organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-4-bromo-2,3-di­hydro-1H-inden-1-one

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Sakarya University, 54187 Adapazarı, Turkey, dDepartment of Chemistry, Faculty of Art and Science, Gaziosmanpaşa University, 60240 Tokat, Turkey, and eDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 February 2012; accepted 19 February 2012; online 24 February 2012)

In the title compound, C9H8BrNO, the non-H-atom framework is essentially planar, with a maximum deviation of 0.087 (3) Å. In the crystal, mol­ecules are inter­connected into a three-dimensional network by C—H⋯O and N—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions and a ππ stacking inter­action, with a centroid–centroid distance of 3.5535 (19) Å, are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8BrNO

  • Mr = 226.06

  • Monoclinic, C 2/c

  • a = 12.6362 (4) Å

  • b = 8.3655 (2) Å

  • c = 17.4913 (5) Å

  • β = 113.128 (4)°

  • V = 1700.37 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 6.16 mm−1

  • T = 297 K

  • 0.77 × 0.60 × 0.08 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.031, Tmax = 0.616

  • 3085 measured reflections

  • 1594 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.06

  • 1594 reflections

  • 117 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.31 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (4) 2.14 (5) 2.915 (4) 155 (4)
C8—H8B⋯O1ii 0.97 2.50 3.448 (4) 166
C7—H7BCg2iii 0.97 2.85 3.659 (4) 141
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In 1H-NMR spectrum, H7 appeared at δ 7.53 as a doublet with coupling constant 8.3 Hz and H6 appeared at δ 6.73 (J = 8.3 Hz) as doublet. NH2 protons were observed at δ 4.82 with broad singlet. Two signal groups (δ 2.98, δ 2.70) observed at aliphatic region fit with the aliphatic protons. In the present study, we describe the molecular and crystal structures of 5-amino-4-bromo-2,3-dihydro-1H-inden-1-one (I), using X-ray diffraction.

As shown in Fig. 1, the molecule of (I), except H atoms, is essentially planar with a maximum deviation of -0.087 (3) Å for O1 atom. Bond lengths and angles observed in (I) are normal (Allen et al., 1987).

The crystal packing is stabilized by intermolecular C—H···O and N—H···O hydrogen bonds (Table 1, Fig. 2) forming a three-dimensional network. In addition, π-π stacking interactions [centroid-centroid distance = 3.5535 (19) Å] between the centroids of the C1–C6 benzene rings of the neighbouring molecules stacking interactions are also observed. C—H···π interactions further help in stabilizing the supramolecular structure (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirred solution of 5- acetoaminoindanone (0.4 g, 1.95 mmol) in PEG (2.5 g) was added NBS (1.0 g, 5.6 mmol), SiO2 (1.0 g) and NaClO4 (0.2 g). The reaction mixture was stirred for 30 days at room temperature, diluted with water (15 ml), extracted with diethyl ether (3×25 ml), dried (Na2SO4). After removal of the solvent, the residue was chromatographed on silica gel eluted with chloroform/hexane (4/1) afforded the title compound which was crystallized from dichloromethane-hexane yielded the colourless plate crystal (0.11 g, 25%), 1H-NMR (400 MHz, CDCl3); δ 7.53 (d, J = 8.3 Hz, 1H, H7), 6.74 (d, J = 8.3 Hz, 1H, H6), 4.82 (brs, 2H, NH2), 2.98 (m, 2H, H2), 2.70 (m, 2H, H3).

Refinement top

The H atoms of the amino group was located in a difference Fourier map and were isotropically refined with the distance restraints (N—H = 0.86 (2) Å and H···H = 1.30 (2) Å). C-bound H-atoms were positioned geometrically and refined using a riding model [C—H = 0.93 and 0.97 Å, and Uiso(H) = 1.2Ueq(C)]. The highest residual electron density peak and the deepest hole are located 1.03 Å and 0.89 Å from Br1, respectively.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I), viewing down the b axis. H atoms not involved in hydrogen bonding have been omitted.
5-Amino-4-bromo-2,3-dihydro-1H-inden-1-one top
Crystal data top
C9H8BrNOF(000) = 896
Mr = 226.06Dx = 1.766 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 2518 reflections
a = 12.6362 (4) Åθ = 5.5–70.2°
b = 8.3655 (2) ŵ = 6.16 mm1
c = 17.4913 (5) ÅT = 297 K
β = 113.128 (4)°Plate, colourless
V = 1700.37 (10) Å30.77 × 0.60 × 0.08 mm
Z = 8
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1594 independent reflections
Radiation source: Enhance (Cu) X-ray Source1544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.2673 pixels mm-1θmax = 70.4°, θmin = 5.5°
ω scansh = 1315
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 610
Tmin = 0.031, Tmax = 0.616l = 1921
3085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1063P)2 + 1.0273P]
where P = (Fo2 + 2Fc2)/3
1594 reflections(Δ/σ)max = 0.001
117 parametersΔρmax = 1.31 e Å3
3 restraintsΔρmin = 0.89 e Å3
Crystal data top
C9H8BrNOV = 1700.37 (10) Å3
Mr = 226.06Z = 8
Monoclinic, C2/cCu Kα radiation
a = 12.6362 (4) ŵ = 6.16 mm1
b = 8.3655 (2) ÅT = 297 K
c = 17.4913 (5) Å0.77 × 0.60 × 0.08 mm
β = 113.128 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1594 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1544 reflections with I > 2σ(I)
Tmin = 0.031, Tmax = 0.616Rint = 0.026
3085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.31 e Å3
1594 reflectionsΔρmin = 0.89 e Å3
117 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52857 (3)0.21900 (4)0.63347 (2)0.0470 (2)
O10.2303 (2)0.4628 (3)0.26770 (13)0.0544 (8)
N10.3501 (3)0.4337 (4)0.66390 (17)0.0535 (9)
C10.3037 (3)0.4330 (4)0.41603 (17)0.0381 (8)
C20.2318 (3)0.5262 (4)0.44160 (18)0.0422 (8)
C30.2489 (3)0.5253 (4)0.5240 (2)0.0431 (9)
C40.3357 (3)0.4322 (4)0.58293 (17)0.0399 (8)
C50.4086 (2)0.3422 (3)0.55556 (16)0.0368 (8)
C60.3917 (2)0.3426 (3)0.47291 (16)0.0345 (8)
C70.4597 (3)0.2542 (4)0.4321 (2)0.0430 (9)
C80.4016 (3)0.3016 (4)0.3399 (2)0.0493 (10)
C90.3006 (3)0.4086 (4)0.33249 (17)0.0425 (8)
H1N0.301 (3)0.472 (5)0.679 (3)0.062 (12)*
H20.173500.587600.403500.0510*
H2N0.387 (4)0.369 (6)0.701 (3)0.10 (2)*
H30.201800.587900.541500.0520*
H7A0.455500.139600.438900.0520*
H7B0.539800.286700.455400.0520*
H8A0.455300.358700.322600.0590*
H8B0.374900.207400.305300.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0466 (3)0.0552 (4)0.0315 (3)0.0060 (1)0.0070 (2)0.0028 (1)
O10.0541 (13)0.0741 (16)0.0303 (10)0.0051 (12)0.0114 (10)0.0072 (10)
N10.0619 (17)0.0712 (18)0.0322 (13)0.0012 (15)0.0237 (13)0.0070 (12)
C10.0412 (14)0.0433 (13)0.0290 (13)0.0056 (12)0.0128 (11)0.0001 (10)
C20.0393 (14)0.0471 (15)0.0368 (15)0.0014 (12)0.0114 (12)0.0050 (12)
C30.0443 (15)0.0451 (14)0.0443 (16)0.0013 (13)0.0221 (13)0.0033 (12)
C40.0444 (14)0.0451 (14)0.0305 (14)0.0062 (12)0.0152 (12)0.0046 (11)
C50.0386 (13)0.0414 (14)0.0274 (12)0.0026 (12)0.0098 (10)0.0017 (10)
C60.0371 (13)0.0362 (13)0.0298 (13)0.0009 (10)0.0126 (11)0.0008 (10)
C70.0438 (17)0.0496 (13)0.0376 (17)0.0024 (14)0.0182 (14)0.0045 (13)
C80.0578 (19)0.0602 (18)0.0344 (16)0.0064 (15)0.0230 (15)0.0064 (13)
C90.0474 (15)0.0501 (15)0.0299 (14)0.0140 (13)0.0151 (12)0.0006 (11)
Geometric parameters (Å, º) top
Br1—C51.896 (3)C5—C61.376 (4)
O1—C91.220 (4)C6—C71.509 (5)
N1—C41.355 (4)C7—C81.539 (5)
N1—H1N0.83 (4)C8—C91.522 (5)
N1—H2N0.83 (5)C2—H20.9300
C1—C91.461 (4)C3—H30.9300
C1—C21.397 (5)C7—H7A0.9700
C1—C61.389 (4)C7—H7B0.9700
C2—C31.371 (4)C8—H8A0.9700
C3—C41.409 (5)C8—H8B0.9700
C4—C51.411 (5)
H1N—N1—H2N105 (5)C7—C8—C9106.3 (3)
C4—N1—H1N122 (3)O1—C9—C1126.9 (3)
C4—N1—H2N128 (3)O1—C9—C8125.3 (3)
C2—C1—C6120.9 (3)C1—C9—C8107.8 (3)
C2—C1—C9129.3 (3)C1—C2—H2121.00
C6—C1—C9109.9 (3)C3—C2—H2121.00
C1—C2—C3118.7 (3)C2—C3—H3119.00
C2—C3—C4121.9 (3)C4—C3—H3119.00
C3—C4—C5118.1 (3)C6—C7—H7A111.00
N1—C4—C5121.5 (3)C6—C7—H7B111.00
N1—C4—C3120.4 (3)C8—C7—H7A111.00
Br1—C5—C4119.4 (2)C8—C7—H7B111.00
Br1—C5—C6120.5 (2)H7A—C7—H7B109.00
C4—C5—C6120.2 (2)C7—C8—H8A110.00
C1—C6—C5120.3 (3)C7—C8—H8B111.00
C1—C6—C7111.9 (3)C9—C8—H8A110.00
C5—C6—C7127.9 (3)C9—C8—H8B110.00
C6—C7—C8104.1 (3)H8A—C8—H8B109.00
C6—C1—C2—C30.8 (5)N1—C4—C5—Br10.6 (4)
C9—C1—C2—C3177.4 (4)N1—C4—C5—C6179.8 (3)
C2—C1—C6—C50.7 (5)C3—C4—C5—Br1178.7 (2)
C2—C1—C6—C7178.9 (3)C3—C4—C5—C62.1 (5)
C9—C1—C6—C5177.8 (3)Br1—C5—C6—C1180.0 (2)
C9—C1—C6—C72.7 (4)Br1—C5—C6—C70.5 (4)
C2—C1—C9—O12.6 (6)C4—C5—C6—C10.8 (4)
C2—C1—C9—C8177.6 (4)C4—C5—C6—C7179.7 (3)
C6—C1—C9—O1175.7 (3)C1—C6—C7—C80.1 (4)
C6—C1—C9—C84.1 (4)C5—C6—C7—C8179.7 (3)
C1—C2—C3—C40.7 (5)C6—C7—C8—C92.4 (3)
C2—C3—C4—N1179.8 (4)C7—C8—C9—O1175.9 (3)
C2—C3—C4—C52.1 (5)C7—C8—C9—C14.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is a centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.14 (5)2.915 (4)155 (4)
N1—H2N···Br10.83 (5)2.80 (5)3.088 (4)103 (4)
C8—H8B···O1ii0.972.503.448 (4)166
C7—H7B···Cg2iii0.972.853.659 (4)141
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8BrNO
Mr226.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)12.6362 (4), 8.3655 (2), 17.4913 (5)
β (°) 113.128 (4)
V3)1700.37 (10)
Z8
Radiation typeCu Kα
µ (mm1)6.16
Crystal size (mm)0.77 × 0.60 × 0.08
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.031, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
3085, 1594, 1544
Rint0.026
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.06
No. of reflections1594
No. of parameters117
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.31, 0.89

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is a centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.14 (5)2.915 (4)155 (4)
C8—H8B···O1ii0.972.503.448 (4)166
C7—H7B···Cg2iii0.972.853.659 (4)141
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds