organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o526-o527

(3R,4S,5S,8S,10R,13R)-3-Hy­dr­oxy­kaura-9(11),16-dien-18-oic acid

aCentre for Phytochemistry and Pharmacology, Southern Cross University, Lismore Campus, NSW 2480, Australia, and bSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: karren.beattie@hotmail.com

(Received 19 September 2011; accepted 18 January 2012; online 25 January 2012)

The title compound, C20H28O3, was isolated during our investigation into the chemical composition and pharmacological activity of Centipeda cunninghamii (DC.) A. Braun & Asch. (Asteraceae). The enanti­opure compound, a diterpene with a carbon skeleton, is composed of three six- and one five-membered rings in chair, twist-boat, half-chair and envelope conformations, respectively. Each mol­ecule makes one intra- and one inter­molecular O—H⋯O hydrogen bond in the crystal lattice, forming hydrogen-bonded chains along [010]. The absolute configuration of the compound was assigned on the basis of optical rotation measurements.

Related literature

For the characterization of related kaurane diterpenes, see: Reynolds et al. (1991[Reynolds, W. F., Lough, A. J., Sawyer, J. F., Enriquez, R. G., Ortiz, B. & Walls, F. (1991). Acta Cryst. C47, 973-977.]); Piozzi et al. (1972[Piozzi, F., Passannanti, S., Marino, M. L. & Spiro, V. (1972). Can. J. Chem. 62, 109-112.]). For literature on the occurrence of the 3S isomer of the title compound isolated from Ichthyothere terminalis and Pseudognaphalium cheiranthifolium, see: Bohlmann et al. (1982[Bohlmann, F., Jakupovic, J., Schuster, A., King, R. M. & Robinson, H. (1982). Phytochemistry, 21, 2317-2327.]); Mendoza & Urzúa (1998[Mendoza, L. & Urzúa, A. (1998). Biochem. Syst. Ecol. 26, 469-471.]). For the anti­bacterial activity of the 3S isomer, see: Mendoza et al. (1997[Mendoza, L., Wilkens, M. & Urzúa, A. (1997). J. Ethnopharmacol. 58, 85-88.]). For phytopharmacological aspects of Centipeda cunninghamii, see: Campbell (1973[Campbell, A. (1973). Aust. J. Pharm. 54, 894-900.]); Cribb (1988[Cribb, A. B. (1988). Wild Medicines in Australia. Collins: Sydney.]); D'Amelio & Mirhom, (1998[D'Amelio, F. S. & Mirhom, Y. W. (1998). World Patent WO9838971.]); Maiden (1975[Maiden, J. H. (1975). The Useful Native Plants of Australia (including Tasmania). Melbourne: Compendium; Sydney: Turner and Henderson.]); Webb (1948[Webb, L. J. (1948). Guide to Medicinal and Poisonous Plants of Queensland. Melbourne: Council for Scientific and Industrial Research.]). For optical rotation data of related compounds, see: Bohlmann et al. (1982[Bohlmann, F., Jakupovic, J., Schuster, A., King, R. M. & Robinson, H. (1982). Phytochemistry, 21, 2317-2327.]); Brieskorn & Pöhlmann (1968[Brieskorn, C. H. & Pöhlmann, E. (1968). Tetrahedron Lett. 54, 5661-5664.]); Reynolds et al. (1991[Reynolds, W. F., Lough, A. J., Sawyer, J. F., Enriquez, R. G., Ortiz, B. & Walls, F. (1991). Acta Cryst. C47, 973-977.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O3

  • Mr = 316.4

  • Monoclinic, P 21

  • a = 8.064 (2) Å

  • b = 10.775 (3) Å

  • c = 10.462 (4) Å

  • β = 109.70 (2)°

  • V = 855.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1586 measured reflections

  • 1586 independent reflections

  • 1254 reflections with I > 2σ(I)

  • Rint = 0.000

  • 1 standard reflections every 30 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.05

  • 1586 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O1i 0.82 (5) 1.83 (5) 2.637 (4) 169 (5)
O1—H1O1⋯O2 0.96 (7) 1.94 (6) 2.651 (4) 129 (5)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound C20H28O3 [Fig. 1., systematic name (3R,4S,5S,8S,10R,13R)-3-hydroxykaura-9(11),16-dien-18-oic acid], a diterpene, was isolated during our investigation into the chemical composition and pharmacological activity of active components of Centipeda cunninghamii. The herb is native to Australia and New Zealand and has been utilized by the Aboriginals to treat infection (Campbell, 1973; Cribb, 1988; D'Amelio & Mirhom, 1998) and inflammation (Maiden, 1975; Webb, 1948). Compound (I) crystallizes in the monoclinic chiral space group P21. The carbon skeleton is composed of three six- and one five-membered rings in chair (ring A), twist-boat (ring B), half-chair (ring C) and envelope conformations (ring D). In the unit cell, two symmetry equivalent molecules make an intramolecular O—H···O bond between the 3-OH (O1) and the carbonyl oxygen (O2) and are linked by intermolecular O—H···O hydrogen bonds involving the carboxylic hydroxyl group (O3, donor) and the 3-OH group (O1, acceptor) into infinite chains extending parallel to the b axis (Fig. 2; Table 1).

The majority of the ent-kaurane diterpenes characteristically exhibit negative values for optical rotation with the exception of those that feature a double bond between C9 and C11. Piozzi and co-workers (Piozzi et al., 1972) have demonstrated that sequential catalytic hydrogenation of the exocyclic C16—C17 and the endocyclic C9—C11 double bonds in grandiflorenic acid [(4α)-kaura-9(11),16-dien-18-oic acid] transforms the optical rotation from +38 to +43° and subsequently to -80° in the saturated product. More recently Reynolds and co-workers (Reynolds et al., 1991) have analysed the solid state and solution characteristics of grandiflorenic acid, and have determined that the introduction of the C9—C11 double bond in grandiflorenic acid has a drastic effect on the molecular conformation and consequently on optical rotation, whereby the B ring adopts a boat conformation compared to the regular chair conformation in kaurenoic acid. In the case of compound (I) the observed rotation is [α]D22 + 30.8° (c 0.12, MeOH), which is in agreement with values for the methyl ester derivative of the 3S isomer, +15° (Bohlmann et al., 1982) and the closely related grandiflorenic acid +32.1° (Brieskorn & Pöhlmann, 1968) and + 46° (Reynolds et al., 1991) and establishes the 3R,4S,5S,8S,10R,13R absolute stereochemistry of compound (I). The 3S isomer of compound (I) has been obtained previously from Ichthyothere terminalis (Bohlmann et al., 1982) and Pseudognaphalium cheiranthifolium (Mendoza & Urzúa, 1998). The antibacterial activity of the 3S isomer has also been evaluated and is described in Mendoza et al. (1997).

Related literature top

For the characterization of related kaurane diterpenes, see: Reynolds et al. (1991); Piozzi et al. (1972). For literature on the occurrence of the 3S isomer of the title compound isolated from Ichthyothere terminalis and Pseudognaphalium cheiranthifolium, see: Bohlmann et al. (1982); Mendoza & Urzúa (1998). For the antibacterial activity of the 3S isomer, see: Mendoza et al. (1997). For phytopharmacological aspects of Centipeda cunninghamii, see: Campbell (1973); Cribb (1988); D'Amelio & Mirhom, (1998); Maiden (1975); Webb (1948). For optical rotation data of related compounds, see: Bohlmann et al. (1982); Brieskorn & Pöhlmann (1968); Reynolds et al. (1991).

Experimental top

The whole, air-dried flowers of Centipeda cunninghamii (100 g) were extracted in 100% ethanol (1 L) overnight at ambient temperatures with stirring. The resulting extract was filtered and then partitioned with hexane (3 × 200 ml). The hexane soluble fraction (2.8 g, 2.8% yield w/w) was evaporated and then subjected to reverse phase preparative HPLC (Gilson preparative HPLC system; Phenomenex Luna C18 column, 5 µm, 50 mm × 21.2 mm; sample loading 50 - 100 mg/injection). The column was eluted using a stepwise gradient of H2O/CH3CN containing 0.05% CF3COOH (3:2 to 1:3 over 16.4 min; 1:3 isocratic for 3.6 min; then 1:3 to 1:9 over 1.0 min; then 1:9 isocratic for 7 minutes) at a flow rate of 15 ml/min. Crystals suitable for X-ray diffraction were obtained by slow evaporation of the H2O/CH3CN HPLC eluent of (I).

(3R,4S,5S,8S,10R,13R)- 3-Hydroxykaura-9(11),16-dien-18-oic acid (I): Colourless needles (ACN/H2O) (26.5 mg, 1.0% yield w/w, not optimized); [α]D22 + 30.8° (c 0.12, MeOH); 1H NMR (500 MHz, CD3OD): δ 5.26 (1H, t, J = 3.3 Hz, H-11), 4.89 (1H, d, J = 1.1 Hz, H-17a), 4.77 (1H, br s, H-17b), 3.17 (1H, dd, J = 4.4, 12.1 Hz, H-3), 2.74 (1H, br s, H-13), 2.61 (1H, br d, J = 14.8 Hz, H-15a), 2.44 - 2.40 (1H, m, H-12a), 2.41 - 2.35 (1H, m, H-6a), 2.29 - 2.16 (1H, m, H-2a), 2.20 - 2.16 (1H, m, H-15b), 2.04 (1H, m, H-1a), 1.99 - 1.95 (1H, m. H-7a), 1.99 - 1.95 (1H, m, H-12b), 1.93 – 1.85 (1H, m, H-6 b), 1.68 - 1.74 (1H, m, H-2 b), 1.65 – 1.62 (1H, m, H-5), 1.63 - 1.60 (1H, m, H-14a), 1.51 - 1.47 (1H, m, H-7 b), 1.51 - 1.47 (1H, m, H-14b), 1.38 - 1.32 (1H, m, H-1 b), 1.36 (3H, s, H-19), 1.10 (3H, s, H-20); Lit. (3S isomer as the methyl ester derivative, see Bohlmann et al., 1982); 13C NMR (126 MHz, CD3OD): δ 180.1 (C, C-18), 159.6 (C, C-16), 157.3 (C, C-9), 116.3 (CH, C-11), 106.2 (CH2, C-17), 79.4 (CH, C-3), 51.5 (CH2, C-15), 51.3 (C, C-4), 47.0 (CH, C-5), 46.2 (CH2, C-14), 43.6 (C, C-8), 42.8 (CH, C-13), 40.4 (CH2, C-1), 39.7 (C, C-10), 39.1 (CH2, C-12), 31.0 (CH2, C-7), 29.9 (CH2, C-2), 24.6 (CH3, C-19), 24.4 (CH3, C-20), 19.8 (CH2, C-6); (+)-LRAPCIMS m/z (rel. int.): 316 [M+H+, 0%], 299 (100), 271 (59), 253 (93), 225 (6); (+)-HRAPCIMS m/z (rel. int): 317.2109 calcd for C20H29O3, 317.2118 (Δ0.0009 a.m.u.).

Refinement top

C-bonded H-atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for the rest. The two O-bonded H-atoms were fully refined. The absolute configuration was assigned by comparison of a similar moiety using NMR spectral data and optical rotation, see section Comment. No Friedel pairs were measured and the refined Flack absolute structure parameter, 1(2), was inconclusive.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a axis depicting intra and inter molecular O—H···O hydrogen bonding.
(3R,4S,5S,8S,10R,13R)- 3-Hydroxykaura-9(11),16-dien-18-oic acid top
Crystal data top
C20H28O3F(000) = 344
Mr = 316.4Dx = 1.228 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11 reflections
a = 8.064 (2) Åθ = 10–11°
b = 10.775 (3) ŵ = 0.08 mm1
c = 10.462 (4) ÅT = 296 K
β = 109.70 (2)°Block, colourless
V = 855.8 (5) Å30.30 × 0.25 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 99
ω–2θ scansk = 012
1586 measured reflectionsl = 012
1586 independent reflections1 standard reflections every 30 min
1254 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1586 reflectionsΔρmax = 0.15 e Å3
218 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: deduced from optical rotation
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H28O3V = 855.8 (5) Å3
Mr = 316.4Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.064 (2) ŵ = 0.08 mm1
b = 10.775 (3) ÅT = 296 K
c = 10.462 (4) Å0.30 × 0.25 × 0.10 mm
β = 109.70 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
1586 measured reflections1 standard reflections every 30 min
1586 independent reflections intensity decay: none
1254 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
1586 reflectionsΔρmin = 0.17 e Å3
218 parametersAbsolute structure: deduced from optical rotation
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3554 (4)0.4597 (3)0.9863 (3)0.0658 (8)
O20.4220 (4)0.2189 (3)0.9850 (2)0.0620 (7)
O30.5758 (4)0.1598 (3)0.8595 (3)0.0678 (9)
C10.0447 (4)0.3543 (4)0.6459 (4)0.0521 (10)
C20.1154 (5)0.3753 (4)0.7994 (4)0.0511 (9)
C30.2956 (5)0.4335 (3)0.8438 (3)0.0473 (9)
C40.4293 (4)0.3558 (3)0.8032 (3)0.0395 (8)
C50.3551 (4)0.3369 (3)0.6461 (3)0.0359 (7)
C60.4877 (5)0.2789 (4)0.5853 (3)0.0520 (9)
C70.4047 (5)0.2222 (4)0.4458 (3)0.0572 (10)
C80.2344 (4)0.2860 (4)0.3602 (3)0.0460 (8)
C90.1005 (4)0.2857 (3)0.4348 (3)0.0435 (8)
C100.1677 (4)0.2779 (3)0.5907 (3)0.0399 (8)
C110.0703 (5)0.2924 (4)0.3625 (4)0.0587 (10)
C120.1416 (5)0.3019 (4)0.2107 (4)0.0667 (12)
C130.0059 (6)0.3158 (4)0.1511 (4)0.0609 (11)
C140.1503 (6)0.2238 (4)0.2209 (4)0.0645 (11)
C150.2579 (5)0.4187 (4)0.3156 (3)0.0499 (9)
C160.0971 (5)0.4395 (4)0.1910 (3)0.0485 (9)
C170.0429 (5)0.5449 (4)0.1297 (4)0.0567 (10)
C180.4701 (4)0.2379 (3)0.8902 (3)0.0422 (8)
C190.6049 (5)0.4288 (4)0.8399 (4)0.0578 (10)
C200.1658 (5)0.1410 (4)0.6329 (4)0.0518 (9)
H1A0.02410.43440.60090.062*
H1B0.06790.31210.62250.062*
H1O10.353 (7)0.381 (6)1.029 (6)0.11 (2)*
H1O30.598 (6)0.104 (5)0.916 (5)0.070 (14)*
H2A0.03520.42890.82510.061*
H2B0.12120.29650.84550.061*
H3A0.28440.51330.79660.057*
H50.33780.42150.60960.043*
H6A0.57000.34270.57990.062*
H6B0.55450.21520.64670.062*
H7A0.38020.13530.45610.069*
H7B0.48860.22620.39770.069*
H110.15040.29120.40890.070*
H12A0.21970.37300.18470.080*
H12B0.20970.22810.17360.080*
H130.03730.30440.05240.073*
H14A0.23400.21540.17320.077*
H14B0.10240.14290.22940.077*
H15A0.26180.47810.38630.060*
H15B0.36520.42600.29370.060*
H17A0.06000.54800.05490.068*
H17B0.10710.61710.16100.068*
H19A0.64170.45300.93360.087*
H19B0.58810.50140.78390.087*
H19C0.69360.37710.82500.087*
H20A0.04910.10800.59290.078*
H20B0.20060.13560.73000.078*
H20C0.24640.09420.60210.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (2)0.0543 (18)0.0541 (17)0.0171 (15)0.0310 (15)0.0191 (14)
O20.0852 (18)0.0558 (16)0.0539 (14)0.0077 (16)0.0353 (14)0.0151 (14)
O30.0799 (19)0.0664 (19)0.0635 (19)0.0311 (16)0.0324 (16)0.0300 (16)
C10.0394 (19)0.061 (2)0.054 (2)0.0037 (18)0.0125 (16)0.0050 (19)
C20.053 (2)0.046 (2)0.060 (2)0.0081 (18)0.0275 (18)0.0023 (18)
C30.067 (2)0.0321 (18)0.047 (2)0.0034 (17)0.0240 (17)0.0033 (16)
C40.0405 (18)0.0345 (18)0.0401 (18)0.0065 (15)0.0094 (14)0.0001 (15)
C50.0370 (16)0.0337 (16)0.0352 (16)0.0009 (14)0.0100 (13)0.0038 (14)
C60.0451 (18)0.066 (2)0.0468 (19)0.0127 (19)0.0179 (16)0.0072 (19)
C70.070 (2)0.056 (2)0.052 (2)0.020 (2)0.0293 (18)0.008 (2)
C80.055 (2)0.0439 (19)0.0368 (17)0.0057 (18)0.0120 (15)0.0002 (16)
C90.053 (2)0.0355 (16)0.0396 (17)0.0086 (17)0.0127 (15)0.0014 (15)
C100.0408 (18)0.0368 (18)0.0406 (18)0.0055 (16)0.0119 (15)0.0012 (15)
C110.052 (2)0.065 (2)0.051 (2)0.020 (2)0.0080 (18)0.004 (2)
C120.063 (2)0.070 (3)0.048 (2)0.025 (2)0.0063 (19)0.004 (2)
C130.085 (3)0.054 (3)0.0337 (18)0.001 (2)0.0073 (19)0.0051 (16)
C140.095 (3)0.047 (2)0.047 (2)0.007 (2)0.019 (2)0.0020 (19)
C150.052 (2)0.055 (2)0.0442 (19)0.0005 (18)0.0193 (16)0.0042 (18)
C160.059 (2)0.049 (2)0.0421 (19)0.0009 (18)0.0233 (16)0.0043 (17)
C170.049 (2)0.058 (2)0.065 (2)0.0036 (19)0.0203 (17)0.009 (2)
C180.0398 (17)0.0418 (18)0.0397 (17)0.0048 (16)0.0061 (15)0.0008 (16)
C190.052 (2)0.057 (2)0.058 (2)0.017 (2)0.0090 (18)0.0025 (19)
C200.064 (2)0.042 (2)0.046 (2)0.0102 (18)0.0138 (17)0.0012 (17)
Geometric parameters (Å, º) top
O1—C31.432 (4)C8—C151.536 (5)
O1—H1O10.96 (7)C8—C141.538 (5)
O2—C181.198 (4)C9—C111.331 (5)
O3—C181.312 (4)C9—C101.537 (4)
O3—H1O30.82 (5)C10—C201.541 (5)
C1—C21.529 (5)C11—C121.499 (5)
C1—C101.544 (5)C11—H110.9300
C1—H1A0.9700C12—C131.525 (6)
C1—H1B0.9700C12—H12A0.9700
C2—C31.505 (5)C12—H12B0.9700
C2—H2A0.9700C13—C161.511 (6)
C2—H2B0.9700C13—C141.516 (6)
C3—C41.534 (5)C13—H130.9800
C3—H3A0.9800C14—H14A0.9700
C4—C181.532 (5)C14—H14B0.9700
C4—C191.551 (5)C15—C161.514 (5)
C4—C51.562 (4)C15—H15A0.9700
C5—C61.549 (5)C15—H15B0.9700
C5—C101.559 (4)C16—C171.305 (6)
C5—H50.9800C17—H17A0.9300
C6—C71.514 (5)C17—H17B0.9300
C6—H6A0.9700C19—H19A0.9600
C6—H6B0.9700C19—H19B0.9600
C7—C81.527 (5)C19—H19C0.9600
C7—H7A0.9700C20—H20A0.9600
C7—H7B0.9700C20—H20B0.9600
C8—C91.531 (5)C20—H20C0.9600
C3—O1—H1O1105 (4)C9—C10—C1109.0 (3)
C18—O3—H1O3107 (3)C20—C10—C1109.5 (3)
C2—C1—C10114.4 (3)C9—C10—C5108.8 (2)
C2—C1—H1A108.7C20—C10—C5112.7 (3)
C10—C1—H1A108.7C1—C10—C5107.9 (3)
C2—C1—H1B108.7C9—C11—C12124.1 (4)
C10—C1—H1B108.7C9—C11—H11118.0
H1A—C1—H1B107.6C12—C11—H11118.0
C3—C2—C1111.4 (3)C11—C12—C13111.5 (3)
C3—C2—H2A109.3C11—C12—H12A109.3
C1—C2—H2A109.3C13—C12—H12A109.3
C3—C2—H2B109.3C11—C12—H12B109.3
C1—C2—H2B109.3C13—C12—H12B109.3
H2A—C2—H2B108.0H12A—C12—H12B108.0
O1—C3—C2110.8 (3)C16—C13—C14102.7 (3)
O1—C3—C4112.0 (3)C16—C13—C12110.4 (3)
C2—C3—C4112.5 (3)C14—C13—C12108.5 (3)
O1—C3—H3A107.1C16—C13—H13111.6
C2—C3—H3A107.1C14—C13—H13111.6
C4—C3—H3A107.1C12—C13—H13111.6
C18—C4—C3108.6 (3)C13—C14—C8101.2 (3)
C18—C4—C19106.2 (3)C13—C14—H14A111.5
C3—C4—C19108.8 (3)C8—C14—H14A111.5
C18—C4—C5116.5 (3)C13—C14—H14B111.5
C3—C4—C5107.9 (3)C8—C14—H14B111.5
C19—C4—C5108.7 (3)H14A—C14—H14B109.4
C6—C5—C10113.6 (3)C16—C15—C8104.0 (3)
C6—C5—C4114.4 (3)C16—C15—H15A111.0
C10—C5—C4115.1 (2)C8—C15—H15A111.0
C6—C5—H5104.0C16—C15—H15B111.0
C10—C5—H5104.0C8—C15—H15B111.0
C4—C5—H5104.0H15A—C15—H15B109.0
C7—C6—C5114.6 (3)C17—C16—C13125.5 (3)
C7—C6—H6A108.6C17—C16—C15126.8 (4)
C5—C6—H6A108.6C13—C16—C15107.7 (3)
C7—C6—H6B108.6C16—C17—H17A120.0
C5—C6—H6B108.6C16—C17—H17B120.0
H6A—C6—H6B107.6H17A—C17—H17B120.0
C6—C7—C8113.7 (3)O2—C18—O3120.7 (3)
C6—C7—H7A108.8O2—C18—C4124.7 (3)
C8—C7—H7A108.8O3—C18—C4114.4 (3)
C6—C7—H7B108.8C4—C19—H19A109.5
C8—C7—H7B108.8C4—C19—H19B109.5
H7A—C7—H7B107.7H19A—C19—H19B109.5
C7—C8—C9110.5 (3)C4—C19—H19C109.5
C7—C8—C15114.8 (3)H19A—C19—H19C109.5
C9—C8—C15109.7 (3)H19B—C19—H19C109.5
C7—C8—C14112.5 (3)C10—C20—H20A109.5
C9—C8—C14108.7 (3)C10—C20—H20B109.5
C15—C8—C14100.2 (3)H20A—C20—H20B109.5
C11—C9—C8118.8 (3)C10—C20—H20C109.5
C11—C9—C10122.3 (3)H20A—C20—H20C109.5
C8—C9—C10118.9 (3)H20B—C20—H20C109.5
C9—C10—C20108.8 (3)
C10—C1—C2—C354.8 (4)C2—C1—C10—C2072.3 (4)
C1—C2—C3—O1176.4 (3)C2—C1—C10—C550.7 (4)
C1—C2—C3—C457.4 (4)C6—C5—C10—C955.0 (4)
O1—C3—C4—C1855.0 (3)C4—C5—C10—C9170.5 (3)
C2—C3—C4—C1870.5 (3)C6—C5—C10—C2065.7 (4)
O1—C3—C4—C1960.1 (4)C4—C5—C10—C2068.7 (3)
C2—C3—C4—C19174.4 (3)C6—C5—C10—C1173.2 (3)
O1—C3—C4—C5177.9 (3)C4—C5—C10—C152.3 (4)
C2—C3—C4—C556.6 (3)C8—C9—C11—C120.8 (6)
C18—C4—C5—C667.3 (4)C10—C9—C11—C12179.1 (4)
C3—C4—C5—C6170.3 (3)C9—C11—C12—C135.6 (6)
C19—C4—C5—C652.5 (4)C11—C12—C13—C1667.3 (5)
C18—C4—C5—C1066.8 (4)C11—C12—C13—C1444.5 (5)
C3—C4—C5—C1055.6 (3)C16—C13—C14—C842.4 (4)
C19—C4—C5—C10173.4 (3)C12—C13—C14—C874.4 (4)
C10—C5—C6—C726.2 (5)C7—C8—C14—C13171.1 (3)
C4—C5—C6—C7161.1 (3)C9—C8—C14—C1366.3 (4)
C5—C6—C7—C830.5 (5)C15—C8—C14—C1348.7 (4)
C6—C7—C8—C956.6 (4)C7—C8—C15—C16156.9 (3)
C6—C7—C8—C1568.0 (4)C9—C8—C15—C1678.1 (3)
C6—C7—C8—C14178.2 (3)C14—C8—C15—C1636.2 (3)
C7—C8—C9—C11154.9 (4)C14—C13—C16—C17161.6 (4)
C15—C8—C9—C1177.6 (4)C12—C13—C16—C1782.9 (5)
C14—C8—C9—C1131.1 (5)C14—C13—C16—C1519.9 (4)
C7—C8—C9—C1025.3 (4)C12—C13—C16—C1595.6 (4)
C15—C8—C9—C10102.2 (3)C8—C15—C16—C17167.9 (3)
C14—C8—C9—C10149.1 (3)C8—C15—C16—C1310.5 (4)
C11—C9—C10—C2085.3 (5)C3—C4—C18—O28.6 (4)
C8—C9—C10—C2094.8 (4)C19—C4—C18—O2108.2 (4)
C11—C9—C10—C134.0 (5)C5—C4—C18—O2130.6 (4)
C8—C9—C10—C1145.8 (3)C3—C4—C18—O3176.3 (3)
C11—C9—C10—C5151.5 (4)C19—C4—C18—O366.9 (4)
C8—C9—C10—C528.3 (4)C5—C4—C18—O354.3 (4)
C2—C1—C10—C9168.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.82 (5)1.83 (5)2.637 (4)169 (5)
O1—H1O1···O20.96 (7)1.94 (6)2.651 (4)129 (5)
Symmetry code: (i) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H28O3
Mr316.4
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.064 (2), 10.775 (3), 10.462 (4)
β (°) 109.70 (2)
V3)855.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1586, 1586, 1254
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.05
No. of reflections1586
No. of parameters218
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17
Absolute structureDeduced from optical rotation

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O1i0.82 (5)1.83 (5)2.637 (4)169 (5)
O1—H1O1···O20.96 (7)1.94 (6)2.651 (4)129 (5)
Symmetry code: (i) x+1, y1/2, z+2.
 

Acknowledgements

We would like to acknowledge Dr Kim Dastlick from the Institute of Mol­ecular Biosciences at The University of Queensland for performing optical rotations, and the Chemical Analysis Laboratories, Bulleen, Victoria, for performing high resolution-mass spectrometric analyses. This research was supported by the Centre for Phytochemistry and Pharmacology at Southern Cross University and the University of New South Wales. KB is grateful to the Australian Federal Government for an Australian Postgraduate Award and to Bioactive Exports Pty. Ltd for financial assistance.

References

First citationBohlmann, F., Jakupovic, J., Schuster, A., King, R. M. & Robinson, H. (1982). Phytochemistry, 21, 2317–2327.  CrossRef CAS Web of Science Google Scholar
First citationBrieskorn, C. H. & Pöhlmann, E. (1968). Tetrahedron Lett. 54, 5661–5664.  CrossRef Google Scholar
First citationCampbell, A. (1973). Aust. J. Pharm. 54, 894–900.  Google Scholar
First citationCribb, A. B. (1988). Wild Medicines in Australia. Collins: Sydney.  Google Scholar
First citationD'Amelio, F. S. & Mirhom, Y. W. (1998). World Patent WO9838971.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaiden, J. H. (1975). The Useful Native Plants of Australia (including Tasmania). Melbourne: Compendium; Sydney: Turner and Henderson.  Google Scholar
First citationMendoza, L. & Urzúa, A. (1998). Biochem. Syst. Ecol. 26, 469–471.  Web of Science CrossRef CAS Google Scholar
First citationMendoza, L., Wilkens, M. & Urzúa, A. (1997). J. Ethnopharmacol. 58, 85–88.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPiozzi, F., Passannanti, S., Marino, M. L. & Spiro, V. (1972). Can. J. Chem. 62, 109–112.  CrossRef Web of Science Google Scholar
First citationReynolds, W. F., Lough, A. J., Sawyer, J. F., Enriquez, R. G., Ortiz, B. & Walls, F. (1991). Acta Cryst. C47, 973–977.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWebb, L. J. (1948). Guide to Medicinal and Poisonous Plants of Queensland. Melbourne: Council for Scientific and Industrial Research.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o526-o527
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds