with a Cg···Cg distance of 3.752 (2) Å connect neighbouring chains into a layered structure parallel to (101) (Fig. 3).

For isotypic structures, see: Fettouhi et al. (1999); Zhao et al. (2003). For other metal nitronyl nitroxides, see: Zhou et al. (2006); Zhang & Zhang (2006); Zhu et al. (2010); Zhang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom-numbering scheme (symmetry code: A -x + 1, -y, -z + 1). Ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The chain structure formed by O–H···O hydrogen bonds (dotted lines).
[Figure 3] Fig. 3. The packing of the title compound.
Diaquabis(benzoato-κO)bis[4,4,5,5-tetramethyl-2-(pyridin-4-yl- κN)imidazoline-1-oxyl 3-oxide]cobalt(II) top
Crystal data top
[Co(C7H5O2)2(C12H16N3O2)2(H2O)2]Z = 1
Mr = 805.74F(000) = 423
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.778 (1) ÅCell parameters from 254 reflections
b = 11.3381 (13) Åθ = 1.6–25.0°
c = 12.9109 (15) ŵ = 0.51 mm1
α = 87.903 (2)°T = 293 K
β = 88.622 (2)°Block, dark-blue
γ = 79.088 (1)°0.49 × 0.40 × 0.38 mm
V = 973.5 (2) Å3
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
4321 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 68
Tmin = 0.790, Tmax = 0.831k = 914
6131 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1038P]
where P = (Fo2 + 2Fc2)/3
4321 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C7H5O2)2(C12H16N3O2)2(H2O)2]γ = 79.088 (1)°
Mr = 805.74V = 973.5 (2) Å3
Triclinic, P1Z = 1
a = 6.778 (1) ÅMo Kα radiation
b = 11.3381 (13) ŵ = 0.51 mm1
c = 12.9109 (15) ÅT = 293 K
α = 87.903 (2)°0.49 × 0.40 × 0.38 mm
β = 88.622 (2)°
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
4321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3229 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.831Rint = 0.017
6131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.42 e Å3
4321 reflectionsΔρmin = 0.28 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.03209 (14)
O10.8445 (2)0.17316 (15)0.51875 (14)0.0559 (5)
O20.5208 (2)0.16870 (13)0.54704 (11)0.0397 (4)
O30.7545 (3)0.06107 (16)1.04069 (13)0.0615 (5)
O41.1308 (3)0.38091 (16)0.87086 (14)0.0674 (6)
O50.2113 (2)0.01876 (14)0.57722 (11)0.0397 (4)
H5B0.11620.08240.57270.048*
H5C0.17360.04440.55240.048*
N10.6275 (2)0.07874 (15)0.64531 (12)0.0346 (4)
N20.8799 (3)0.15629 (16)1.02104 (13)0.0392 (4)
N31.0640 (3)0.30529 (16)0.93918 (14)0.0405 (4)
C10.6393 (3)0.34249 (19)0.59181 (15)0.0364 (5)
C20.4538 (4)0.3959 (2)0.63003 (18)0.0470 (6)
H2A0.34730.35490.63000.056*
C30.4246 (5)0.5105 (2)0.6686 (2)0.0624 (7)
H3A0.29920.54570.69500.075*
C40.5802 (5)0.5721 (2)0.6680 (2)0.0647 (8)
H4A0.56050.64920.69330.078*
C50.7648 (5)0.5196 (2)0.6299 (2)0.0630 (7)
H5A0.87040.56140.62960.076*
C60.7960 (4)0.4054 (2)0.59202 (19)0.0504 (6)
H6A0.92220.37050.56660.060*
C70.6710 (3)0.21875 (19)0.54954 (15)0.0359 (5)
C80.5444 (3)0.0455 (2)0.73736 (16)0.0405 (5)
H8A0.42230.00820.73810.049*
C90.6290 (3)0.0863 (2)0.83080 (16)0.0401 (5)
H9A0.56470.06030.89260.048*
C100.8118 (3)0.16670 (18)0.83235 (15)0.0334 (4)
C110.8974 (3)0.2025 (2)0.73650 (16)0.0413 (5)
H11A1.01890.25650.73300.050*
C120.8007 (3)0.1570 (2)0.64743 (16)0.0407 (5)
H12A0.85990.18270.58440.049*
C130.9138 (3)0.20920 (19)0.92853 (16)0.0355 (5)
C141.1671 (3)0.3070 (2)1.04120 (17)0.0420 (5)
C151.0002 (3)0.2294 (2)1.10556 (16)0.0416 (5)
C161.2326 (4)0.4350 (2)1.0811 (2)0.0634 (8)
H16A1.33680.47611.03650.095*
H16B1.12000.47531.08210.095*
H16C1.28250.43511.15010.095*
C171.3493 (4)0.2487 (3)1.0178 (3)0.0697 (8)
H17A1.30500.16740.99280.105*
H17B1.43290.29310.96590.105*
H17C1.42450.24891.07980.105*
C181.0723 (4)0.1453 (3)1.1797 (2)0.0671 (8)
H18A0.95930.10201.21740.101*
H18B1.13780.08941.14090.101*
H18C1.16520.19151.22750.101*
C190.8581 (4)0.3005 (3)1.16147 (19)0.0585 (7)
H19A0.75910.24681.20020.088*
H19B0.93310.35951.20790.088*
H19C0.79260.33991.11160.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0273 (2)0.0394 (2)0.0296 (2)0.00598 (16)0.00111 (15)0.00383 (16)
O10.0318 (8)0.0554 (10)0.0813 (13)0.0077 (7)0.0055 (8)0.0217 (9)
O20.0333 (8)0.0419 (9)0.0447 (8)0.0078 (7)0.0001 (6)0.0080 (7)
O30.0680 (12)0.0605 (11)0.0425 (9)0.0255 (9)0.0084 (8)0.0143 (8)
O40.0809 (13)0.0557 (11)0.0514 (10)0.0248 (10)0.0013 (9)0.0096 (9)
O50.0299 (7)0.0490 (9)0.0401 (8)0.0064 (7)0.0006 (6)0.0062 (7)
N10.0316 (9)0.0404 (10)0.0315 (9)0.0053 (7)0.0008 (7)0.0033 (8)
N20.0387 (10)0.0420 (10)0.0329 (9)0.0033 (8)0.0057 (7)0.0032 (8)
N30.0386 (10)0.0408 (10)0.0369 (10)0.0048 (8)0.0013 (8)0.0006 (8)
C10.0415 (12)0.0394 (12)0.0280 (10)0.0067 (9)0.0050 (9)0.0002 (9)
C20.0470 (13)0.0466 (14)0.0472 (13)0.0073 (11)0.0019 (11)0.0068 (11)
C30.0673 (18)0.0538 (16)0.0616 (17)0.0022 (14)0.0043 (14)0.0155 (13)
C40.095 (2)0.0406 (14)0.0594 (17)0.0117 (15)0.0153 (16)0.0090 (13)
C50.078 (2)0.0513 (16)0.0669 (18)0.0283 (15)0.0089 (15)0.0052 (14)
C60.0482 (14)0.0533 (15)0.0523 (14)0.0157 (12)0.0025 (11)0.0038 (12)
C70.0334 (11)0.0412 (12)0.0327 (10)0.0053 (9)0.0049 (9)0.0012 (9)
C80.0297 (11)0.0506 (13)0.0376 (11)0.0030 (9)0.0013 (9)0.0065 (10)
C90.0333 (11)0.0535 (14)0.0303 (10)0.0004 (10)0.0029 (9)0.0072 (10)
C100.0343 (11)0.0343 (11)0.0309 (10)0.0044 (9)0.0000 (8)0.0016 (8)
C110.0364 (11)0.0434 (13)0.0389 (12)0.0052 (10)0.0026 (9)0.0027 (10)
C120.0427 (12)0.0451 (13)0.0310 (10)0.0002 (10)0.0050 (9)0.0034 (9)
C130.0320 (10)0.0373 (11)0.0353 (11)0.0016 (9)0.0007 (8)0.0020 (9)
C140.0335 (11)0.0457 (13)0.0444 (12)0.0020 (9)0.0075 (9)0.0049 (10)
C150.0389 (12)0.0477 (13)0.0360 (11)0.0025 (10)0.0103 (9)0.0030 (10)
C160.0605 (17)0.0591 (17)0.0615 (17)0.0094 (13)0.0072 (13)0.0130 (14)
C170.0371 (14)0.078 (2)0.094 (2)0.0118 (13)0.0003 (14)0.0059 (17)
C180.0735 (19)0.0720 (19)0.0549 (16)0.0068 (15)0.0233 (14)0.0131 (14)
C190.0482 (14)0.0751 (19)0.0479 (14)0.0038 (13)0.0041 (11)0.0131 (13)
Geometric parameters (Å, º) top
Co1—O22.0586 (15)C5—H5A0.9300
Co1—O2i2.0586 (15)C6—H6A0.9300
Co1—O52.1521 (13)C8—C91.375 (3)
Co1—O5i2.1521 (13)C8—H8A0.9300
Co1—N1i2.1743 (16)C9—C101.392 (3)
Co1—N12.1743 (16)C9—H9A0.9300
O1—C71.253 (3)C10—C111.395 (3)
O2—C71.258 (2)C10—C131.457 (3)
O3—N21.271 (2)C11—C121.372 (3)
O4—N31.268 (2)C11—H11A0.9300
O5—H5B0.8731C12—H12A0.9300
O5—H5C0.8777C14—C161.511 (3)
N1—C121.331 (3)C14—C171.527 (3)
N1—C81.339 (2)C14—C151.541 (3)
N2—C131.351 (3)C15—C191.522 (3)
N2—C151.504 (3)C15—C181.527 (3)
N3—C131.348 (2)C16—H16A0.9600
N3—C141.503 (3)C16—H16B0.9600
C1—C21.377 (3)C16—H16C0.9600
C1—C61.387 (3)C17—H17A0.9600
C1—C71.499 (3)C17—H17B0.9600
C2—C31.386 (3)C17—H17C0.9600
C2—H2A0.9300C18—H18A0.9600
C3—C41.370 (4)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.368 (4)C19—H19A0.9600
C4—H4A0.9300C19—H19B0.9600
C5—C61.378 (4)C19—H19C0.9600
O2—Co1—O2i180.00 (2)C8—C9—C10119.56 (18)
O2—Co1—O588.92 (6)C8—C9—H9A120.2
O2i—Co1—O591.08 (6)C10—C9—H9A120.2
O2—Co1—O5i91.08 (6)C9—C10—C11116.72 (19)
O2i—Co1—O5i88.92 (6)C9—C10—C13122.29 (18)
O5—Co1—O5i180.0C11—C10—C13120.96 (18)
O2—Co1—N1i89.66 (6)C12—C11—C10119.33 (19)
O2i—Co1—N1i90.34 (6)C12—C11—H11A120.3
O5—Co1—N1i93.30 (6)C10—C11—H11A120.3
O5i—Co1—N1i86.70 (6)N1—C12—C11124.29 (19)
O2—Co1—N190.34 (6)N1—C12—H12A117.9
O2i—Co1—N189.66 (6)C11—C12—H12A117.9
O5—Co1—N186.70 (6)N3—C13—N2108.43 (18)
O5i—Co1—N193.30 (6)N3—C13—C10125.64 (19)
N1i—Co1—N1180.00 (4)N2—C13—C10125.87 (18)
C7—O2—Co1129.93 (13)N3—C14—C16110.0 (2)
Co1—O5—H5B124.9N3—C14—C17105.2 (2)
Co1—O5—H5C98.0C16—C14—C17110.6 (2)
H5B—O5—H5C111.6N3—C14—C15100.66 (16)
C12—N1—C8116.32 (18)C16—C14—C15115.4 (2)
C12—N1—Co1121.37 (13)C17—C14—C15114.1 (2)
C8—N1—Co1122.16 (14)N2—C15—C19106.03 (18)
O3—N2—C13126.83 (17)N2—C15—C18109.42 (19)
O3—N2—C15121.29 (17)C19—C15—C18110.5 (2)
C13—N2—C15111.73 (17)N2—C15—C14100.80 (16)
O4—N3—C13126.87 (19)C19—C15—C14114.0 (2)
O4—N3—C14121.14 (17)C18—C15—C14115.2 (2)
C13—N3—C14111.63 (18)C14—C16—H16A109.5
C2—C1—C6118.9 (2)C14—C16—H16B109.5
C2—C1—C7120.6 (2)H16A—C16—H16B109.5
C6—C1—C7120.5 (2)C14—C16—H16C109.5
C1—C2—C3120.5 (2)H16A—C16—H16C109.5
C1—C2—H2A119.8H16B—C16—H16C109.5
C3—C2—H2A119.8C14—C17—H17A109.5
C4—C3—C2120.1 (3)C14—C17—H17B109.5
C4—C3—H3A120.0H17A—C17—H17B109.5
C2—C3—H3A120.0C14—C17—H17C109.5
C5—C4—C3119.8 (3)H17A—C17—H17C109.5
C5—C4—H4A120.1H17B—C17—H17C109.5
C3—C4—H4A120.1C15—C18—H18A109.5
C4—C5—C6120.7 (3)C15—C18—H18B109.5
C4—C5—H5A119.7H18A—C18—H18B109.5
C6—C5—H5A119.7C15—C18—H18C109.5
C5—C6—C1120.1 (2)H18A—C18—H18C109.5
C5—C6—H6A120.0H18B—C18—H18C109.5
C1—C6—H6A120.0C15—C19—H19A109.5
O1—C7—O2124.8 (2)C15—C19—H19B109.5
O1—C7—C1117.8 (2)H19A—C19—H19B109.5
O2—C7—C1117.39 (18)C15—C19—H19C109.5
N1—C8—C9123.77 (19)H19A—C19—H19C109.5
N1—C8—H8A118.1H19B—C19—H19C109.5
C9—C8—H8A118.1
O5—Co1—O2—C7164.30 (17)C10—C11—C12—N10.5 (4)
O5i—Co1—O2—C715.70 (17)O4—N3—C13—N2176.0 (2)
N1i—Co1—O2—C7102.40 (17)C14—N3—C13—N210.9 (2)
N1—Co1—O2—C777.60 (17)O4—N3—C13—C106.6 (4)
O2—Co1—N1—C12118.25 (17)C14—N3—C13—C10166.5 (2)
O2i—Co1—N1—C1261.75 (17)O3—N2—C13—N3177.5 (2)
O5—Co1—N1—C12152.85 (17)C15—N2—C13—N37.0 (2)
O5i—Co1—N1—C1227.15 (17)O3—N2—C13—C100.0 (4)
O2—Co1—N1—C857.16 (17)C15—N2—C13—C10175.55 (19)
O2i—Co1—N1—C8122.84 (17)C9—C10—C13—N3164.2 (2)
O5—Co1—N1—C831.73 (17)C11—C10—C13—N317.9 (3)
O5i—Co1—N1—C8148.27 (17)C9—C10—C13—N218.8 (3)
C6—C1—C2—C30.4 (3)C11—C10—C13—N2159.2 (2)
C7—C1—C2—C3179.7 (2)O4—N3—C14—C1641.2 (3)
C1—C2—C3—C40.7 (4)C13—N3—C14—C16145.3 (2)
C2—C3—C4—C50.5 (4)O4—N3—C14—C1777.9 (3)
C3—C4—C5—C60.1 (4)C13—N3—C14—C1795.7 (2)
C4—C5—C6—C10.3 (4)O4—N3—C14—C15163.4 (2)
C2—C1—C6—C50.1 (3)C13—N3—C14—C1523.1 (2)
C7—C1—C6—C5179.2 (2)O3—N2—C15—C1977.5 (3)
Co1—O2—C7—O12.6 (3)C13—N2—C15—C1998.3 (2)
Co1—O2—C7—C1177.94 (12)O3—N2—C15—C1841.6 (3)
C2—C1—C7—O1177.8 (2)C13—N2—C15—C18142.5 (2)
C6—C1—C7—O12.8 (3)O3—N2—C15—C14163.4 (2)
C2—C1—C7—O22.6 (3)C13—N2—C15—C1420.7 (2)
C6—C1—C7—O2176.73 (19)N3—C14—C15—N224.2 (2)
C12—N1—C8—C90.9 (3)C16—C14—C15—N2142.5 (2)
Co1—N1—C8—C9174.70 (17)C17—C14—C15—N287.9 (2)
N1—C8—C9—C100.1 (4)N3—C14—C15—C1988.9 (2)
C8—C9—C10—C110.8 (3)C16—C14—C15—C1929.4 (3)
C8—C9—C10—C13177.2 (2)C17—C14—C15—C19159.0 (2)
C9—C10—C11—C120.5 (3)N3—C14—C15—C18141.8 (2)
C13—C10—C11—C12177.5 (2)C16—C14—C15—C1899.9 (3)
C8—N1—C12—C111.2 (3)C17—C14—C15—C1829.8 (3)
Co1—N1—C12—C11174.42 (18)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1ii0.872.062.857 (2)152
O5—H5C···O1i0.881.782.635 (2)165
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C7H5O2)2(C12H16N3O2)2(H2O)2]
Mr805.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.778 (1), 11.3381 (13), 12.9109 (15)
α, β, γ (°)87.903 (2), 88.622 (2), 79.088 (1)
V3)973.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.49 × 0.40 × 0.38
Data collection
DiffractometerBruker APEXII 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.790, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
6131, 4321, 3229
Rint0.017
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.00
No. of reflections4321
No. of parameters250
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O22.0586 (15)Co1—N12.1743 (16)
Co1—O52.1521 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O1i0.872.062.857 (2)152.1
O5—H5C···O1ii0.881.782.635 (2)164.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFettouhi, M., Khaled, M., Waheed, A., Golhen, S., Ouahab, L., Sutter, J. P. & Kahn, O. (1999). Inorg. Chem. 38, 3967–3971.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-X. & Zhang, Y.-Y. (2006). Acta Cryst. E62, m3293–m3294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C.-X., Zhang, Y.-Y. & Sun, Y.-Q. (2010). Polyhedron, 29, 1387–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, Q., Wang, X., Fang, R. & Tiekink, E. R. T. (2003). Acta Cryst. E59, m719–m721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, H.-B., Wang, S.-P., Liu, Z.-Q., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2006). Inorg. Chim. Acta, 359, 533–540.  Web of Science CrossRef CAS Google Scholar
First citationZhu, L.-L., Chen, X.-D., Zhao, Q.-H., Li, Z.-S., Zhang, X.-Y. & Sun, B.-W. (2010). Z. Anorg. Allg. Chem. 636, 1441–1443.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds