metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(5-phenyl-2,2′-bi­pyridine-κ2N,N′)copper(I)]-μ-thio­cyanido-κ2N:S]

aCollege of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang 157012, People's Republic of China, and bFaculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: cuisx981@yahoo.cn, cuisx981@yahoo.cn

(Received 30 December 2011; accepted 7 January 2012; online 18 January 2012)

The title compound, [Cu(NCS)(C16H12N2)]n, was synthesised under hydro­thermal conditions. The CuI ion shows distorted tetra­hedral geometry being coordinated by two N atoms from a 5-phenyl-2,2′-bipyridine ligand and by the N and S atoms from two different thio­cyanate anions. The CuI ions are bridged by thio­cyanide groups, forming a one-dimensional coordination polymer along the b axis. The crystal packing is through van der Waals contacts and C—H⋯π inter­actions.

Related literature

For applications of coordination metal complexes, see: Kong et al. (2008[Kong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Ohba et al. (2008[Ohba, M., Kaneko, W., Kitagawa, S., Maeda, T. & Mito, M. (2008). J. Am. Chem. Soc. 130, 4475-4484.]). For related compounds, see Chen et al. (2009[Chen, Y., Chen, J. S., Gan, X. & Fu, W. F. (2009). Inorg. Chim. Acta, 362, 2492-2498]); Cui et al. (2011[Cui, S., Zuo, M., Zhang, J., Zhao, Y., Tan, R., Liu, S. & Su, S. (2011). Acta Cryst. E67, m1706-m1707.]); Zhang et al. (2008[Zhang, X. M., Qing, Y. L. & Wu, H. S. (2008). Inorg. Chem. 47, 2255-2257.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)(C16H12N2)]

  • Mr = 353.90

  • Orthorhombic, P b c a

  • a = 7.7978 (9) Å

  • b = 10.7744 (12) Å

  • c = 35.325 (4) Å

  • V = 2967.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 153 K

  • 0.42 × 0.09 × 0.06 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.914

  • 15488 measured reflections

  • 2932 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.03

  • 2932 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.917 (2)
Cu1—N2 2.079 (2)
Cu1—N3 2.121 (2)
Cu1—S1 2.3313 (9)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cgi 0.93 2.92 3.757 (3) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound [Cu(SCN)(5-ph-2,2'-bpy)]n(I), was synthesised under hydrothermal conditions. In the complex, the CuI ion shows distorted tetrahedral geometry coordinated by two N atoms from a 5-ph-2,2,-bpy ligand, N and S atoms from the different thiocyanate anions (Fig.1 and Table 1). The CuIions are bridged by thiocyanide groups to form a one-dimensional coordination polymeric along the b axis (Fig. 2). Crystal packing is through van der Waals contacts and C-H···π interaction [C17-H···Cg(C12C17)symmetry operation: 1/2+x,3/2-y,1-z with geometric parameters H···Cg of 2.92 Å, C17···Cg of 3.757 (3) Å, and C17-H···Cg of 150 °].

Related literature top

For applications of coordination metal complexes, see: Kong et al. (2008); Ohba et al. (2008). For related compounds, see Chen et al. (2009); Cui et al. (2011); Zhang et al. (2008).

Experimental top

A mixture of Cu(Ac)2 (0.086 g, 0.64 mmol), 5-ph-2,2'-bpy (0.0231 g, 0.1 mmol), KSCN (0.059 g, 0.6 mmol), and water (8 mL) was added to a 15-mL Teflon-lined autoclave and heated at 443 K for 3 d. The autoclave was then cooled to room temperature. Red block crystals of (I) deposited on the wall of container were collected and air-dried.

Refinement top

Hydrogen atoms bound to carbon were placed in calculated positions and refined using a riding model with an isotropic displacement parameter fixed at 1.2 times Ueq for the atom to which they are attached.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small of arbitrary radii.
[Figure 2] Fig. 2. A perspective view of polymer chain of complex (I).
catena-Poly[[(5-phenyl-2,2'-bipyridine- κ2N,N')copper(I)]-µ-thiocyanido-κ2N:S] top
Crystal data top
[Cu(NCS)(C16H12N2)]F(000) = 1440
Mr = 353.90Dx = 1.584 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15488 reflections
a = 7.7978 (9) Åθ = 2.3–26.0°
b = 10.7744 (12) ŵ = 1.61 mm1
c = 35.325 (4) ÅT = 153 K
V = 2967.8 (6) Å3Block, red
Z = 80.42 × 0.09 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2932 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1310
Tmin = 0.840, Tmax = 0.914l = 4335
15488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.9913P]
where P = (Fo2 + 2Fc2)/3
2932 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Cu(NCS)(C16H12N2)]V = 2967.8 (6) Å3
Mr = 353.90Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.7978 (9) ŵ = 1.61 mm1
b = 10.7744 (12) ÅT = 153 K
c = 35.325 (4) Å0.42 × 0.09 × 0.06 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2212 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.914Rint = 0.033
15488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2932 reflectionsΔρmin = 0.20 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.11691 (4)0.67597 (3)0.345104 (9)0.04739 (14)
S11.40271 (9)0.61263 (7)0.34368 (3)0.0578 (2)
N11.1156 (3)0.8538 (2)0.34377 (6)0.0470 (6)
C11.3879 (3)0.4601 (3)0.34412 (7)0.0402 (6)
N30.9620 (3)0.59247 (18)0.38739 (6)0.0373 (5)
C120.8393 (3)0.6026 (2)0.49059 (6)0.0325 (5)
C70.8656 (3)0.4982 (2)0.37430 (7)0.0351 (5)
C100.8445 (3)0.5642 (2)0.45016 (6)0.0327 (5)
N20.9760 (3)0.5504 (2)0.31300 (6)0.0460 (5)
C60.8833 (3)0.4689 (2)0.33359 (7)0.0378 (6)
C80.7568 (3)0.4343 (3)0.39843 (7)0.0457 (6)
H80.69070.36910.38930.055*
C150.8303 (4)0.6706 (3)0.56739 (7)0.0461 (7)
H150.82720.69380.59270.055*
C110.9497 (3)0.6232 (2)0.42376 (7)0.0381 (6)
H111.01630.68910.43230.046*
C170.9373 (3)0.7005 (2)0.50432 (7)0.0423 (6)
H171.00770.74440.48780.051*
C160.9318 (3)0.7338 (3)0.54203 (8)0.0471 (7)
H160.99790.80020.55040.057*
C140.7336 (3)0.5726 (3)0.55461 (7)0.0465 (6)
H140.66490.52870.57140.056*
C90.7469 (3)0.4675 (2)0.43580 (7)0.0451 (6)
H90.67330.42440.45180.054*
C50.8093 (4)0.3650 (3)0.31698 (8)0.0490 (7)
H50.74760.30880.33160.059*
C130.7381 (3)0.5388 (2)0.51663 (7)0.0426 (6)
H130.67200.47220.50840.051*
C30.9202 (4)0.4297 (3)0.25767 (9)0.0643 (9)
H30.93320.41940.23170.077*
C40.8281 (4)0.3458 (3)0.27870 (9)0.0621 (9)
H40.77890.27680.26720.074*
C20.9924 (4)0.5287 (3)0.27587 (8)0.0607 (8)
H21.05680.58440.26160.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0601 (2)0.0344 (2)0.0477 (2)0.00445 (15)0.00674 (16)0.00251 (14)
S10.0532 (4)0.0325 (4)0.0878 (6)0.0041 (3)0.0084 (4)0.0025 (4)
N10.0582 (15)0.0369 (13)0.0459 (14)0.0008 (11)0.0004 (11)0.0028 (10)
C10.0414 (14)0.0413 (16)0.0378 (14)0.0003 (11)0.0025 (11)0.0002 (11)
N30.0432 (11)0.0341 (11)0.0346 (11)0.0032 (9)0.0032 (9)0.0012 (9)
C120.0312 (12)0.0312 (12)0.0349 (13)0.0072 (10)0.0011 (10)0.0035 (10)
C70.0361 (12)0.0336 (13)0.0357 (13)0.0044 (11)0.0020 (10)0.0018 (10)
C100.0323 (12)0.0324 (12)0.0334 (13)0.0048 (10)0.0004 (10)0.0035 (10)
N20.0554 (13)0.0483 (13)0.0344 (12)0.0005 (11)0.0003 (10)0.0018 (10)
C60.0387 (13)0.0382 (14)0.0365 (13)0.0040 (11)0.0043 (11)0.0002 (11)
C80.0485 (15)0.0470 (15)0.0415 (14)0.0155 (13)0.0023 (12)0.0002 (12)
C150.0520 (15)0.0526 (17)0.0337 (14)0.0146 (14)0.0011 (12)0.0028 (12)
C110.0446 (14)0.0335 (13)0.0364 (14)0.0058 (11)0.0010 (11)0.0011 (11)
C170.0482 (14)0.0396 (15)0.0392 (14)0.0019 (12)0.0032 (11)0.0023 (12)
C160.0535 (16)0.0406 (15)0.0473 (16)0.0018 (13)0.0021 (12)0.0062 (12)
C140.0467 (15)0.0547 (17)0.0381 (14)0.0032 (14)0.0070 (12)0.0049 (13)
C90.0443 (14)0.0525 (16)0.0386 (14)0.0143 (13)0.0010 (12)0.0051 (12)
C50.0486 (15)0.0484 (16)0.0501 (17)0.0032 (13)0.0006 (13)0.0068 (13)
C130.0436 (14)0.0425 (15)0.0416 (14)0.0008 (12)0.0026 (12)0.0012 (11)
C30.076 (2)0.080 (2)0.0370 (16)0.0006 (19)0.0013 (15)0.0126 (16)
C40.0609 (18)0.066 (2)0.059 (2)0.0003 (16)0.0046 (16)0.0277 (16)
C20.074 (2)0.071 (2)0.0367 (16)0.0054 (17)0.0034 (14)0.0021 (14)
Geometric parameters (Å, º) top
Cu1—N11.917 (2)C8—H80.9300
Cu1—N22.079 (2)C15—C141.374 (4)
Cu1—N32.121 (2)C15—C161.376 (4)
Cu1—S12.3313 (9)C15—H150.9300
S1—C11.648 (3)C11—H110.9300
N1—C1i1.145 (4)C17—C161.380 (4)
C1—N1ii1.145 (4)C17—H170.9300
N3—C111.330 (3)C16—H160.9300
N3—C71.346 (3)C14—C131.390 (3)
C12—C171.390 (3)C14—H140.9300
C12—C131.393 (3)C9—H90.9300
C12—C101.487 (3)C5—C41.376 (4)
C7—C81.385 (3)C5—H50.9300
C7—C61.479 (3)C13—H130.9300
C10—C91.386 (3)C3—C21.367 (4)
C10—C111.395 (3)C3—C41.373 (5)
N2—C21.339 (3)C3—H30.9300
N2—C61.350 (3)C4—H40.9300
C6—C51.390 (4)C2—H20.9300
C8—C91.370 (4)
N1—Cu1—N2129.35 (9)C16—C15—H15120.6
N1—Cu1—N3115.99 (9)N3—C11—C10125.1 (2)
N2—Cu1—N378.88 (8)N3—C11—H11117.5
N1—Cu1—S1107.29 (7)C10—C11—H11117.5
N2—Cu1—S1107.64 (7)C16—C17—C12121.1 (2)
N3—Cu1—S1115.82 (6)C16—C17—H17119.4
C1—S1—Cu1102.99 (9)C12—C17—H17119.4
C1i—N1—Cu1177.7 (2)C15—C16—C17121.2 (3)
N1ii—C1—S1177.1 (2)C15—C16—H16119.4
C11—N3—C7118.7 (2)C17—C16—H16119.4
C11—N3—Cu1127.99 (17)C15—C14—C13120.3 (2)
C7—N3—Cu1113.34 (15)C15—C14—H14119.8
C17—C12—C13117.1 (2)C13—C14—H14119.8
C17—C12—C10122.1 (2)C8—C9—C10121.2 (2)
C13—C12—C10120.8 (2)C8—C9—H9119.4
N3—C7—C8120.3 (2)C10—C9—H9119.4
N3—C7—C6116.3 (2)C4—C5—C6119.4 (3)
C8—C7—C6123.3 (2)C4—C5—H5120.3
C9—C10—C11114.9 (2)C6—C5—H5120.3
C9—C10—C12123.0 (2)C14—C13—C12121.5 (2)
C11—C10—C12122.1 (2)C14—C13—H13119.3
C2—N2—C6117.8 (2)C12—C13—H13119.3
C2—N2—Cu1126.7 (2)C2—C3—C4118.3 (3)
C6—N2—Cu1114.36 (17)C2—C3—H3120.8
N2—C6—C5121.3 (2)C4—C3—H3120.8
N2—C6—C7115.8 (2)C3—C4—C5119.3 (3)
C5—C6—C7122.9 (2)C3—C4—H4120.4
C9—C8—C7119.9 (2)C5—C4—H4120.4
C9—C8—H8120.1N2—C2—C3123.9 (3)
C7—C8—H8120.1N2—C2—H2118.1
C14—C15—C16118.8 (2)C3—C2—H2118.1
C14—C15—H15120.6
N1—Cu1—S1—C1178.99 (11)C8—C7—C6—N2171.1 (2)
N2—Cu1—S1—C136.25 (11)N3—C7—C6—C5171.7 (2)
N3—Cu1—S1—C149.68 (11)C8—C7—C6—C58.5 (4)
N1—Cu1—N3—C1145.7 (2)N3—C7—C8—C90.2 (4)
N2—Cu1—N3—C11174.2 (2)C6—C7—C8—C9179.6 (2)
S1—Cu1—N3—C1181.5 (2)C7—N3—C11—C100.6 (4)
N1—Cu1—N3—C7133.67 (16)Cu1—N3—C11—C10179.92 (18)
N2—Cu1—N3—C75.13 (16)C9—C10—C11—N30.7 (4)
S1—Cu1—N3—C799.22 (16)C12—C10—C11—N3179.1 (2)
C11—N3—C7—C80.3 (3)C13—C12—C17—C161.0 (4)
Cu1—N3—C7—C8179.74 (18)C10—C12—C17—C16179.3 (2)
C11—N3—C7—C6179.4 (2)C14—C15—C16—C170.2 (4)
Cu1—N3—C7—C60.0 (3)C12—C17—C16—C150.5 (4)
C17—C12—C10—C9179.4 (2)C16—C15—C14—C130.4 (4)
C13—C12—C10—C92.2 (3)C7—C8—C9—C100.2 (4)
C17—C12—C10—C110.9 (3)C11—C10—C9—C80.4 (4)
C13—C12—C10—C11177.5 (2)C12—C10—C9—C8179.3 (2)
N1—Cu1—N2—C268.4 (3)N2—C6—C5—C41.2 (4)
N3—Cu1—N2—C2176.9 (3)C7—C6—C5—C4178.4 (3)
S1—Cu1—N2—C263.2 (2)C15—C14—C13—C120.1 (4)
N1—Cu1—N2—C6124.53 (18)C17—C12—C13—C140.7 (4)
N3—Cu1—N2—C69.93 (18)C10—C12—C13—C14179.2 (2)
S1—Cu1—N2—C6103.86 (17)C2—C3—C4—C51.0 (5)
C2—N2—C6—C50.9 (4)C6—C5—C4—C30.2 (5)
Cu1—N2—C6—C5167.4 (2)C6—N2—C2—C30.4 (5)
C2—N2—C6—C7178.8 (2)Cu1—N2—C2—C3167.1 (2)
Cu1—N2—C6—C713.0 (3)C4—C3—C2—N21.4 (5)
N3—C7—C6—N28.7 (3)
Symmetry codes: (i) x+5/2, y+1/2, z; (ii) x+5/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cgiii0.932.923.757 (3)150
Symmetry code: (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NCS)(C16H12N2)]
Mr353.90
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)7.7978 (9), 10.7744 (12), 35.325 (4)
V3)2967.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.42 × 0.09 × 0.06
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.840, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
15488, 2932, 2212
Rint0.033
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.03
No. of reflections2932
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.917 (2)Cu1—N32.121 (2)
Cu1—N22.079 (2)Cu1—S12.3313 (9)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···Cgi0.932.923.757 (3)150
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

This research was supported by the Science and Technology Research Project of the Education Department of Heilongjiang Province (11551511).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Chen, J. S., Gan, X. & Fu, W. F. (2009). Inorg. Chim. Acta, 362, 2492-2498  Web of Science CSD CrossRef CAS Google Scholar
First citationCui, S., Zuo, M., Zhang, J., Zhao, Y., Tan, R., Liu, S. & Su, S. (2011). Acta Cryst. E67, m1706–m1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, X. J., Ren, Y. P., Chen, W. X., Long, L. S., Zheng, Z., Huang, R. B. & Zheng, L. S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhba, M., Kaneko, W., Kitagawa, S., Maeda, T. & Mito, M. (2008). J. Am. Chem. Soc. 130, 4475–4484.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M., Qing, Y. L. & Wu, H. S. (2008). Inorg. Chem. 47, 2255–2257.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds