metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-naphthalene-1-acetato-κ2O:O′)bis­­[(N,N-di­methyl­formamide-κO)copper(II)]

aJiangsu Marine Resources Development, Research Institute, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China, and cDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: yfj1999@126.com

(Received 5 February 2012; accepted 16 February 2012; online 29 February 2012)

The asymmetric unit of the title compound, [Cu2(C12H9O2)4(C3H7NO)2], contains two independent centrosymmetric dinuclear copper(II) complexes. The central paddle-wheel units are formed by four bridging bidentate naphthalene-1-acetate ligands with two dimethyl­formamide ligands in the axial positions. The unique CuII ions have slightly distorted square-pyramidal coordination geometries. One of the naphthalene rings is disordered over two sets of sites, with refined occpancies of 0.535 (4) and 0.465 (4).

Related literature

For coordination compounds of 1-naphthyl­acetate, see: Yin et al. (2010[Yin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 606-612.]); Chen et al. (2004[Chen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032-m1034.]); Yang et al. (2008[Yang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524-4530.]); Xia et al. (2006[Xia, H.-T., Liu, Y.-F. & Li, S.-A. (2006). Acta Cryst. E62, m2653-m2655.]); Ji et al. (2011[Ji, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H9O2)4(C3H7NO)2]

  • Mr = 1014.04

  • Triclinic, [P \overline 1]

  • a = 10.6704 (7) Å

  • b = 12.3561 (8) Å

  • c = 20.7734 (14) Å

  • α = 74.8390 (11)°

  • β = 84.898 (1)°

  • γ = 66.848 (1)°

  • V = 2430.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.945

  • 18538 measured reflections

  • 8516 independent reflections

  • 7103 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.04

  • 8516 reflections

  • 630 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Naphthalene-1-yl-acetate acid is a plant-growth regulator and exhibits remarkable coordination versatility towards metal cations (Yin et al., 2010; Chen et al., 2004; Yang et al., 2008; Xia et al.,2006; Ji et al., 2011). In continuation of the structural studies of metal complexes of this ligands, the crystal structure of the title compound was determined.

The molecular structure of the title compound (I) (see Figs. 1 & 2), contains a centrosymmetric dinuclear copper paddle-wheel unit, in which each CuII ion is coordinated by four O atoms from a naphthalen-1-yl-acetate ligand in the basal plane and one O atom of a N,N-dimethylformamide ligand in the axial position to form a square-pyramidal coordination geometry. Both independent molecules lie on crystallographic inversion centers.

Related literature top

For coordination compounds of 1-naphthylacetate, see: Yin et al. (2010); Chen et al. (2004); Yang et al. (2008); Xia et al. (2006); Ji et al. (2011).

Experimental top

The title compound was synthesized by the reaction of Cu(NO3)2 × 3 H2O (72.3 mg, 0.3 mmol), naphthalene-1-yl-acetic acid (93 mg, 0.5 mmol), and NaOH (20 mg, 0.5 mmol) in 10 ml of N,N-dimethylformamide under solvothermal conditions. The mixture was homogenized and transferred into a sealed Teflon-lined solvothermal bomb (volume: 25 ml) and heated to 423K for three days. After cooling green crystals of the title compound were obtained, which were washed with distilled water and absolute ethanol (yield: 48.5% based on Cu(NO3)2 × 3 H2O).

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). One of the naphthalene rings is disordered over two sets of sites with refined occpancies of 0.535 (4) and (0.465 (4).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of one of the independent molecules of (I) showing displacement ellipsoids at the 30% probability [symmetry code (A): -x+2, -y+1, -z+1].
[Figure 2] Fig. 2. The molecular structure of the other independent molecule of (I) showing displacement ellipsoids at the 30% probability. [symmetry code (A): -x+1, -y+2, -z].
Tetrakis(µ-naphthalene-1-acetato- κ2O:O')bis[(N,N-dimethylformamide- κO)copper(II)] top
Crystal data top
[Cu2(C12H9O2)4(C3H7NO)2]Z = 2
Mr = 1014.04F(000) = 1052
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6704 (7) ÅCell parameters from 7990 reflections
b = 12.3561 (8) Åθ = 2.2–26.9°
c = 20.7734 (14) ŵ = 0.94 mm1
α = 74.8390 (11)°T = 298 K
β = 84.898 (1)°Block, green
γ = 66.848 (1)°0.10 × 0.10 × 0.10 mm
V = 2430.3 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8516 independent reflections
Radiation source: fine-focus sealed tube7103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.945, Tmax = 0.945k = 1414
18538 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0486P)2 + 2.352P]
where P = (Fo2 + 2Fc2)/3
8516 reflections(Δ/σ)max = 0.001
630 parametersΔρmax = 0.61 e Å3
16 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Cu2(C12H9O2)4(C3H7NO)2]γ = 66.848 (1)°
Mr = 1014.04V = 2430.3 (3) Å3
Triclinic, P1Z = 2
a = 10.6704 (7) ÅMo Kα radiation
b = 12.3561 (8) ŵ = 0.94 mm1
c = 20.7734 (14) ÅT = 298 K
α = 74.8390 (11)°0.10 × 0.10 × 0.10 mm
β = 84.898 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7103 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.945Rint = 0.019
18538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04316 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
8516 reflectionsΔρmin = 1.25 e Å3
630 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.86554 (3)0.53893 (3)0.496213 (16)0.03371 (10)
O10.8617 (2)0.69486 (17)0.50264 (11)0.0474 (5)
O20.8686 (2)0.48613 (19)0.59443 (10)0.0488 (5)
O31.0954 (2)0.4191 (2)0.60003 (10)0.0505 (5)
O41.0886 (2)0.62875 (17)0.50813 (11)0.0478 (5)
O50.65309 (19)0.59391 (19)0.47337 (11)0.0481 (5)
N10.5038 (2)0.5742 (2)0.41095 (13)0.0501 (6)
C10.9708 (3)0.7076 (2)0.50813 (14)0.0396 (6)
C20.9582 (3)0.8313 (3)0.51355 (18)0.0518 (8)
H2A0.95350.88290.46900.062*
H2B0.87340.86760.53550.062*
C31.0737 (3)0.8278 (3)0.55139 (17)0.0491 (7)
C41.1703 (3)0.8671 (3)0.51830 (19)0.0573 (8)
H41.16400.89550.47210.069*
C51.2789 (4)0.8656 (3)0.5526 (2)0.0696 (10)
H51.34370.89250.52900.083*
C61.2896 (4)0.8254 (4)0.6193 (2)0.0724 (11)
H61.36100.82630.64140.087*
C71.1946 (4)0.7819 (3)0.6562 (2)0.0652 (9)
C81.0849 (3)0.7827 (3)0.62141 (19)0.0558 (8)
C90.9902 (4)0.7392 (4)0.6595 (2)0.0755 (11)
H90.91840.73830.63750.091*
C101.0003 (6)0.6988 (5)0.7266 (3)0.1008 (15)
H100.93560.67160.75020.121*
C111.1078 (7)0.6980 (5)0.7602 (3)0.1063 (17)
H111.11480.67010.80640.128*
C121.2028 (5)0.7377 (5)0.7261 (3)0.0910 (14)
H121.27460.73560.74940.109*
C130.9805 (3)0.4372 (3)0.62552 (14)0.0429 (7)
C140.9800 (4)0.3984 (4)0.70118 (16)0.0592 (9)
H14E1.06620.33170.71600.071*
H14F0.97650.46550.71820.071*
C150.8679 (3)0.3594 (3)0.73282 (15)0.0514 (8)
C160.7770 (5)0.4238 (4)0.77268 (18)0.0784 (12)
H16A0.78090.49540.77720.094*
C170.6777 (5)0.3840 (6)0.8070 (2)0.111 (2)
H17A0.61640.42940.83390.133*
C180.6706 (5)0.2804 (6)0.8014 (3)0.106 (2)
H18A0.60560.25410.82530.127*
C190.7591 (4)0.2122 (4)0.7603 (2)0.0781 (13)
C200.8604 (3)0.2511 (3)0.72557 (16)0.0559 (8)
C210.9501 (4)0.1789 (3)0.6852 (2)0.0743 (11)
H21A1.01790.20200.66200.089*
C220.9383 (7)0.0752 (4)0.6798 (3)0.115 (2)
H22A0.99790.02880.65290.138*
C230.8379 (10)0.0380 (6)0.7143 (4)0.146 (3)
H23A0.83120.03280.71030.176*
C240.7526 (7)0.1037 (6)0.7525 (4)0.119 (2)
H24A0.68610.07800.77500.143*
C250.6245 (3)0.5422 (3)0.43674 (16)0.0478 (7)
H25A0.69150.47230.42330.057*
C260.3898 (3)0.6778 (3)0.4237 (2)0.0679 (10)
H26A0.41120.70010.46100.102*
H26B0.31090.65740.43360.102*
H26C0.37120.74470.38500.102*
C270.4771 (4)0.5066 (4)0.3696 (2)0.0817 (12)
H27A0.56010.44090.36410.122*
H27B0.44270.55970.32670.122*
H27C0.41080.47470.39080.122*
Cu20.38926 (5)0.97711 (5)0.01857 (2)0.07018 (17)
O60.3889 (3)1.0570 (3)0.08925 (12)0.0702 (7)
O70.5200 (3)0.8234 (3)0.07183 (12)0.0721 (7)
O80.5772 (3)1.0939 (3)0.05852 (13)0.0949 (11)
O90.7071 (3)0.8613 (3)0.04101 (13)0.0897 (10)
O100.2111 (3)0.9402 (3)0.05243 (13)0.0763 (8)
N20.0108 (3)0.9822 (3)0.10633 (17)0.0696 (8)
C280.4779 (4)1.0960 (4)0.09576 (17)0.0685 (10)
C290.4625 (5)1.1507 (4)0.15480 (17)0.0715 (10)
H2B10.36751.20230.15820.086*
H2B20.51511.20140.14710.086*
C300.5091 (3)1.0557 (3)0.22023 (16)0.0516 (8)
C310.5883 (4)0.9376 (4)0.22208 (19)0.0686 (10)
H4B0.61570.91510.18210.082*
C320.6299 (4)0.8485 (4)0.2826 (2)0.0802 (12)
H5B0.68400.76840.28230.096*
C330.5912 (4)0.8797 (4)0.3410 (2)0.0753 (11)
H6B0.61930.82050.38080.090*
C340.5097 (4)0.9990 (3)0.34265 (16)0.0574 (8)
C350.4690 (3)1.0902 (3)0.28141 (15)0.0490 (7)
C360.3910 (4)1.2112 (4)0.2850 (2)0.0646 (9)
H9B0.36471.27230.24570.078*
C370.3538 (4)1.2402 (5)0.3447 (2)0.0842 (13)
H10B0.30371.32070.34560.101*
C380.3899 (4)1.1507 (6)0.4042 (2)0.0883 (15)
H11B0.36221.17110.44470.106*
C390.4654 (4)1.0341 (5)0.40307 (19)0.0784 (12)
H12B0.48890.97510.44320.094*
C400.6459 (4)0.7965 (4)0.07327 (17)0.0671 (10)
C410.7311 (4)0.6765 (4)0.1201 (2)0.0778 (10)
H14A0.66510.64580.14440.093*0.535 (4)
H14B0.77040.69910.15230.093*0.535 (4)
H14C0.69610.66870.16510.093*0.465 (4)
H14D0.79840.71210.11740.093*0.465 (4)
C420.8463 (8)0.5647 (7)0.1048 (4)0.0778 (10)0.535 (4)
C430.9800 (8)0.5434 (7)0.1138 (4)0.072 (2)0.535 (4)
H16B1.00230.59380.13290.087*0.535 (4)
C441.0858 (10)0.4438 (8)0.0940 (6)0.082 (3)0.535 (4)
H441.17650.43040.10010.098*0.535 (4)
C451.0560 (10)0.3701 (9)0.0672 (4)0.081 (3)0.535 (4)
H18B1.12630.30540.05510.097*0.535 (4)
C460.9203 (9)0.3882 (7)0.0568 (4)0.078 (2)0.535 (4)
C470.8127 (8)0.4873 (6)0.0759 (3)0.0697 (19)0.535 (4)
C480.6745 (12)0.5034 (9)0.0661 (6)0.1086 (19)0.535 (4)
H21B0.60320.57140.07450.130*0.535 (4)
C490.6473 (13)0.4207 (10)0.0449 (7)0.1086 (19)0.535 (4)
H22B0.55920.42200.04700.130*0.535 (4)
C500.7563 (11)0.3300 (9)0.0188 (5)0.1086 (19)0.535 (4)
H23B0.73620.28400.00470.130*0.535 (4)
C510.8885 (11)0.3115 (9)0.0284 (5)0.1086 (19)0.535 (4)
H24B0.95830.24700.01580.130*0.535 (4)
C42'0.7119 (12)0.5882 (10)0.0827 (6)0.1024 (14)0.465 (4)
C43'0.6485 (11)0.5158 (10)0.1209 (7)0.1024 (14)0.465 (4)
H16'0.61180.52790.16200.123*0.465 (4)
C44'0.6408 (11)0.4208 (10)0.0953 (6)0.1024 (14)0.465 (4)
H17'0.60180.36880.12120.123*0.465 (4)
C45'0.6911 (13)0.4048 (14)0.0316 (7)0.1024 (14)0.465 (4)
H18'0.67830.34750.01440.123*0.465 (4)
C46'0.7591 (11)0.4747 (10)0.0045 (6)0.1024 (14)0.465 (4)
C47'0.7665 (11)0.5695 (10)0.0209 (6)0.1024 (14)0.465 (4)
C48'0.8347 (11)0.6422 (10)0.0192 (6)0.1024 (14)0.465 (4)
H21'0.84110.70540.00510.123*0.465 (4)
C49'0.8908 (14)0.6185 (14)0.0786 (7)0.1024 (14)0.465 (4)
H22'0.93480.66610.10460.123*0.465 (4)
C50'0.8824 (14)0.5247 (13)0.1000 (8)0.1024 (14)0.465 (4)
H23'0.92360.50850.13970.123*0.465 (4)
C51'0.8184 (11)0.4587 (10)0.0659 (6)0.1024 (14)0.465 (4)
H24'0.81180.39860.08290.123*0.465 (4)
C520.1214 (4)1.0013 (4)0.0845 (2)0.0746 (12)
H25B0.11811.07350.09550.090*
C530.0098 (5)0.8796 (5)0.0961 (2)0.0886 (14)
H26D0.06010.84060.06780.133*
H26E0.09740.90670.07530.133*
H26F0.00590.82300.13820.133*
C540.0924 (5)1.0569 (6)0.1441 (4)0.143 (3)
H27D0.06281.11580.15300.215*
H27E0.10641.00640.18560.215*
H27F0.17631.09810.11890.215*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02974 (17)0.03313 (17)0.04065 (19)0.01368 (13)0.00106 (13)0.01000 (13)
O10.0385 (11)0.0370 (10)0.0708 (14)0.0141 (9)0.0009 (10)0.0200 (10)
O20.0444 (12)0.0598 (13)0.0414 (11)0.0218 (10)0.0018 (9)0.0085 (10)
O30.0453 (12)0.0674 (14)0.0395 (11)0.0258 (11)0.0002 (9)0.0074 (10)
O40.0395 (11)0.0347 (10)0.0728 (15)0.0128 (9)0.0053 (10)0.0195 (10)
O50.0326 (10)0.0517 (12)0.0615 (13)0.0155 (9)0.0056 (9)0.0155 (10)
N10.0376 (13)0.0526 (15)0.0572 (16)0.0145 (12)0.0109 (12)0.0098 (12)
C10.0411 (16)0.0341 (14)0.0448 (16)0.0141 (12)0.0023 (12)0.0113 (12)
C20.0467 (17)0.0347 (15)0.077 (2)0.0139 (13)0.0058 (16)0.0184 (15)
C30.0483 (17)0.0318 (14)0.071 (2)0.0140 (13)0.0024 (15)0.0193 (14)
C40.058 (2)0.0420 (17)0.076 (2)0.0208 (15)0.0008 (17)0.0174 (16)
C50.055 (2)0.066 (2)0.098 (3)0.0314 (18)0.002 (2)0.024 (2)
C60.052 (2)0.072 (2)0.102 (3)0.0239 (19)0.015 (2)0.030 (2)
C70.062 (2)0.059 (2)0.076 (3)0.0163 (18)0.0079 (19)0.0277 (19)
C80.0523 (19)0.0468 (17)0.076 (2)0.0185 (15)0.0017 (17)0.0286 (17)
C90.084 (3)0.086 (3)0.074 (3)0.046 (2)0.009 (2)0.029 (2)
C100.122 (4)0.119 (4)0.086 (3)0.071 (4)0.018 (3)0.031 (3)
C110.134 (5)0.117 (4)0.069 (3)0.052 (4)0.002 (3)0.020 (3)
C120.091 (3)0.097 (3)0.089 (3)0.030 (3)0.020 (3)0.032 (3)
C130.0501 (18)0.0445 (16)0.0413 (16)0.0262 (14)0.0009 (14)0.0101 (13)
C140.067 (2)0.079 (2)0.0399 (17)0.0407 (19)0.0023 (15)0.0066 (16)
C150.0529 (18)0.0597 (19)0.0338 (15)0.0212 (16)0.0022 (14)0.0013 (14)
C160.091 (3)0.087 (3)0.043 (2)0.025 (2)0.011 (2)0.0122 (19)
C170.083 (3)0.146 (5)0.060 (3)0.016 (4)0.029 (2)0.008 (3)
C180.063 (3)0.149 (5)0.072 (3)0.046 (3)0.004 (2)0.036 (3)
C190.063 (2)0.090 (3)0.066 (2)0.042 (2)0.020 (2)0.031 (2)
C200.0502 (19)0.058 (2)0.0472 (18)0.0207 (16)0.0111 (15)0.0117 (15)
C210.082 (3)0.052 (2)0.075 (3)0.018 (2)0.008 (2)0.0012 (19)
C220.157 (6)0.056 (3)0.116 (4)0.025 (3)0.029 (4)0.010 (3)
C230.212 (9)0.073 (4)0.160 (7)0.081 (5)0.068 (6)0.027 (4)
C240.120 (5)0.106 (5)0.129 (5)0.080 (4)0.053 (4)0.049 (4)
C250.0348 (15)0.0483 (17)0.0558 (19)0.0123 (13)0.0044 (14)0.0098 (14)
C260.0378 (18)0.063 (2)0.091 (3)0.0095 (16)0.0100 (17)0.012 (2)
C270.069 (3)0.094 (3)0.089 (3)0.027 (2)0.022 (2)0.035 (2)
Cu20.0715 (3)0.1253 (4)0.0355 (2)0.0693 (3)0.00152 (19)0.0063 (2)
O60.0740 (17)0.105 (2)0.0453 (13)0.0516 (16)0.0009 (12)0.0139 (13)
O70.0636 (16)0.099 (2)0.0579 (15)0.0423 (15)0.0122 (12)0.0134 (14)
O80.113 (2)0.173 (3)0.0461 (15)0.106 (2)0.0112 (15)0.0278 (17)
O90.0752 (18)0.150 (3)0.0545 (15)0.072 (2)0.0109 (13)0.0065 (17)
O100.0654 (17)0.114 (2)0.0606 (16)0.0584 (17)0.0033 (13)0.0037 (15)
N20.0477 (17)0.074 (2)0.081 (2)0.0245 (15)0.0078 (15)0.0046 (17)
C280.087 (3)0.094 (3)0.0348 (18)0.053 (2)0.0097 (18)0.0002 (17)
C290.095 (3)0.078 (3)0.046 (2)0.041 (2)0.0122 (19)0.0057 (18)
C300.0500 (18)0.063 (2)0.0435 (17)0.0241 (16)0.0039 (14)0.0108 (15)
C310.065 (2)0.077 (3)0.059 (2)0.015 (2)0.0025 (18)0.028 (2)
C320.079 (3)0.060 (2)0.085 (3)0.006 (2)0.021 (2)0.016 (2)
C330.085 (3)0.072 (3)0.060 (2)0.030 (2)0.018 (2)0.006 (2)
C340.055 (2)0.078 (2)0.0443 (18)0.0350 (18)0.0006 (15)0.0084 (16)
C350.0386 (16)0.065 (2)0.0467 (17)0.0228 (15)0.0004 (13)0.0152 (15)
C360.051 (2)0.076 (2)0.067 (2)0.0173 (18)0.0099 (17)0.0249 (19)
C370.048 (2)0.110 (3)0.100 (4)0.012 (2)0.004 (2)0.060 (3)
C380.055 (2)0.152 (5)0.070 (3)0.038 (3)0.014 (2)0.055 (3)
C390.075 (3)0.127 (4)0.046 (2)0.057 (3)0.0077 (19)0.017 (2)
C400.076 (3)0.100 (3)0.0392 (18)0.044 (2)0.0075 (17)0.0273 (19)
C410.072 (2)0.073 (2)0.086 (3)0.0228 (19)0.0066 (19)0.026 (2)
C420.072 (2)0.073 (2)0.086 (3)0.0228 (19)0.0066 (19)0.026 (2)
C430.074 (5)0.071 (5)0.060 (4)0.022 (4)0.007 (4)0.001 (3)
C440.075 (6)0.053 (5)0.111 (7)0.021 (4)0.006 (5)0.013 (5)
C450.080 (7)0.073 (5)0.061 (5)0.005 (5)0.015 (5)0.013 (4)
C460.110 (7)0.056 (4)0.051 (4)0.018 (4)0.006 (4)0.004 (3)
C470.081 (5)0.056 (4)0.054 (4)0.013 (4)0.000 (4)0.007 (3)
C480.132 (5)0.081 (3)0.117 (4)0.036 (3)0.021 (4)0.030 (3)
C490.132 (5)0.081 (3)0.117 (4)0.036 (3)0.021 (4)0.030 (3)
C500.132 (5)0.081 (3)0.117 (4)0.036 (3)0.021 (4)0.030 (3)
C510.132 (5)0.081 (3)0.117 (4)0.036 (3)0.021 (4)0.030 (3)
C42'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C43'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C44'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C45'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C46'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C47'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C48'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C49'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C50'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C51'0.090 (3)0.082 (3)0.114 (3)0.0068 (19)0.019 (2)0.024 (2)
C520.059 (2)0.066 (2)0.091 (3)0.032 (2)0.019 (2)0.011 (2)
C530.083 (3)0.123 (4)0.080 (3)0.069 (3)0.002 (2)0.011 (3)
C540.068 (3)0.132 (5)0.221 (8)0.018 (3)0.027 (4)0.071 (5)
Geometric parameters (Å, º) top
Cu1—O11.9501 (19)O9—Cu2ii1.974 (3)
Cu1—O4i1.9578 (18)O10—C521.230 (5)
Cu1—O21.972 (2)N2—C521.312 (5)
Cu1—O3i1.980 (2)N2—C531.439 (5)
Cu1—O52.1535 (19)N2—C541.452 (6)
Cu1—Cu1i2.6485 (6)C28—C291.516 (5)
O1—C11.253 (3)C29—C301.516 (5)
O2—C131.254 (4)C29—H2B10.9700
O3—C131.251 (4)C29—H2B20.9700
O3—Cu1i1.980 (2)C30—C311.361 (5)
O4—C11.251 (3)C30—C351.422 (4)
O4—Cu1i1.9578 (18)C31—C321.407 (6)
O5—C251.236 (4)C31—H4B0.9300
N1—C251.309 (4)C32—C331.349 (6)
N1—C261.444 (4)C32—H5B0.9300
N1—C271.457 (4)C33—C341.395 (5)
C1—C21.514 (4)C33—H6B0.9300
C2—C31.501 (4)C34—C391.416 (5)
C2—H2A0.9700C34—C351.428 (5)
C2—H2B0.9700C35—C361.415 (5)
C3—C41.365 (5)C36—C371.362 (5)
C3—C81.413 (5)C36—H9B0.9300
C4—C51.405 (5)C37—C381.391 (7)
C4—H40.9300C37—H10B0.9300
C5—C61.343 (6)C38—C391.352 (7)
C5—H50.9300C38—H11B0.9300
C6—C71.407 (6)C39—H12B0.9300
C6—H60.9300C40—C411.521 (6)
C7—C121.409 (6)C41—C421.532 (8)
C7—C81.424 (5)C41—C42'1.575 (12)
C8—C91.414 (5)C41—H14A0.9700
C9—C101.351 (6)C41—H14B0.9700
C9—H90.9300C41—H14C0.9700
C10—C111.390 (7)C41—H14D0.9700
C10—H100.9300C42—C431.365 (11)
C11—C121.361 (7)C42—C471.418 (10)
C11—H110.9300C43—C441.431 (13)
C12—H120.9300C43—H16B0.9300
C13—C141.519 (4)C44—C451.329 (13)
C14—C151.498 (4)C44—H440.9300
C14—H14E0.9700C45—C461.403 (11)
C14—H14F0.9700C45—H18B0.9300
C15—C161.361 (5)C46—C511.394 (12)
C15—C201.419 (5)C46—C471.429 (10)
C16—C171.402 (7)C47—C481.434 (13)
C16—H16A0.9300C48—C491.348 (15)
C17—C181.347 (8)C48—H21B0.9300
C17—H17A0.9300C49—C501.444 (12)
C18—C191.393 (7)C49—H22B0.9300
C18—H18A0.9300C50—C511.361 (12)
C19—C201.417 (5)C50—H23B0.9300
C19—C241.420 (8)C51—H24B0.9300
C20—C211.412 (5)C42'—C43'1.377 (16)
C21—C221.369 (6)C42'—C47'1.399 (16)
C21—H21A0.9300C43'—C44'1.442 (16)
C22—C231.396 (10)C43'—H16'0.9300
C22—H22A0.9300C44'—C45'1.416 (14)
C23—C241.321 (10)C44'—H17'0.9300
C23—H23A0.9300C45'—C46'1.375 (18)
C24—H24A0.9300C45'—H18'0.9300
C25—H25A0.9695C46'—C51'1.399 (13)
C26—H26A0.9600C46'—C47'1.437 (15)
C26—H26B0.9600C47'—C48'1.430 (13)
C26—H26C0.9600C48'—C49'1.373 (14)
C27—H27A0.9600C48'—H21'0.9300
C27—H27B0.9600C49'—C50'1.380 (15)
C27—H27C0.9600C49'—H22'0.9300
Cu2—O8ii1.962 (3)C50'—C51'1.297 (14)
Cu2—O71.967 (3)C50'—H23'0.9300
Cu2—O61.970 (3)C51'—H24'0.9300
Cu2—O9ii1.974 (3)C52—H25B0.9636
Cu2—O102.143 (2)C53—H26D0.9600
Cu2—Cu2ii2.6455 (8)C53—H26E0.9600
O6—C281.254 (4)C53—H26F0.9600
O7—C401.252 (5)C54—H27D0.9600
O8—C281.251 (5)C54—H27E0.9600
O8—Cu2ii1.962 (3)C54—H27F0.9600
O9—C401.253 (5)
O1—Cu1—O4i167.77 (8)O8—C28—O6126.3 (4)
O1—Cu1—O289.29 (9)O8—C28—C29117.5 (3)
O4i—Cu1—O289.56 (9)O6—C28—C29116.1 (4)
O1—Cu1—O3i89.33 (9)C28—C29—C30113.0 (3)
O4i—Cu1—O3i89.23 (9)C28—C29—H2B1109.0
O2—Cu1—O3i167.86 (8)C30—C29—H2B1109.0
O1—Cu1—O598.64 (8)C28—C29—H2B2109.0
O4i—Cu1—O593.52 (8)C30—C29—H2B2109.0
O2—Cu1—O5101.74 (8)H2B1—C29—H2B2107.8
O3i—Cu1—O590.39 (8)C31—C30—C35118.9 (3)
O1—Cu1—Cu1i86.47 (6)C31—C30—C29121.7 (3)
O4i—Cu1—Cu1i81.31 (6)C35—C30—C29119.5 (3)
O2—Cu1—Cu1i86.99 (6)C30—C31—C32122.0 (4)
O3i—Cu1—Cu1i80.89 (6)C30—C31—H4B119.0
O5—Cu1—Cu1i169.88 (6)C32—C31—H4B119.0
C1—O1—Cu1120.12 (17)C33—C32—C31119.7 (4)
C13—O2—Cu1119.63 (19)C33—C32—H5B120.1
C13—O3—Cu1i126.54 (19)C31—C32—H5B120.1
C1—O4—Cu1i125.86 (18)C32—C33—C34121.2 (4)
C25—O5—Cu1117.18 (19)C32—C33—H6B119.4
C25—N1—C26120.9 (3)C34—C33—H6B119.4
C25—N1—C27122.2 (3)C33—C34—C39122.5 (4)
C26—N1—C27116.9 (3)C33—C34—C35119.3 (3)
O4—C1—O1126.2 (2)C39—C34—C35118.2 (4)
O4—C1—C2117.2 (2)C36—C35—C30123.3 (3)
O1—C1—C2116.5 (2)C36—C35—C34117.8 (3)
C3—C2—C1113.8 (2)C30—C35—C34118.9 (3)
C3—C2—H2A108.8C37—C36—C35121.4 (4)
C1—C2—H2A108.8C37—C36—H9B119.3
C3—C2—H2B108.8C35—C36—H9B119.3
C1—C2—H2B108.8C36—C37—C38120.7 (4)
H2A—C2—H2B107.7C36—C37—H10B119.6
C4—C3—C8119.2 (3)C38—C37—H10B119.6
C4—C3—C2120.2 (3)C39—C38—C37119.8 (4)
C8—C3—C2120.6 (3)C39—C38—H11B120.1
C3—C4—C5121.3 (4)C37—C38—H11B120.1
C3—C4—H4119.3C38—C39—C34122.0 (4)
C5—C4—H4119.3C38—C39—H12B119.0
C6—C5—C4120.4 (4)C34—C39—H12B119.0
C6—C5—H5119.8O7—C40—O9125.7 (4)
C4—C5—H5119.8O7—C40—C41117.0 (4)
C5—C6—C7121.0 (3)O9—C40—C41117.3 (4)
C5—C6—H6119.5C40—C41—C42130.0 (5)
C7—C6—H6119.5C40—C41—C42'98.4 (5)
C6—C7—C12122.9 (4)C42—C41—C42'55.2 (5)
C6—C7—C8118.6 (4)C40—C41—H14A104.8
C12—C7—C8118.4 (4)C42—C41—H14A104.8
C3—C8—C9122.8 (3)C42'—C41—H14A72.1
C3—C8—C7119.4 (3)C40—C41—H14B104.8
C9—C8—C7117.7 (4)C42—C41—H14B104.8
C10—C9—C8122.3 (4)C42'—C41—H14B156.4
C10—C9—H9118.9H14A—C41—H14B105.8
C8—C9—H9118.9C40—C41—H14C112.0
C9—C10—C11119.7 (5)C42—C41—H14C117.4
C9—C10—H10120.1C42'—C41—H14C113.7
C11—C10—H10120.1H14A—C41—H14C44.3
C12—C11—C10120.6 (5)H14B—C41—H14C61.5
C12—C11—H11119.7C40—C41—H14D85.2
C10—C11—H11119.7C42—C41—H14D87.2
C11—C12—C7121.3 (4)C42'—C41—H14D133.4
C11—C12—H12119.4H14A—C41—H14D151.9
C7—C12—H12119.4H14B—C41—H14D46.2
O3—C13—O2125.9 (3)H14C—C41—H14D107.5
O3—C13—C14115.4 (3)C43—C42—C47119.7 (7)
O2—C13—C14118.6 (3)C43—C42—C41121.4 (7)
C15—C14—C13117.5 (3)C47—C42—C41118.7 (7)
C15—C14—H14E107.9C42—C43—C44120.3 (8)
C13—C14—H14E107.9C42—C43—H16B119.8
C15—C14—H14F107.9C44—C43—H16B119.8
C13—C14—H14F107.9C45—C44—C43120.8 (9)
H14E—C14—H14F107.2C45—C44—H44119.6
C16—C15—C20119.2 (3)C43—C44—H44119.6
C16—C15—C14120.0 (4)C44—C45—C46121.1 (8)
C20—C15—C14120.7 (3)C44—C45—H18B119.4
C15—C16—C17121.0 (5)C46—C45—H18B119.4
C15—C16—H16A119.5C45—C46—C51121.4 (9)
C17—C16—H16A119.5C45—C46—C47119.2 (8)
C18—C17—C16120.5 (5)C51—C46—C47119.5 (9)
C18—C17—H17A119.8C42—C47—C48122.5 (7)
C16—C17—H17A119.8C42—C47—C46119.0 (8)
C17—C18—C19120.9 (4)C48—C47—C46118.6 (8)
C17—C18—H18A119.5C49—C48—C47120.5 (10)
C19—C18—H18A119.5C49—C48—H21B119.8
C18—C19—C20119.1 (4)C47—C48—H21B119.8
C18—C19—C24122.3 (5)C48—C49—C50119.2 (12)
C20—C19—C24118.6 (5)C48—C49—H22B120.4
C21—C20—C19117.8 (4)C50—C49—H22B120.4
C21—C20—C15123.0 (3)C51—C50—C49120.2 (10)
C19—C20—C15119.2 (4)C51—C50—H23B119.9
C22—C21—C20120.6 (5)C49—C50—H23B119.9
C22—C21—H21A119.7C50—C51—C46120.7 (10)
C20—C21—H21A119.7C50—C51—H24B119.6
C21—C22—C23121.0 (6)C46—C51—H24B119.6
C21—C22—H22A119.5C43'—C42'—C47'120.6 (11)
C23—C22—H22A119.5C43'—C42'—C41113.0 (10)
C24—C23—C22119.7 (6)C47'—C42'—C41126.0 (11)
C24—C23—H23A120.1C42'—C43'—C44'118.0 (12)
C22—C23—H23A120.1C42'—C43'—H16'121.0
C23—C24—C19122.3 (6)C44'—C43'—H16'121.0
C23—C24—H24A118.9C45'—C44'—C43'121.5 (12)
C19—C24—H24A118.9C45'—C44'—H17'119.2
O5—C25—N1125.4 (3)C43'—C44'—H17'119.2
O5—C25—H25A122.7C46'—C45'—C44'119.5 (13)
N1—C25—H25A111.9C46'—C45'—H18'120.3
N1—C26—H26A109.5C44'—C45'—H18'120.3
N1—C26—H26B109.5C45'—C46'—C51'122.5 (12)
H26A—C26—H26B109.5C45'—C46'—C47'118.8 (11)
N1—C26—H26C109.5C51'—C46'—C47'118.7 (11)
H26A—C26—H26C109.5C42'—C47'—C48'121.6 (11)
H26B—C26—H26C109.5C42'—C47'—C46'121.4 (11)
N1—C27—H27A109.5C48'—C47'—C46'116.9 (11)
N1—C27—H27B109.5C49'—C48'—C47'119.9 (12)
H27A—C27—H27B109.5C49'—C48'—H21'120.1
N1—C27—H27C109.5C47'—C48'—H21'120.1
H27A—C27—H27C109.5C48'—C49'—C50'120.7 (14)
H27B—C27—H27C109.5C48'—C49'—H22'119.7
O8ii—Cu2—O789.67 (14)C50'—C49'—H22'119.7
O8ii—Cu2—O6168.00 (11)C51'—C50'—C49'121.4 (16)
O7—Cu2—O689.60 (11)C51'—C50'—H23'119.3
O8ii—Cu2—O9ii89.22 (14)C49'—C50'—H23'119.3
O7—Cu2—O9ii167.85 (11)C50'—C51'—C46'122.4 (13)
O6—Cu2—O9ii88.98 (13)C50'—C51'—H24'118.8
O8ii—Cu2—O1096.72 (12)C46'—C51'—H24'118.8
O7—Cu2—O1095.71 (11)O10—C52—N2125.3 (4)
O6—Cu2—O1095.27 (11)O10—C52—H25B125.7
O9ii—Cu2—O1096.44 (11)N2—C52—H25B109.0
O8ii—Cu2—Cu2ii85.27 (8)N2—C53—H26D109.5
O7—Cu2—Cu2ii83.41 (8)N2—C53—H26E109.5
O6—Cu2—Cu2ii82.75 (7)H26D—C53—H26E109.5
O9ii—Cu2—Cu2ii84.44 (8)N2—C53—H26F109.5
O10—Cu2—Cu2ii177.82 (8)H26D—C53—H26F109.5
C28—O6—Cu2124.0 (3)H26E—C53—H26F109.5
C40—O7—Cu2124.0 (3)N2—C54—H27D109.5
C28—O8—Cu2ii121.6 (2)N2—C54—H27E109.5
C40—O9—Cu2ii122.4 (3)H27D—C54—H27E109.5
C52—O10—Cu2123.1 (3)N2—C54—H27F109.5
C52—N2—C53120.1 (4)H27D—C54—H27F109.5
C52—N2—C54123.3 (4)H27E—C54—H27F109.5
C53—N2—C54116.5 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H9O2)4(C3H7NO)2]
Mr1014.04
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.6704 (7), 12.3561 (8), 20.7734 (14)
α, β, γ (°)74.8390 (11), 84.898 (1), 66.848 (1)
V3)2430.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
18538, 8516, 7103
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.04
No. of reflections8516
No. of parameters630
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 1.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank Jiangsu Marine Resources Development Research Institute and Huaihai Institute of Technology for support of this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-F., Zhang, J., Song, L.-J., Wang, W.-G. & Ju, Z.-F. (2004). Acta Cryst. E60, m1032–m1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, L.-L., Liu, J.-S. & Song, W.-D. (2011). Acta Cryst. E67, m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, H.-T., Liu, Y.-F. & Li, S.-A. (2006). Acta Cryst. E62, m2653–m2655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y.-Q., Li, C.-H. L. W. & Kuang, Y.-F. (2008). Chin. J. Struct. Chem. 30, 4524–4530.  Google Scholar
First citationYin, F.-J., Zhao, H. & Hu, X.-L. (2010). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 40, 606–612.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds