organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-[1,4-Phenyl­enebis(methyl­enesulfanedi­yl)]bis­­[1,3,4-thia­diazol-2(3H)-one] di­methyl sulfoxide disolvate

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 9 February 2012; accepted 13 February 2012; online 17 February 2012)

The asymmetric unit of the title compound, C12H10N4O2S4·2C2H6OS, contains one half of the p-xylene mol­ecule and one dimethyl sulfoxide mol­ecule. The p-xylene mol­ecule is located about a crystallographic inversion centre. In the mol­ecule, the thia­diazole and benzene rings are almost perpendicular to one another, with a dihedral angle of 88.95 (6)°. In the crystal, an N—H⋯O hydrogen bond is observed between the two components. The dimethyl sulfoxide mol­ecule is disordered over two orientations with an occupancy ratio of 0.879 (1):0.121 (1).

Related literature

For general background to polydentate macrocyclic compounds, see: Dietrich et al. (1993[Dietrich, B., Viout, P. & Lehn, J. M. (1993). In Macrocyclic Chemistry: Aspects of Organic and Inorganic Supramolecular Chemistry. Weinheim: VCH.]); Vogle (1991[Vogle, F. (1991). In Supramolecular Chemistry. Chichester: Wiley.]). For the synthesis and reactivity of thia­diazole derivatives, see: Cho et al. (1998[Cho, N. S., Park, C. K., Kim, H. S., Choi, E. S. & Kang, S. K. (1998). Bull. Korean Chem. Soc. 19, 103-106.], 1999[Cho, N. S., Park, C. K., Kim, H. S., Oh, J. G., Suh, I. H. & Oh, M. R. (1999). Heterocycles, 51, 2739-2746.], 2001[Cho, N. S., Hong, S. I., Park, Y. S. & Suh, I. H. (2001). Bull. Korean Chem. Soc. 22, 1280-1282.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4O2S4·2C2H6OS

  • Mr = 526.74

  • Triclinic, [P \overline 1]

  • a = 7.5723 (15) Å

  • b = 8.3258 (17) Å

  • c = 10.346 (2) Å

  • α = 109.70 (4)°

  • β = 95.74 (3)°

  • γ = 91.15 (3)°

  • V = 610.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.18 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.923

  • 21342 measured reflections

  • 3039 independent reflections

  • 2124 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.02

  • 3039 reflections

  • 162 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O13 0.91 (2) 1.83 (2) 2.742 (3) 175.6 (19)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polydentate macrocyclic compounds containing heterocyclic rings as subunits possess a variety of interesting properties. Heterocyclic units contain oxygen, nitrogen or sulfur, which provide the coordination sites allowing the heterocycles to form complexes with metals and act as effective hosts for different kinds of molecules (Dietrich et al., 1993; Vogle, 1991). We studied on macrocyclic compounds composed of two 5-mercapto-2,3-dihydro-1,3,4-thiadizol-2-ones and two p-xylenes (Cho et al., 1998, 1999, 2001). The NH of the title compound, α,α'-bis[(4,5-dihydro-5-oxo-1,3,4-thiazol-2-yl)thio]-p-xylene (I) is acidic enough to be alkylated in triethylamine with alkyl halide. The two NH functional groups can afford ring formation through an [2 + 2] alkylation.

The 5-oxo-1,3,4-thiadiazol-2-yl unit is planar, with an r.m.s. deviation of 0.004 Å from the corresponding squares plane defined by the seven constituent atoms. There is a crystallographic inversion center located in the middle of benzene ring. The bond distance of N4—C5 [1.281 (2) Å] is shorter than that of C2—N3 [1.337 (2) Å], which is consistent with double bond character. The thiadiazole and benzene rings are almost perpendicular to each other, with a dihedral angle 88.95 (6)°. The crystal structure is stabilized by the intermolecular N—H···O hydrogen bonds between the p-xylene compound and the dimethyl sulfoxide molecules (Fig. 1 and Table 1).

Related literature top

For general background to polydentate macrocyclic compounds, see: Dietrich et al. (1993); Vogle (1991). For the synthesis and reactivity of thiadiazole derivatives, see: Cho et al. (1998, 1999, 2001).

Experimental top

To a solution of α,α'-bis[(5-ethoxy-1,3,4-thiadiazol-2-yl)thio]-p-xylene (Cho et al., 1999, 2001) (2.56 g, 6 mmol) in ethanol (20 ml), was added HBr (47%, 3.5 ml, 30 mmol), in one portion. The mixture was heated under reflux until the above p-xylene compound was disappeared on TLC. The solvent evaporated under reduced pressure to leave a solid residue, which was washed with water. The crude product was recrystallized from EtOH:THF = 3:1. Colorless crystals of (I) were obtained from its DMSO solution by slow evaporation of the solvent at room temperature. Yield 92%, m.p. 208–210°C; Rf: 0.63 (n-hexane: EA = 5: 5); IR (KBr pellet, cm-1): 3120 (NH), 3062, 2950 (CH), 1656 (CO), 1500, 1200; 1H NMR (DMSO-d6, p.p.m.): 12.95(2H, s, NH), 7.35(4H, s, C6H4), 4.32(4H, s, SCH2); 13C NMR (DMSO-d6, p.p.m.): 171.4 (C=O), 147.8 (C—S), 135.9, 129.2, (C6H4), 36.2 (SCH2).

Refinement top

Atom H3 of the NH group was located in a difference Fourier map and refined freely [refined distance: N—H = 0.91 (2) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier C) for aromatic and methylene, and 1.5Ueq(carrier C) for methyl H atoms. DMSO molecule is disordered with an occupancy ratio of 0.879 (1):0.121 (1). For the minor component of the disordered DMSO molecule, bond length restraints of SO = 1.49 (2) Å and S—C = 1.80 (2) Å were employed.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···O hydrogen bonds are indicated by dashed lines. Only major components of the disordered dimethyl sulfoxide molecule are shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···O hydrogen bonds (dashed lines).
5-({4-[(5-oxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)methyl]phenyl}methyl)- 2,3-dihydro-1,3,4-thiadiazol-2-one dimethyl sulfoxide disolvate top
Crystal data top
C12H10N4O2S4·2C2H6OSZ = 1
Mr = 526.74F(000) = 274
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5723 (15) ÅCell parameters from 5678 reflections
b = 8.3258 (17) Åθ = 2.6–25.2°
c = 10.346 (2) ŵ = 0.59 mm1
α = 109.70 (4)°T = 296 K
β = 95.74 (3)°Block, colourless
γ = 91.15 (3)°0.18 × 0.17 × 0.12 mm
V = 610.0 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.895, Tmax = 0.923k = 1111
21342 measured reflectionsl = 1313
3039 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
3039 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.16 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H10N4O2S4·2C2H6OSγ = 91.15 (3)°
Mr = 526.74V = 610.0 (2) Å3
Triclinic, P1Z = 1
a = 7.5723 (15) ÅMo Kα radiation
b = 8.3258 (17) ŵ = 0.59 mm1
c = 10.346 (2) ÅT = 296 K
α = 109.70 (4)°0.18 × 0.17 × 0.12 mm
β = 95.74 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2124 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.923Rint = 0.083
21342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
3039 reflectionsΔρmin = 0.22 e Å3
162 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.76776 (6)0.37928 (6)0.42321 (5)0.07516 (18)
C20.7758 (2)0.3744 (2)0.59474 (19)0.0668 (4)
N30.62432 (19)0.2937 (2)0.60130 (16)0.0688 (4)
H30.589 (3)0.282 (3)0.679 (2)0.090 (7)*
N40.50062 (17)0.23800 (17)0.48623 (14)0.0611 (3)
C50.55873 (19)0.27358 (19)0.38640 (17)0.0549 (4)
O60.89774 (16)0.43193 (18)0.68683 (15)0.0946 (5)
S70.44211 (6)0.22149 (6)0.22259 (5)0.06970 (16)
C80.2421 (2)0.1210 (2)0.25284 (16)0.0598 (4)
H8A0.27290.02570.2830.072*
H8B0.18480.20270.32490.072*
C90.11735 (19)0.05870 (19)0.12143 (15)0.0516 (3)
C100.0134 (2)0.1597 (2)0.09349 (16)0.0610 (4)
H100.02280.26870.15630.073*
C110.1302 (2)0.1018 (2)0.02588 (16)0.0603 (4)
H110.21810.17130.04210.072*
S120.32235 (7)0.21416 (7)0.85488 (5)0.0693 (2)0.8786 (14)
O130.5091 (2)0.2414 (3)0.8277 (2)0.0771 (6)0.8786 (14)
C140.1951 (5)0.1372 (4)0.6870 (4)0.0807 (9)0.8786 (14)
H14A0.22320.02180.6390.121*0.8786 (14)
H14B0.22380.20840.6350.121*0.8786 (14)
H14C0.07060.14020.69750.121*0.8786 (14)
C150.2328 (6)0.4158 (6)0.9137 (4)0.0964 (12)0.8786 (14)
H15A0.29070.48031.00390.145*0.8786 (14)
H15B0.10780.40170.91830.145*0.8786 (14)
H15C0.25110.47570.85090.145*0.8786 (14)
S12A0.3220 (5)0.3284 (5)0.7826 (4)0.0717 (14)0.1214 (14)
O13A0.5108 (17)0.3036 (17)0.8234 (16)0.057 (4)*0.1214 (14)
C14A0.209 (5)0.126 (3)0.729 (3)0.093 (11)*0.1214 (14)
H14D0.290.03940.69390.14*0.1214 (14)
H14E0.11460.11940.65730.14*0.1214 (14)
H14F0.15950.11020.80580.14*0.1214 (14)
C15A0.250 (5)0.410 (5)0.952 (2)0.087 (10)*0.1214 (14)
H15D0.35010.46421.01830.13*0.1214 (14)
H15E0.19980.31760.97460.13*0.1214 (14)
H15F0.16230.49180.9530.13*0.1214 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0514 (3)0.0787 (3)0.0898 (4)0.0150 (2)0.0004 (2)0.0249 (2)
C20.0489 (9)0.0614 (10)0.0737 (11)0.0010 (7)0.0108 (8)0.0069 (8)
N30.0541 (8)0.0853 (10)0.0560 (8)0.0119 (7)0.0137 (7)0.0162 (7)
N40.0495 (7)0.0731 (9)0.0527 (7)0.0090 (6)0.0092 (6)0.0159 (6)
C50.0436 (8)0.0553 (8)0.0607 (9)0.0018 (6)0.0025 (7)0.0156 (7)
O60.0600 (8)0.0931 (10)0.0981 (10)0.0088 (7)0.0304 (7)0.0017 (8)
S70.0588 (3)0.0926 (3)0.0573 (3)0.0129 (2)0.00617 (19)0.0296 (2)
C80.0500 (9)0.0749 (10)0.0494 (8)0.0074 (7)0.0062 (7)0.0184 (7)
C90.0442 (8)0.0595 (9)0.0460 (8)0.0028 (6)0.0026 (6)0.0139 (7)
C100.0565 (9)0.0579 (9)0.0562 (9)0.0060 (7)0.0038 (7)0.0062 (7)
C110.0512 (9)0.0627 (10)0.0600 (9)0.0109 (7)0.0066 (7)0.0149 (7)
S120.0666 (3)0.0796 (4)0.0724 (4)0.0135 (2)0.0099 (2)0.0388 (3)
O130.0570 (9)0.1063 (17)0.0751 (10)0.0135 (10)0.0017 (7)0.0413 (12)
C140.0665 (16)0.0774 (18)0.085 (2)0.0001 (11)0.0046 (15)0.0146 (15)
C150.0810 (19)0.098 (2)0.088 (2)0.0245 (14)0.0073 (19)0.007 (2)
S12A0.064 (2)0.092 (3)0.070 (2)0.0013 (18)0.0017 (17)0.045 (2)
Geometric parameters (Å, º) top
S1—C51.7385 (16)S12—O131.4964 (19)
S1—C21.784 (2)S12—C151.757 (4)
C2—O61.220 (2)S12—C141.802 (4)
C2—N31.337 (2)C14—H14A0.96
N3—N41.3772 (18)C14—H14B0.96
N3—H30.91 (2)C14—H14C0.96
N4—C51.281 (2)C15—H15A0.96
C5—S71.7406 (17)C15—H15B0.96
S7—C81.8202 (17)C15—H15C0.96
C8—C91.502 (2)S12A—O13A1.488 (13)
C8—H8A0.97S12A—C14A1.758 (18)
C8—H8B0.97S12A—C15A1.796 (18)
C9—C111.380 (2)C14A—H14D0.96
C9—C101.382 (2)C14A—H14E0.96
C10—C11i1.379 (2)C14A—H14F0.96
C10—H100.93C15A—H15D0.96
C11—C10i1.379 (2)C15A—H15E0.96
C11—H110.93C15A—H15F0.96
C5—S1—C288.75 (8)C15—S12—C1497.27 (19)
O6—C2—N3127.16 (19)S12—C14—H14A109.5
O6—C2—S1126.18 (16)S12—C14—H14B109.5
N3—C2—S1106.66 (12)H14A—C14—H14B109.5
C2—N3—N4119.02 (16)S12—C14—H14C109.5
C2—N3—H3125.3 (14)H14A—C14—H14C109.5
N4—N3—H3115.3 (14)H14B—C14—H14C109.5
C5—N4—N3109.97 (14)S12—C15—H15A109.5
N4—C5—S1115.59 (12)S12—C15—H15B109.5
N4—C5—S7123.92 (12)H15A—C15—H15B109.5
S1—C5—S7120.48 (10)S12—C15—H15C109.5
C5—S7—C898.72 (8)H15A—C15—H15C109.5
C9—C8—S7109.26 (12)H15B—C15—H15C109.5
C9—C8—H8A109.8O13A—S12A—C14A106.7 (13)
S7—C8—H8A109.8O13A—S12A—C15A98.7 (13)
C9—C8—H8B109.8C14A—S12A—C15A97.6 (18)
S7—C8—H8B109.8S12A—C14A—H14D109.5
H8A—C8—H8B108.3S12A—C14A—H14E109.5
C11—C9—C10118.39 (13)H14D—C14A—H14E109.5
C11—C9—C8120.59 (14)S12A—C14A—H14F109.5
C10—C9—C8121.02 (14)H14D—C14A—H14F109.5
C11i—C10—C9121.18 (14)H14E—C14A—H14F109.5
C11i—C10—H10119.4S12A—C15A—H15D109.5
C9—C10—H10119.4S12A—C15A—H15E109.5
C10i—C11—C9120.43 (14)H15D—C15A—H15E109.5
C10i—C11—H11119.8S12A—C15A—H15F109.5
C9—C11—H11119.8H15D—C15A—H15F109.5
O13—S12—C15107.4 (2)H15E—C15A—H15F109.5
O13—S12—C14105.18 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O130.91 (2)1.83 (2)2.742 (3)175.6 (19)

Experimental details

Crystal data
Chemical formulaC12H10N4O2S4·2C2H6OS
Mr526.74
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5723 (15), 8.3258 (17), 10.346 (2)
α, β, γ (°)109.70 (4), 95.74 (3), 91.15 (3)
V3)610.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.18 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.895, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
21342, 3039, 2124
Rint0.083
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.02
No. of reflections3039
No. of parameters162
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O130.91 (2)1.83 (2)2.742 (3)175.6 (19)
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Hong, S. I., Park, Y. S. & Suh, I. H. (2001). Bull. Korean Chem. Soc. 22, 1280–1282.  CAS Google Scholar
First citationCho, N. S., Park, C. K., Kim, H. S., Choi, E. S. & Kang, S. K. (1998). Bull. Korean Chem. Soc. 19, 103–106.  CAS Google Scholar
First citationCho, N. S., Park, C. K., Kim, H. S., Oh, J. G., Suh, I. H. & Oh, M. R. (1999). Heterocycles, 51, 2739–2746.  CAS Google Scholar
First citationDietrich, B., Viout, P. & Lehn, J. M. (1993). In Macrocyclic Chemistry: Aspects of Organic and Inorganic Supramolecular Chemistry. Weinheim: VCH.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogle, F. (1991). In Supramolecular Chemistry. Chichester: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds