metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,2-dimeth­­oxy­ethane-κ2O,O′)iodidocalcium iodide

aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and bDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
*Correspondence e-mail: hchen@kmu.edu.tw

(Received 6 January 2012; accepted 8 January 2012; online 18 January 2012)

In the title complex, [CaI(C4H10O2)3]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimeth­oxy­ethane (DME) ligands and one iodide anion in a distorted penta­gonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

Related literature

For background to polylactide and its copolymers, see: Ha & Gardella (2005[Ha, C.-S. & Gardella, J. A. Jr (2005). Chem. Rev. 105, 4205-4232.]); Simpson et al. (2008[Simpson, R. L., Wiria, F. E., Amis, A. A., Chua, C. K., Leong, K. F., Hansen, U. N., Chandrasekaran, M. & Lee, M. W. (2008). J. Biomed. Mater. Res. Part B: Appl. Biomater. 84B, 17-25.]). For ring-opening polymerization of lactides with calcium-based catalysts, see: Chen et al. (2007[Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2007). Polymer, 48, 2257-2262.]); Chisholm et al. (2003[Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2003). Chem. Commun. pp. 48-49.], 2004[Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2004). Inorg. Chem. 43, 6717-6725.]); Darensbourg et al. (2002[Darensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). Inorg. Chem. 41, 973-980.], 2003a[Darensbourg, D. J., Adams, M. J., Yarbrough, J. C. & Phelps, A. L. (2003a). Inorg. Chem. 42, 7809-7818.],b[Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003b). Inorg. Chem. 42, 581-589.]); Zhong et al. (2001[Zhong, Z., Dijkstra, P. J., Birg, C., Westerhausen, M. & Feijen, J. (2001). Macromolecules, 34, 3863-3868.]).

[Scheme 1]

Experimental

Crystal data
  • [CaI(C4H10O2)3]I

  • Mr = 564.24

  • Monoclinic, P 21 /c

  • a = 12.1503 (6) Å

  • b = 10.7767 (5) Å

  • c = 16.2295 (8) Å

  • β = 99.514 (1)°

  • V = 2095.86 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.26 mm−1

  • T = 100 K

  • 0.23 × 0.23 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.522, Tmax = 0.647

  • 14842 measured reflections

  • 4791 independent reflections

  • 4627 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.043

  • S = 1.19

  • 4791 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected bond lengths (Å)

Ca1—O1 2.4046 (12)
Ca1—O2 2.3872 (12)
Ca1—O3 2.4871 (11)
Ca1—O4 2.4415 (11)
Ca1—O5 2.4254 (12)
Ca1—O6 2.5138 (11)
Ca1—I1 3.0525 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polylactide and its copolymers are so popular and have been researched widely because of their diversiform applications in biomaterial fields (Ha & Gardella, 2005; Simpson et al., 2008). The ring-opening polymerization (ROP) is the major way to polymerize lactides. Because of the biomaterial purpose the catalysts with non-cytotoxic character are required and calcium is paid much attention for this reason. Recently, ROP of lactides with calcium-based catalysts has been reported (Chen et al., 2007; Chisholm et al., 2003, 2004; Darensbourg et al., 2002, 2003a,b; Zhong et al., 2001) and calcium bis[bis(trimethylsilyl)amide] or calcium iodide is the common precursor. But the low dissolution of calcium iodide in organic solvent is its problem. In this paper we used 1,2-dimethoxyethane (DME) as ligand and solvent to react with calcium iodide, and the solution was refluxed until it showed clear. When the temperature of the solution was cooled to 0°C, the rectangular crystals, [Ca(DME)3I]I, appeared. The compound was dissoluble in DME, THF and CH2Cl2. The low dissolution problem of calcium iodide in organic solvent was solved through the synthesis of [Ca(DME)3I]I, if calcium iodide was the necessary precursor.

In the title compound, the CaII atom is heptacoordinated with a distorted pentagonal-bipyramidal geometry, in which five O atoms occupied the basal positions are almost coplanar . One Cl atom and one O atom lie on the axial positions. The Ca—O distances are 2.3872 (12)–2.5138 (11) Å and the Ca—I distance is 3.0525 (3) Å (Table 1).

Related literature top

For background to polylactide and its copolymers, see: Ha & Gardella (2005); Simpson et al. (2008). For ring-opening polymerization of lactides with calcium-based catalysts, see: Chen et al. (2007); Chisholm et al. (2003, 2004); Darensbourg et al. (2002, 2003a,b); Zhong et al. (2001).

Experimental top

A suspension of calcium iodide (2.94 g, 10 mmol) in 1,2-dimethoxyethane (10 ml) was stirred and refluxed until it showed clear. When the solution was cooled down to 0°C slowly, the rectangular colorless crystals appeared. The solution was filtered to remove the excess 1,2-dimethoxyethane. Volatile materials were then removed under a vacuum. Yield: 78%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 (CH2) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level.
Tris(1,2-dimethoxyethane-κ2O,O')iodidocalcium iodide top
Crystal data top
[CaI(C4H10O2)3]IF(000) = 1104
Mr = 564.24Dx = 1.788 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9874 reflections
a = 12.1503 (6) Åθ = 2.0–28.0°
b = 10.7767 (5) ŵ = 3.26 mm1
c = 16.2295 (8) ÅT = 100 K
β = 99.514 (1)°Blocks, colourless
V = 2095.86 (18) Å30.23 × 0.23 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4791 independent reflections
Radiation source: fine-focus sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.522, Tmax = 0.647k = 1314
14842 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0191P)2 + 0.9088P]
where P = (Fo2 + 2Fc2)/3
4791 reflections(Δ/σ)max = 0.005
196 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[CaI(C4H10O2)3]IV = 2095.86 (18) Å3
Mr = 564.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1503 (6) ŵ = 3.26 mm1
b = 10.7767 (5) ÅT = 100 K
c = 16.2295 (8) Å0.23 × 0.23 × 0.15 mm
β = 99.514 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4627 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 0.647Rint = 0.017
14842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.19Δρmax = 0.35 e Å3
4791 reflectionsΔρmin = 0.91 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.74096 (2)0.25280 (3)0.987454 (18)0.01103 (6)
I10.589004 (9)0.206685 (9)1.116467 (6)0.01643 (4)
I20.169983 (9)0.297669 (9)0.264013 (7)0.01675 (4)
O10.91500 (9)0.19272 (10)1.07103 (7)0.0141 (2)
O20.89431 (10)0.28746 (10)0.91541 (7)0.0165 (2)
O30.80225 (9)0.44050 (10)1.07187 (7)0.0152 (2)
O40.66028 (9)0.44389 (10)0.92287 (7)0.0163 (2)
O50.60542 (9)0.17389 (11)0.87284 (7)0.0164 (2)
O60.77110 (9)0.02920 (10)0.95308 (7)0.0155 (2)
C10.92225 (14)0.09314 (15)1.13105 (10)0.0178 (3)
H1A0.85320.08971.15480.027*
H1B0.98570.10781.17580.027*
H1C0.93280.01431.10330.027*
C21.01205 (14)0.19625 (14)1.03155 (10)0.0166 (3)
H2A1.01980.11691.00240.020*
H2B1.07970.20861.07400.020*
C30.99948 (14)0.30183 (15)0.96992 (11)0.0185 (3)
H3A1.00160.38210.99980.022*
H3B1.06130.30050.93710.022*
C40.88796 (16)0.3613 (2)0.84086 (12)0.0305 (4)
H4A0.81710.34500.80400.046*
H4B0.95000.33970.81190.046*
H4C0.89250.44940.85590.046*
C50.84956 (14)0.42976 (16)1.15957 (10)0.0193 (3)
H5A0.91840.38081.16550.029*
H5B0.79600.38851.18940.029*
H5C0.86630.51271.18310.029*
C60.71418 (14)0.53093 (15)1.05910 (10)0.0187 (3)
H6A0.73800.60761.09070.022*
H6B0.64710.49811.07900.022*
C70.68799 (15)0.55864 (15)0.96726 (11)0.0200 (3)
H7A0.62440.61700.95590.024*
H7B0.75340.59750.94840.024*
C80.61548 (15)0.46988 (16)0.83621 (10)0.0213 (3)
H8A0.60660.39200.80460.032*
H8B0.66680.52460.81270.032*
H8C0.54270.51060.83270.032*
C90.48713 (14)0.20029 (17)0.85691 (12)0.0231 (4)
H9A0.47180.27310.88930.035*
H9B0.44600.12870.87330.035*
H9C0.46350.21690.79720.035*
C100.63075 (14)0.06361 (15)0.82961 (10)0.0178 (3)
H10A0.62160.07960.76880.021*
H10B0.57970.00450.83930.021*
C110.74998 (14)0.02824 (15)0.86297 (10)0.0179 (3)
H11A0.76520.05570.84270.021*
H11B0.80100.08730.84170.021*
C120.71396 (15)0.07020 (15)0.98863 (11)0.0201 (3)
H12A0.74030.07441.04900.030*
H12B0.72940.14910.96280.030*
H12C0.63340.05440.97820.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.01102 (14)0.01151 (14)0.01052 (13)0.00026 (10)0.00169 (10)0.00006 (10)
I10.01616 (6)0.01888 (6)0.01554 (6)0.00274 (3)0.00641 (4)0.00003 (3)
I20.01794 (6)0.01398 (6)0.01738 (6)0.00181 (3)0.00008 (4)0.00072 (3)
O10.0140 (5)0.0152 (5)0.0132 (5)0.0014 (4)0.0025 (4)0.0007 (4)
O20.0161 (6)0.0204 (6)0.0132 (5)0.0004 (4)0.0032 (4)0.0048 (4)
O30.0160 (5)0.0152 (5)0.0132 (5)0.0025 (4)0.0010 (4)0.0025 (4)
O40.0204 (6)0.0127 (5)0.0144 (5)0.0004 (4)0.0013 (4)0.0010 (4)
O50.0132 (5)0.0182 (5)0.0167 (5)0.0002 (4)0.0009 (4)0.0025 (4)
O60.0169 (5)0.0137 (5)0.0148 (5)0.0023 (4)0.0003 (4)0.0011 (4)
C10.0223 (8)0.0171 (7)0.0135 (7)0.0011 (6)0.0011 (6)0.0029 (6)
C20.0134 (7)0.0203 (8)0.0165 (8)0.0019 (6)0.0034 (6)0.0010 (6)
C30.0142 (8)0.0198 (8)0.0216 (8)0.0027 (6)0.0032 (6)0.0001 (6)
C40.0237 (9)0.0439 (12)0.0260 (9)0.0068 (8)0.0102 (7)0.0214 (8)
C50.0234 (8)0.0192 (8)0.0135 (7)0.0005 (6)0.0021 (6)0.0037 (6)
C60.0186 (8)0.0149 (7)0.0216 (8)0.0035 (6)0.0007 (6)0.0043 (6)
C70.0227 (8)0.0120 (7)0.0233 (8)0.0009 (6)0.0018 (7)0.0007 (6)
C80.0242 (9)0.0237 (8)0.0147 (8)0.0015 (7)0.0005 (6)0.0045 (6)
C90.0121 (8)0.0301 (10)0.0256 (9)0.0001 (6)0.0009 (7)0.0016 (7)
C100.0205 (8)0.0180 (7)0.0141 (7)0.0037 (6)0.0001 (6)0.0028 (6)
C110.0211 (8)0.0176 (7)0.0150 (7)0.0011 (6)0.0032 (6)0.0043 (6)
C120.0225 (8)0.0152 (7)0.0219 (8)0.0039 (6)0.0014 (7)0.0021 (6)
Geometric parameters (Å, º) top
Ca1—O12.4046 (12)C3—H3B0.9900
Ca1—O22.3872 (12)C4—H4A0.9800
Ca1—O32.4871 (11)C4—H4B0.9800
Ca1—O42.4415 (11)C4—H4C0.9800
Ca1—O52.4254 (12)C5—H5A0.9800
Ca1—O62.5138 (11)C5—H5B0.9800
Ca1—I13.0525 (3)C5—H5C0.9800
O1—C21.4325 (19)C6—C71.502 (2)
O1—C11.4421 (18)C6—H6A0.9900
O2—C31.437 (2)C6—H6B0.9900
O2—C41.439 (2)C7—H7A0.9900
O3—C61.4369 (19)C7—H7B0.9900
O3—C51.4489 (18)C8—H8A0.9800
O4—C71.4427 (19)C8—H8B0.9800
O4—C81.4490 (19)C8—H8C0.9800
O5—C101.4390 (19)C9—H9A0.9800
O5—C91.446 (2)C9—H9B0.9800
O6—C111.4425 (19)C9—H9C0.9800
O6—C121.4473 (19)C10—C111.509 (2)
C1—H1A0.9800C10—H10A0.9900
C1—H1B0.9800C10—H10B0.9900
C1—H1C0.9800C11—H11A0.9900
C2—C31.506 (2)C11—H11B0.9900
C2—H2A0.9900C12—H12A0.9800
C2—H2B0.9900C12—H12B0.9800
C3—H3A0.9900C12—H12C0.9800
O2—Ca1—O168.51 (4)O2—C4—H4B109.5
O2—Ca1—O599.51 (4)H4A—C4—H4B109.5
O1—Ca1—O5139.51 (4)O2—C4—H4C109.5
O2—Ca1—O487.03 (4)H4A—C4—H4C109.5
O1—Ca1—O4136.26 (4)H4B—C4—H4C109.5
O5—Ca1—O478.05 (4)O3—C5—H5A109.5
O2—Ca1—O387.46 (4)O3—C5—H5B109.5
O1—Ca1—O375.70 (4)H5A—C5—H5B109.5
O5—Ca1—O3144.21 (4)O3—C5—H5C109.5
O4—Ca1—O367.23 (4)H5A—C5—H5C109.5
O2—Ca1—O683.52 (4)H5B—C5—H5C109.5
O1—Ca1—O673.76 (4)O3—C6—C7107.98 (13)
O5—Ca1—O666.36 (4)O3—C6—H6A110.1
O4—Ca1—O6140.91 (4)C7—C6—H6A110.1
O3—Ca1—O6149.37 (4)O3—C6—H6B110.1
O2—Ca1—I1166.17 (3)C7—C6—H6B110.1
O1—Ca1—I198.31 (3)H6A—C6—H6B108.4
O5—Ca1—I193.32 (3)O4—C7—C6108.59 (13)
O4—Ca1—I1100.74 (3)O4—C7—H7A110.0
O3—Ca1—I185.10 (3)C6—C7—H7A110.0
O6—Ca1—I197.06 (3)O4—C7—H7B110.0
C2—O1—C1111.03 (12)C6—C7—H7B110.0
C2—O1—Ca1116.92 (9)H7A—C7—H7B108.4
C1—O1—Ca1122.09 (9)O4—C8—H8A109.5
C3—O2—C4112.11 (13)O4—C8—H8B109.5
C3—O2—Ca1113.70 (9)H8A—C8—H8B109.5
C4—O2—Ca1124.09 (10)O4—C8—H8C109.5
C6—O3—C5111.16 (12)H8A—C8—H8C109.5
C6—O3—Ca1108.91 (9)H8B—C8—H8C109.5
C5—O3—Ca1120.68 (9)O5—C9—H9A109.5
C7—O4—C8109.77 (12)O5—C9—H9B109.5
C7—O4—Ca1117.68 (9)H9A—C9—H9B109.5
C8—O4—Ca1129.75 (9)O5—C9—H9C109.5
C10—O5—C9111.20 (12)H9A—C9—H9C109.5
C10—O5—Ca1119.39 (9)H9B—C9—H9C109.5
C9—O5—Ca1126.65 (10)O5—C10—C11107.67 (12)
C11—O6—C12112.47 (12)O5—C10—H10A110.2
C11—O6—Ca1102.93 (8)C11—C10—H10A110.2
C12—O6—Ca1121.60 (9)O5—C10—H10B110.2
O1—C1—H1A109.5C11—C10—H10B110.2
O1—C1—H1B109.5H10A—C10—H10B108.5
H1A—C1—H1B109.5O6—C11—C10111.17 (13)
O1—C1—H1C109.5O6—C11—Ca150.70 (7)
H1A—C1—H1C109.5C10—C11—Ca184.46 (9)
H1B—C1—H1C109.5O6—C11—H11A109.4
O1—C2—C3108.45 (13)C10—C11—H11A109.4
O1—C2—H2A110.0Ca1—C11—H11A159.8
C3—C2—H2A110.0O6—C11—H11B109.4
O1—C2—H2B110.0C10—C11—H11B109.4
C3—C2—H2B110.0Ca1—C11—H11B79.7
H2A—C2—H2B108.4H11A—C11—H11B108.0
O2—C3—C2108.03 (13)O6—C12—H12A109.5
O2—C3—H3A110.1O6—C12—H12B109.5
C2—C3—H3A110.1H12A—C12—H12B109.5
O2—C3—H3B110.1O6—C12—H12C109.5
C2—C3—H3B110.1H12A—C12—H12C109.5
H3A—C3—H3B108.4H12B—C12—H12C109.5
O2—C4—H4A109.5

Experimental details

Crystal data
Chemical formula[CaI(C4H10O2)3]I
Mr564.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1503 (6), 10.7767 (5), 16.2295 (8)
β (°) 99.514 (1)
V3)2095.86 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.23 × 0.23 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.522, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
14842, 4791, 4627
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.043, 1.19
No. of reflections4791
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.91

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ca1—O12.4046 (12)Ca1—O52.4254 (12)
Ca1—O22.3872 (12)Ca1—O62.5138 (11)
Ca1—O32.4871 (11)Ca1—I13.0525 (3)
Ca1—O42.4415 (11)
 

Acknowledgements

Financial support from the National Science Council of the Republic of China is gratefully appreciated. Helpful comments from the reviewers are also greatly appreciated.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2007). Polymer, 48, 2257–2262.  Web of Science CrossRef CAS Google Scholar
First citationChisholm, M. H., Gallucci, J. & Phomphrai, K. (2003). Chem. Commun. pp. 48–49.  Web of Science CSD CrossRef Google Scholar
First citationChisholm, M. H., Gallucci, J. & Phomphrai, K. (2004). Inorg. Chem. 43, 6717–6725.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J., Adams, M. J., Yarbrough, J. C. & Phelps, A. L. (2003a). Inorg. Chem. 42, 7809–7818.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003b). Inorg. Chem. 42, 581–589.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). Inorg. Chem. 41, 973–980.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHa, C.-S. & Gardella, J. A. Jr (2005). Chem. Rev. 105, 4205–4232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, R. L., Wiria, F. E., Amis, A. A., Chua, C. K., Leong, K. F., Hansen, U. N., Chandrasekaran, M. & Lee, M. W. (2008). J. Biomed. Mater. Res. Part B: Appl. Biomater. 84B, 17–25.  Google Scholar
First citationZhong, Z., Dijkstra, P. J., Birg, C., Westerhausen, M. & Feijen, J. (2001). Macromolecules, 34, 3863–3868.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds