organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2S)-1-Chloro-3-phenyl­propan-2-yl]-2,4,5-tri­phenyl-1H-imidazole

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: henangongda@yahoo.com

(Received 20 December 2011; accepted 5 March 2012; online 24 March 2012)

In the title compound, C30H25ClN2, the chiral center maintains the S configuration of the stating L-phenyl­alaninol. The two phenyl groups closest to the substituted N atom adopt an almost perpendicular orientation relative to the central imidazole ring, with dihedral angles of 88.9 (4) and 84.7 (3)°. The third phenyl group is nearly coplanar with it, making a dihedral angle of 11.0 (5)°.

Related literature

For the synthesis and applications of chiral ionic liquids, see: Ding et al. (2005[Ding, J. & Armstrong, D. W. (2005). Chirality, 17, 281-292.]); Bwambok et al. (2008[Bwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151-158.]); Mao et al. (2010[Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418-2425.]).

[Scheme 1]

Experimental

Crystal data
  • C30H25ClN2

  • Mr = 448.97

  • Orthorhombic, P 21 21 21

  • a = 9.6123 (4) Å

  • b = 9.9437 (3) Å

  • c = 24.9677 (7) Å

  • V = 2386.47 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.56 mm−1

  • T = 291 K

  • 0.21 × 0.20 × 0.06 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.657, Tmax = 1.000

  • 9379 measured reflections

  • 4256 independent reflections

  • 3235 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.02

  • 4256 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1816 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Current interest in the stereoselective synthesis and catalysis, chiral recognization and separation in ionic liquids has motivated the synthesis of novel chiral ionic liquids. (Ding & Armstrong, 2005; Bwambok et al., 2008). Our group is interested in the preparation and application of chiral imidazolium derivatives from natural precursors (Mao et al., 2010). During the study, we observed that condensation of l-phenylalaninol, dibenzoyl, arylaldehyde and ammonium acetate afforded multi-aryl substituted imidazole alcohol derivatives carrying a chiral functionality. The following reaction with SOCl2 produced the title compound smoothly.

The molecular structure of the title compound is shown in Figure 1. As it is expected, the imidazole core (N1, C8, C7, N2, C24) is essentially planar. featuring an average deviation of less than 0.6 (3) °. The dihedral angles formed by the three aryl substituents and the central imidazole ring are 88.9 (4) (N2—C24—C25—C26), 11.0 (5) (C5—C6—C7—C8) and 95.3 (3) ° (C7—C8—C9—C14).

Due to the presence of muti aryl groups on the imidazole ring, the basicity of the N2 of the imidazole is reduced and its quaternization by the produced chloro- substituted derivative is suppressed successfully.

Related literature top

For the synthesis and applications of chiral ionic liquids, see: Ding et al. (2005); Bwambok et al. (2008); Mao et al. (2010).

Experimental top

SOCl2 (40 ml) was added slowly at room temperature into a three-neck flask containing 2-(4,5-Diphenyl-2-p-tolyl-imidazol-1-yl)-3-phenyl-propan-1-ol (4.45 g, 0.01 mol) and Na2CO3 (1.06 g, 0.01 mol). The solids were slowly dissolved upon addition of SOCl2. After complete addition, the mixture was kept at 50 °C for 5 h and then at 70 °C for 2 h. The excessive SOCl2 was removed and the residue was washed with H2O and filtered to afford the crude product. Crystallization from EtOH afforded colorless crystals of the title compound.

Refinement top

A suitable crystal was selected and mounted on a Xcalibur, Eos, Gemini diffractometer.The crystal was kept at 291.15 K during data collection. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the SHELXS (Sheldrick, 2008) structure solution program using Direct Methods and refined with the SHELXL (Sheldrick, 2008) refinement package using Least Squares minimization.

Structure description top

Current interest in the stereoselective synthesis and catalysis, chiral recognization and separation in ionic liquids has motivated the synthesis of novel chiral ionic liquids. (Ding & Armstrong, 2005; Bwambok et al., 2008). Our group is interested in the preparation and application of chiral imidazolium derivatives from natural precursors (Mao et al., 2010). During the study, we observed that condensation of l-phenylalaninol, dibenzoyl, arylaldehyde and ammonium acetate afforded multi-aryl substituted imidazole alcohol derivatives carrying a chiral functionality. The following reaction with SOCl2 produced the title compound smoothly.

The molecular structure of the title compound is shown in Figure 1. As it is expected, the imidazole core (N1, C8, C7, N2, C24) is essentially planar. featuring an average deviation of less than 0.6 (3) °. The dihedral angles formed by the three aryl substituents and the central imidazole ring are 88.9 (4) (N2—C24—C25—C26), 11.0 (5) (C5—C6—C7—C8) and 95.3 (3) ° (C7—C8—C9—C14).

Due to the presence of muti aryl groups on the imidazole ring, the basicity of the N2 of the imidazole is reduced and its quaternization by the produced chloro- substituted derivative is suppressed successfully.

For the synthesis and applications of chiral ionic liquids, see: Ding et al. (2005); Bwambok et al. (2008); Mao et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
1-[(2S)-1-Chloro-3-phenylpropan-2-yl]-2,4,5-triphenyl- 1H-imidazole top
Crystal data top
C30H25ClN2Dx = 1.250 Mg m3
Mr = 448.97Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121Cell parameters from 2343 reflections
a = 9.6123 (4) Åθ = 3.5–66.9°
b = 9.9437 (3) ŵ = 1.56 mm1
c = 24.9677 (7) ÅT = 291 K
V = 2386.47 (14) Å3Prismatic, colorless
Z = 40.21 × 0.20 × 0.06 mm
F(000) = 944
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4256 independent reflections
Radiation source: Enhance (Cu) X-ray Source3235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.2312 pixels mm-1θmax = 67.0°, θmin = 3.5°
ω scansh = 811
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.657, Tmax = 1.000l = 2929
9379 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4256 reflectionsΔρmax = 0.14 e Å3
298 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: Flack (1983), 1816 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C30H25ClN2V = 2386.47 (14) Å3
Mr = 448.97Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.6123 (4) ŵ = 1.56 mm1
b = 9.9437 (3) ÅT = 291 K
c = 24.9677 (7) Å0.21 × 0.20 × 0.06 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
4256 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3235 reflections with I > 2σ(I)
Tmin = 0.657, Tmax = 1.000Rint = 0.044
9379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.15 e Å3
4256 reflectionsAbsolute structure: Flack (1983), 1816 Friedel pairs
298 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02166 (10)0.49291 (10)0.54575 (3)0.0805 (3)
N10.2271 (2)0.64694 (19)0.67166 (8)0.0430 (5)
N20.2501 (3)0.80764 (18)0.73267 (8)0.0433 (5)
C10.2662 (3)0.7993 (3)0.84491 (10)0.0525 (7)
H10.24570.87820.82660.063*
C20.2834 (4)0.8033 (3)0.90011 (11)0.0619 (8)
H20.27550.88440.91840.074*
C30.3121 (4)0.6867 (3)0.92756 (10)0.0617 (8)
H30.32230.68840.96460.074*
C40.3255 (4)0.5675 (3)0.90000 (11)0.0626 (8)
H40.34610.48870.91850.075*
C50.3085 (3)0.5641 (3)0.84478 (11)0.0545 (8)
H50.31710.48300.82660.065*
C60.2790 (3)0.6806 (2)0.81663 (9)0.0415 (5)
C70.2604 (3)0.6838 (2)0.75749 (9)0.0395 (5)
C80.2469 (3)0.5829 (2)0.72076 (9)0.0382 (5)
C90.2431 (3)0.4337 (2)0.72724 (9)0.0394 (6)
C100.1175 (3)0.3689 (3)0.73505 (11)0.0477 (6)
H100.03570.41870.73640.057*
C110.1120 (3)0.2302 (3)0.74093 (12)0.0564 (8)
H110.02690.18770.74610.068*
C120.2317 (4)0.1558 (2)0.73909 (12)0.0574 (8)
H120.22800.06280.74250.069*
C130.3575 (3)0.2192 (3)0.73211 (12)0.0556 (7)
H130.43880.16860.73120.067*
C140.3644 (3)0.3580 (3)0.72642 (11)0.0494 (7)
H140.45010.40000.72210.059*
C150.5054 (4)0.6007 (3)0.53636 (12)0.0726 (10)
H150.45010.57150.50810.087*
C160.6292 (5)0.6662 (4)0.52570 (16)0.0907 (13)
H160.65670.67990.49040.109*
C170.7110 (4)0.7106 (3)0.56644 (17)0.0845 (12)
H170.79430.75440.55900.101*
C180.6708 (4)0.6909 (3)0.61861 (16)0.0719 (9)
H180.72600.72180.64660.086*
C190.5479 (3)0.6250 (3)0.62902 (12)0.0611 (8)
H190.52100.61140.66440.073*
C200.4629 (3)0.5783 (3)0.58816 (10)0.0521 (7)
C210.3307 (3)0.5022 (3)0.59933 (10)0.0539 (7)
H21A0.34940.43550.62670.065*
H21B0.30360.45460.56710.065*
C220.2082 (3)0.5894 (3)0.61769 (10)0.0482 (7)
H220.20230.66530.59270.058*
C230.0692 (3)0.5147 (3)0.61442 (10)0.0612 (8)
H23A0.00230.56570.63290.073*
H23B0.07730.42770.63170.073*
C240.2292 (3)0.7824 (2)0.68147 (10)0.0414 (5)
C250.2084 (3)0.8899 (2)0.64130 (10)0.0449 (6)
C260.3191 (4)0.9466 (3)0.61519 (14)0.0750 (10)
H260.40760.91040.61970.090*
C270.3010 (5)1.0571 (4)0.58219 (16)0.0921 (13)
H270.37701.09460.56460.111*
C280.1709 (4)1.1112 (3)0.57538 (13)0.0762 (11)
H280.15851.18560.55330.091*
C290.0601 (4)1.0555 (4)0.60104 (14)0.0781 (11)
H290.02831.09190.59650.094*
C300.0785 (3)0.9450 (3)0.63390 (12)0.0640 (8)
H300.00210.90740.65120.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0822 (6)0.1023 (6)0.0571 (3)0.0076 (6)0.0157 (4)0.0137 (5)
N10.0504 (13)0.0381 (10)0.0404 (10)0.0030 (10)0.0030 (10)0.0012 (9)
N20.0537 (13)0.0320 (9)0.0441 (10)0.0012 (11)0.0006 (11)0.0012 (9)
C10.0667 (19)0.0384 (12)0.0524 (13)0.0001 (16)0.0016 (15)0.0048 (12)
C20.081 (2)0.0531 (15)0.0520 (14)0.0010 (18)0.0013 (16)0.0120 (13)
C30.077 (2)0.0647 (18)0.0431 (13)0.0035 (18)0.0066 (14)0.0035 (14)
C40.082 (2)0.0540 (15)0.0517 (14)0.0087 (17)0.0078 (15)0.0070 (14)
C50.074 (2)0.0402 (13)0.0491 (13)0.0059 (15)0.0017 (14)0.0030 (12)
C60.0432 (13)0.0391 (12)0.0422 (11)0.0024 (12)0.0001 (11)0.0001 (10)
C70.0406 (14)0.0329 (10)0.0449 (12)0.0006 (12)0.0001 (12)0.0004 (10)
C80.0367 (13)0.0345 (11)0.0435 (12)0.0020 (11)0.0045 (12)0.0006 (10)
C90.0466 (15)0.0331 (10)0.0384 (11)0.0026 (12)0.0011 (12)0.0022 (9)
C100.0459 (15)0.0394 (14)0.0579 (14)0.0057 (13)0.0043 (14)0.0019 (13)
C110.0532 (17)0.0477 (16)0.0683 (18)0.0100 (14)0.0030 (16)0.0052 (15)
C120.079 (2)0.0311 (11)0.0618 (15)0.0025 (15)0.0026 (18)0.0010 (12)
C130.0596 (18)0.0421 (16)0.0650 (17)0.0192 (15)0.0023 (16)0.0022 (14)
C140.0441 (15)0.0445 (15)0.0596 (15)0.0011 (13)0.0062 (14)0.0021 (13)
C150.092 (3)0.073 (2)0.0528 (16)0.011 (2)0.0135 (18)0.0050 (15)
C160.108 (3)0.092 (3)0.072 (2)0.008 (3)0.034 (2)0.023 (2)
C170.079 (3)0.0602 (19)0.114 (3)0.001 (2)0.036 (3)0.014 (2)
C180.070 (2)0.0579 (17)0.087 (2)0.0023 (18)0.0098 (19)0.0003 (18)
C190.070 (2)0.0577 (16)0.0555 (15)0.0019 (17)0.0098 (16)0.0060 (15)
C200.0629 (19)0.0471 (15)0.0464 (13)0.0125 (15)0.0084 (14)0.0004 (12)
C210.0678 (19)0.0488 (14)0.0451 (12)0.0048 (17)0.0049 (13)0.0073 (13)
C220.0606 (18)0.0424 (13)0.0417 (12)0.0012 (14)0.0010 (13)0.0041 (11)
C230.0660 (19)0.076 (2)0.0416 (12)0.0059 (19)0.0029 (13)0.0096 (15)
C240.0453 (14)0.0342 (11)0.0448 (12)0.0020 (13)0.0022 (12)0.0003 (10)
C250.0547 (16)0.0388 (12)0.0412 (12)0.0009 (13)0.0015 (12)0.0020 (11)
C260.063 (2)0.073 (2)0.089 (2)0.0052 (18)0.0099 (19)0.0319 (19)
C270.090 (3)0.088 (3)0.098 (3)0.010 (2)0.015 (2)0.048 (2)
C280.107 (3)0.0606 (19)0.0615 (18)0.012 (2)0.003 (2)0.0232 (16)
C290.084 (3)0.079 (2)0.0713 (19)0.030 (2)0.004 (2)0.0219 (18)
C300.0601 (19)0.0696 (19)0.0623 (16)0.0061 (16)0.0063 (16)0.0164 (16)
Geometric parameters (Å, º) top
Cl1—C231.788 (2)C15—H150.9300
N1—C81.395 (3)C15—C161.383 (6)
N1—C221.475 (3)C15—C201.374 (4)
N1—C241.370 (3)C16—H160.9300
N2—C71.382 (3)C16—C171.360 (6)
N2—C241.318 (3)C17—H170.9300
C1—H10.9300C17—C181.373 (5)
C1—C21.389 (4)C18—H180.9300
C1—C61.380 (3)C18—C191.376 (5)
C2—H20.9300C19—H190.9300
C2—C31.374 (4)C19—C201.387 (4)
C3—H30.9300C20—C211.506 (4)
C3—C41.377 (4)C21—H21A0.9700
C4—H40.9300C21—H21B0.9700
C4—C51.389 (4)C21—C221.532 (4)
C5—H50.9300C22—H220.9800
C5—C61.384 (3)C22—C231.531 (4)
C6—C71.488 (3)C23—H23A0.9700
C7—C81.366 (3)C23—H23B0.9700
C8—C91.492 (3)C24—C251.479 (3)
C9—C101.383 (4)C25—C261.370 (4)
C9—C141.388 (4)C25—C301.376 (4)
C10—H100.9300C26—H260.9300
C10—C111.388 (4)C26—C271.384 (4)
C11—H110.9300C27—H270.9300
C11—C121.369 (4)C27—C281.372 (5)
C12—H120.9300C28—H280.9300
C12—C131.374 (5)C28—C291.361 (5)
C13—H130.9300C29—H290.9300
C13—C141.389 (4)C29—C301.383 (4)
C14—H140.9300C30—H300.9300
C8—N1—C22130.0 (2)C16—C17—H17120.0
C24—N1—C8106.9 (2)C16—C17—C18120.0 (4)
C24—N1—C22123.1 (2)C18—C17—H17120.0
C24—N2—C7106.05 (19)C17—C18—H18120.3
C2—C1—H1119.3C17—C18—C19119.3 (4)
C6—C1—H1119.3C19—C18—H18120.3
C6—C1—C2121.4 (3)C18—C19—H19119.1
C1—C2—H2120.2C18—C19—C20121.7 (3)
C3—C2—C1119.6 (3)C20—C19—H19119.1
C3—C2—H2120.2C15—C20—C19117.6 (3)
C2—C3—H3120.1C15—C20—C21120.4 (3)
C2—C3—C4119.7 (3)C19—C20—C21121.9 (2)
C4—C3—H3120.1C20—C21—H21A108.6
C3—C4—H4119.8C20—C21—H21B108.6
C3—C4—C5120.4 (3)C20—C21—C22114.8 (2)
C5—C4—H4119.8H21A—C21—H21B107.5
C4—C5—H5119.7C22—C21—H21A108.6
C6—C5—C4120.6 (3)C22—C21—H21B108.6
C6—C5—H5119.7N1—C22—C21113.4 (2)
C1—C6—C5118.3 (2)N1—C22—H22106.8
C1—C6—C7118.6 (2)N1—C22—C23110.2 (2)
C5—C6—C7123.1 (2)C21—C22—H22106.8
N2—C7—C6118.23 (19)C23—C22—C21112.3 (2)
C8—C7—N2110.3 (2)C23—C22—H22106.8
C8—C7—C6131.4 (2)Cl1—C23—H23A109.8
N1—C8—C9123.1 (2)Cl1—C23—H23B109.8
C7—C8—N1105.5 (2)C22—C23—Cl1109.44 (19)
C7—C8—C9131.3 (2)C22—C23—H23A109.8
C10—C9—C8120.0 (3)C22—C23—H23B109.8
C10—C9—C14118.8 (2)H23A—C23—H23B108.2
C14—C9—C8121.2 (3)N1—C24—C25126.0 (2)
C9—C10—H10119.6N2—C24—N1111.3 (2)
C9—C10—C11120.8 (3)N2—C24—C25122.8 (2)
C11—C10—H10119.6C26—C25—C24121.0 (3)
C10—C11—H11120.0C26—C25—C30118.5 (3)
C12—C11—C10120.1 (3)C30—C25—C24120.1 (3)
C12—C11—H11120.0C25—C26—H26119.6
C11—C12—H12120.1C25—C26—C27120.8 (3)
C11—C12—C13119.8 (2)C27—C26—H26119.6
C13—C12—H12120.1C26—C27—H27120.0
C12—C13—H13119.6C28—C27—C26120.0 (4)
C12—C13—C14120.7 (3)C28—C27—H27120.0
C14—C13—H13119.6C27—C28—H28120.2
C9—C14—C13119.8 (3)C29—C28—C27119.7 (3)
C9—C14—H14120.1C29—C28—H28120.2
C13—C14—H14120.1C28—C29—H29119.9
C16—C15—H15119.6C28—C29—C30120.2 (3)
C20—C15—H15119.6C30—C29—H29119.9
C20—C15—C16120.9 (4)C25—C30—C29120.8 (3)
C15—C16—H16119.8C25—C30—H30119.6
C17—C16—C15120.5 (3)C29—C30—H30119.6
C17—C16—H16119.8
N1—C8—C9—C1085.7 (3)C10—C11—C12—C130.9 (5)
N1—C8—C9—C1495.3 (3)C11—C12—C13—C140.6 (5)
N1—C22—C23—Cl1161.61 (19)C12—C13—C14—C90.6 (4)
N1—C24—C25—C2692.4 (4)C14—C9—C10—C111.2 (4)
N1—C24—C25—C3094.9 (4)C15—C16—C17—C180.2 (6)
N2—C7—C8—N10.2 (3)C15—C20—C21—C22105.2 (3)
N2—C7—C8—C9176.5 (3)C16—C15—C20—C190.7 (5)
N2—C24—C25—C2688.9 (4)C16—C15—C20—C21177.6 (3)
N2—C24—C25—C3083.8 (4)C16—C17—C18—C190.6 (5)
C1—C2—C3—C41.0 (5)C17—C18—C19—C200.3 (5)
C1—C6—C7—N28.6 (4)C18—C19—C20—C150.3 (5)
C1—C6—C7—C8169.1 (3)C18—C19—C20—C21178.0 (3)
C2—C1—C6—C50.5 (5)C19—C20—C21—C2276.5 (3)
C2—C1—C6—C7179.5 (3)C20—C15—C16—C170.5 (6)
C2—C3—C4—C50.8 (6)C20—C21—C22—N169.1 (3)
C3—C4—C5—C60.5 (5)C20—C21—C22—C23165.1 (2)
C4—C5—C6—C10.3 (5)C21—C22—C23—Cl170.9 (3)
C4—C5—C6—C7179.6 (3)C22—N1—C8—C7179.2 (3)
C5—C6—C7—N2171.3 (3)C22—N1—C8—C94.1 (5)
C5—C6—C7—C811.0 (5)C22—N1—C24—N2178.8 (2)
C6—C1—C2—C30.8 (5)C22—N1—C24—C252.4 (5)
C6—C7—C8—N1177.7 (3)C24—N1—C8—C70.3 (3)
C6—C7—C8—C91.3 (5)C24—N1—C8—C9176.5 (3)
C7—N2—C24—N10.7 (3)C24—N1—C22—C21119.7 (3)
C7—N2—C24—C25178.1 (3)C24—N1—C22—C23113.4 (3)
C7—C8—C9—C1090.2 (4)C24—N2—C7—C6177.7 (2)
C7—C8—C9—C1488.8 (4)C24—N2—C7—C80.5 (3)
C8—N1—C22—C2159.6 (4)C24—C25—C26—C27172.7 (3)
C8—N1—C22—C2367.3 (4)C24—C25—C30—C29172.6 (3)
C8—N1—C24—N20.6 (3)C25—C26—C27—C280.1 (6)
C8—N1—C24—C25178.2 (3)C26—C25—C30—C290.3 (5)
C8—C9—C10—C11179.7 (3)C26—C27—C28—C290.2 (6)
C8—C9—C14—C13179.5 (2)C27—C28—C29—C300.1 (6)
C9—C10—C11—C120.0 (5)C28—C29—C30—C250.2 (5)
C10—C9—C14—C131.5 (4)C30—C25—C26—C270.1 (5)

Experimental details

Crystal data
Chemical formulaC30H25ClN2
Mr448.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)9.6123 (4), 9.9437 (3), 24.9677 (7)
V3)2386.47 (14)
Z4
Radiation typeCu Kα
µ (mm1)1.56
Crystal size (mm)0.21 × 0.20 × 0.06
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.657, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9379, 4256, 3235
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.02
No. of reflections4256
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15
Absolute structureFlack (1983), 1816 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of China (Nos. 20902017 and 21172055).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBwambok, D. K., Marwani, H. M., Fernand, V. E., Fakayode, S. O., Lowry, M., Negulescu, I., Strongin, R. M. & Warner, I. M. (2008). Chirality, 20, 151–158.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, J. & Armstrong, D. W. (2005). Chirality, 17, 281–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds