organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-[(4-Nitro­phen­yl)methyl­ene]bis­­(4-hy­dr­oxy-2H-chromen-2-one)

aSankar Foundation Research Institute, Naiduthota, Vepagunta, Visakhapatnam, Andhra Pradesh 530 047, India
*Correspondence e-mail: anand.dcb@gmail.com

(Received 3 December 2011; accepted 20 December 2011; online 7 January 2012)

The molecular conformation of the title compound, C25H15NO8, is stabilized by strong intramolecular O—H⋯O hydrogen bonds, resulting in the formation of S11(7) ring motifs. In the crystal, ππ stacking inter­actions are observed between adjacent nitrobenzene and pyranone rings with a centroid–centroid distance of 3.513 (12) Å. The dihedral angles between the nitrobenzene ring and the coumarin ring systems are 65.61 (8) and 66.11 (8)° while the coumarin ring systems are inclined at 65.69 (8)°.

Related literature

For the synthesis of benzyl­idene-bis-(4-hy­droxy­coumarin) derivatives, see: Mehrabi & Abusaidi (2010[Mehrabi, H. & Abusaidi, H. (2010). J. Iran. Chem. Soc. 4, 890-894.]); Završnik et al. (2011[Završnik, D., Muratović, S., Damjan Makuc, D., Plavec, J., Cetina, M., Nagl, A., Clercq, E. D., Balzarini, J. & Mintas, M. (2011). Molecules, 16, 6023-6040.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological activity of substituted benzyl­idene-bis-(4-hy­droxy­coumarin) derivatives, see: Borges et al. (2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]); Nolan et al. (2009[Nolan, A. K., Doncaster, R. J., Dunstan, S. M., Scot, A. K., Frenkel, D., Siegel, D., Ross, D., Barnes, J., Levy, C. & Leys, D. (2009). J. Med. Chem. 57, 7142-7156.]); Prakash et al. (2008[Prakash, O., Kumar, R. & Prakash, V. (2008). Eur. J. Med. Chem. 43, 435-440.]); Zhao et al. (1997[Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne George, W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242-249.]).

[Scheme 1]

Experimental

Crystal data
  • C25H15NO8

  • Mr = 457.38

  • Orthorhombic, P n a 21

  • a = 14.0061 (6) Å

  • b = 14.1511 (6) Å

  • c = 10.4179 (4) Å

  • V = 2064.85 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.973

  • 15733 measured reflections

  • 3316 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.04

  • 3316 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O5 0.82 1.79 2.597 (2) 166
O6—H6A⋯O1 0.82 1.80 2.617 (2) 173

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sevaral methods were reported in the literature (Mehrabi et al. 2010) and (Završnik et al. 2011) for the synthesis of the title compound. Coumarin ring forms an important pharmacophore in several naturally occurring as well as synthetic molecules (Prakash et al. 2008). These coumarin derivaties showed numerous therapeutic applications such as anticoagulant and antibacterial agents (Borges et al. 2005). Several multifunctionalized coumarin derivatives were reported to exhibit anti-HIV properties (Zhao et al. 1997) and also as inhibitors of quinone oxidoreductase-1 (Nolan et al. 2009).

In title compound, C25H15NO8, I, two 4-hydroxycoumarin moieties are linked through a methylene bridge on which one hydrogen atom has been replaced with a phenyl ring bearing p-nitro group (Fig. 1). The 4-hydroxycoumarin moieties are stabilized by intramolecular hydrogen bonding by forming S11(7) ring motifs (Etter et al. 1990) and (Bernstein et al. 1995) between hydroxyl and carbonyl oxygen atoms. The crystal structure of I is stabilized by C–H···O and ππ interactions (Fig. 2). The range of H···O distances (Table 1) found in I agrees with those found for C–H···O hydrogen bonds (Desiraju & Steiner, 1999). The supramolecular chains were extended by ππ-interactions, where the distance between the two centroids namely (C1/O2/C2/C7-C9) and (C20-C25) of the two corresponding coplanar rings is 3.513 (12)Å.

Related literature top

For the synthesis of benzylidene-bis-(4-hydroxycoumarin) derivatives, see: Mehrabi & Abusaidi (2010); Završnik et al. (2011). For hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the biological activity of substituted benzylidene-bis-(4-hydroxycoumarin) derivatives, see: Borges et al. (2005); Nolan et al. (2009); Prakash et al. (2008); Zhao et al. (1997).

Experimental top

The 4-hydroxycoumarin (2 m.mol, 0.324 g) and 4-nitrobenzaldehyde (1 mmol, 0.151 g) were refluxed in ethanol (5 ml) at 333 K for 12 h. After completion of the reaction as monitored by TLC, the reaction mixture was cooled to room temperature. The obtained precipitate was collected by suction filtration and dried. The pure product was obtained by recrystallization from dichloromethane in 92% yield.

Refinement top

All H atoms were positioned geometrically. H atoms attached to C atoms were placed in calculated positions with C–H = 0.93Å (aromatic) and C–H = 0.98Å (methine) with Uiso(H) = 1.2Ueq(C) and allowed to ride. The O–H distances were restrained to 0.82Å and refined as riding atoms with Uiso(H) = 1.5Ueq(O) in the final cycles of refinement. The 1539 Friedel pairs were merged during structure refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound.
3,3'-[(4-Nitrophenyl)methylene]bis(4-hydroxy-2H-chromen-2-one) top
Crystal data top
C25H15NO8F(000) = 944
Mr = 457.38Dx = 1.471 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6438 reflections
a = 14.0061 (6) Åθ = 2.1–24.2°
b = 14.1511 (6) ŵ = 0.11 mm1
c = 10.4179 (4) ÅT = 295 K
V = 2064.85 (15) Å3Block, orange
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3316 independent reflections
Radiation source: fine-focus sealed tube2913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 24.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1516
Tmin = 0.902, Tmax = 0.973k = 1616
15733 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1473P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3316 reflectionsΔρmax = 0.22 e Å3
310 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (11)
Crystal data top
C25H15NO8V = 2064.85 (15) Å3
Mr = 457.38Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.0061 (6) ŵ = 0.11 mm1
b = 14.1511 (6) ÅT = 295 K
c = 10.4179 (4) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2913 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.973Rint = 0.030
15733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3316 reflectionsΔρmin = 0.14 e Å3
310 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65097 (16)0.52018 (16)0.9180 (2)0.0425 (5)
C20.67257 (16)0.67214 (16)0.8278 (2)0.0465 (5)
C30.73555 (19)0.7470 (2)0.8087 (3)0.0672 (7)
H30.79650.74610.84420.081*
C40.7053 (2)0.8221 (2)0.7359 (4)0.0817 (9)
H40.74640.87240.72100.098*
C50.6141 (2)0.82367 (19)0.6844 (3)0.0757 (9)
H50.59470.87510.63530.091*
C60.55268 (19)0.75111 (17)0.7049 (3)0.0585 (6)
H60.49150.75310.67040.070*
C70.58132 (16)0.67400 (16)0.7773 (2)0.0455 (5)
C80.52015 (15)0.59312 (15)0.80351 (19)0.0412 (5)
C90.55171 (14)0.52169 (14)0.87827 (19)0.0374 (5)
C100.49380 (14)0.43608 (14)0.9198 (2)0.0377 (5)
H100.53010.40970.99180.045*
C110.49566 (14)0.35862 (15)0.81912 (19)0.0403 (5)
C120.42673 (16)0.36412 (15)0.7157 (2)0.0422 (5)
C130.49157 (18)0.22343 (14)0.6267 (2)0.0492 (6)
C140.4862 (2)0.15815 (18)0.5260 (3)0.0643 (7)
H140.43790.16140.46500.077*
C150.5557 (2)0.08853 (19)0.5208 (3)0.0742 (9)
H150.55370.04360.45560.089*
C160.6277 (2)0.08488 (19)0.6106 (3)0.0698 (8)
H160.67420.03820.60470.084*
C170.6315 (2)0.14788 (16)0.7066 (3)0.0623 (7)
H170.68060.14410.76650.075*
C180.56350 (17)0.21869 (15)0.7178 (2)0.0486 (6)
C190.56297 (16)0.29003 (15)0.8164 (2)0.0484 (6)
C200.39601 (14)0.45796 (15)0.9770 (2)0.0389 (5)
C210.37848 (15)0.54447 (15)1.0351 (2)0.0453 (5)
H210.42330.59261.02770.054*
C220.29604 (17)0.56044 (17)1.1036 (2)0.0516 (6)
H220.28530.61841.14310.062*
C230.22999 (15)0.48919 (18)1.1123 (2)0.0503 (6)
C240.24222 (17)0.40444 (18)1.0508 (2)0.0534 (6)
H240.19510.35821.05370.064*
C250.32609 (17)0.38952 (15)0.9845 (2)0.0472 (5)
H250.33580.33180.94380.057*
N10.14454 (16)0.5031 (2)1.1934 (2)0.0652 (6)
O10.69024 (11)0.45293 (11)0.96905 (17)0.0531 (4)
O20.70638 (10)0.59589 (11)0.89430 (15)0.0509 (4)
O30.43458 (11)0.59699 (11)0.74979 (15)0.0502 (4)
H3A0.41160.54380.74690.075*
O40.42395 (12)0.29414 (11)0.62710 (16)0.0528 (4)
O50.37047 (12)0.42867 (11)0.70029 (16)0.0515 (4)
O60.63447 (12)0.28370 (12)0.90099 (19)0.0663 (5)
H6A0.64860.33670.92660.099*
O70.08403 (15)0.44080 (18)1.1938 (3)0.0931 (7)
O80.13895 (14)0.57467 (17)1.2562 (2)0.0814 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (12)0.0473 (13)0.0382 (11)0.0001 (11)0.0025 (9)0.0094 (10)
C20.0413 (12)0.0472 (13)0.0511 (13)0.0003 (11)0.0030 (11)0.0054 (11)
C30.0438 (14)0.0689 (17)0.089 (2)0.0088 (13)0.0035 (14)0.0068 (16)
C40.0630 (19)0.0618 (17)0.120 (3)0.0202 (14)0.0069 (18)0.0188 (19)
C50.0685 (19)0.0583 (16)0.100 (2)0.0043 (14)0.0060 (17)0.0207 (16)
C60.0534 (15)0.0545 (14)0.0677 (16)0.0010 (12)0.0029 (12)0.0087 (13)
C70.0428 (12)0.0449 (12)0.0488 (12)0.0003 (10)0.0089 (10)0.0043 (10)
C80.0337 (11)0.0490 (13)0.0409 (12)0.0026 (10)0.0026 (9)0.0021 (10)
C90.0342 (11)0.0427 (11)0.0354 (11)0.0005 (9)0.0016 (9)0.0049 (9)
C100.0369 (12)0.0417 (11)0.0345 (10)0.0026 (9)0.0070 (9)0.0004 (9)
C110.0389 (11)0.0412 (12)0.0409 (12)0.0014 (9)0.0022 (10)0.0040 (9)
C120.0509 (14)0.0389 (11)0.0368 (11)0.0038 (11)0.0033 (10)0.0010 (10)
C130.0604 (14)0.0345 (11)0.0526 (13)0.0015 (10)0.0142 (12)0.0055 (10)
C140.0851 (18)0.0583 (15)0.0494 (14)0.0100 (15)0.0073 (14)0.0014 (13)
C150.112 (3)0.0490 (15)0.0616 (18)0.0094 (16)0.0349 (18)0.0098 (13)
C160.0773 (19)0.0537 (15)0.079 (2)0.0051 (14)0.0275 (18)0.0036 (15)
C170.0576 (15)0.0484 (14)0.0809 (18)0.0018 (12)0.0105 (13)0.0003 (15)
C180.0493 (13)0.0425 (12)0.0541 (13)0.0059 (11)0.0042 (11)0.0039 (11)
C190.0480 (13)0.0442 (12)0.0531 (14)0.0025 (11)0.0030 (11)0.0054 (11)
C200.0373 (11)0.0486 (12)0.0307 (10)0.0013 (10)0.0040 (9)0.0031 (9)
C210.0401 (12)0.0518 (13)0.0441 (12)0.0054 (10)0.0010 (10)0.0027 (11)
C220.0475 (13)0.0621 (14)0.0452 (13)0.0028 (11)0.0019 (11)0.0027 (12)
C230.0352 (12)0.0741 (16)0.0417 (11)0.0025 (11)0.0000 (10)0.0101 (13)
C240.0461 (13)0.0652 (16)0.0488 (13)0.0126 (12)0.0014 (11)0.0093 (12)
C250.0521 (14)0.0474 (12)0.0421 (12)0.0071 (11)0.0002 (11)0.0001 (10)
N10.0462 (13)0.0952 (18)0.0543 (13)0.0153 (13)0.0055 (11)0.0188 (14)
O10.0451 (9)0.0569 (9)0.0572 (9)0.0081 (8)0.0130 (8)0.0037 (8)
O20.0381 (8)0.0581 (9)0.0565 (9)0.0053 (8)0.0031 (7)0.0013 (8)
O30.0418 (9)0.0545 (9)0.0544 (10)0.0002 (7)0.0068 (7)0.0087 (8)
O40.0626 (10)0.0494 (9)0.0464 (9)0.0000 (8)0.0093 (8)0.0036 (8)
O50.0520 (10)0.0515 (9)0.0510 (9)0.0035 (8)0.0109 (7)0.0003 (8)
O60.0612 (11)0.0539 (10)0.0837 (13)0.0115 (9)0.0241 (10)0.0028 (10)
O70.0484 (12)0.1247 (18)0.1063 (17)0.0157 (12)0.0204 (12)0.0188 (15)
O80.0626 (12)0.1100 (17)0.0715 (14)0.0265 (12)0.0137 (10)0.0006 (13)
Geometric parameters (Å, º) top
C1—O11.221 (3)C13—C141.400 (3)
C1—O21.346 (3)C14—C151.386 (4)
C1—C91.451 (3)C14—H140.9300
C2—O21.367 (3)C15—C161.376 (4)
C2—C71.382 (3)C15—H150.9300
C2—C31.393 (3)C16—C171.341 (4)
C3—C41.373 (4)C16—H160.9300
C3—H30.9300C17—C181.388 (3)
C4—C51.385 (4)C17—H170.9300
C4—H40.9300C18—C191.440 (3)
C5—C61.356 (4)C19—O61.337 (3)
C5—H50.9300C20—C251.379 (3)
C6—C71.386 (3)C20—C211.388 (3)
C6—H60.9300C21—C221.376 (3)
C7—C81.456 (3)C21—H210.9300
C8—O31.324 (3)C22—C231.371 (3)
C8—C91.350 (3)C22—H220.9300
C9—C101.521 (3)C23—C241.371 (4)
C10—C111.517 (3)C23—N11.478 (3)
C10—C201.525 (3)C24—C251.379 (3)
C10—H100.9800C24—H240.9300
C11—C191.353 (3)C25—H250.9300
C11—C121.449 (3)N1—O81.209 (3)
C12—O51.217 (2)N1—O71.223 (3)
C12—O41.355 (3)O3—H3A0.8200
C13—O41.378 (3)O6—H6A0.8200
C13—C181.386 (3)
O1—C1—O2116.14 (19)C15—C14—H14121.3
O1—C1—C9124.6 (2)C13—C14—H14121.3
O2—C1—C9119.3 (2)C16—C15—C14120.9 (3)
O2—C2—C7121.88 (19)C16—C15—H15119.5
O2—C2—C3117.0 (2)C14—C15—H15119.5
C7—C2—C3121.1 (2)C17—C16—C15120.8 (3)
C4—C3—C2118.2 (2)C17—C16—H16119.6
C4—C3—H3120.9C15—C16—H16119.6
C2—C3—H3120.9C16—C17—C18121.0 (3)
C3—C4—C5120.8 (3)C16—C17—H17119.5
C3—C4—H4119.6C18—C17—H17119.5
C5—C4—H4119.6C13—C18—C17118.4 (2)
C6—C5—C4120.8 (3)C13—C18—C19116.8 (2)
C6—C5—H5119.6C17—C18—C19124.8 (2)
C4—C5—H5119.6O6—C19—C11123.8 (2)
C5—C6—C7119.9 (3)O6—C19—C18114.8 (2)
C5—C6—H6120.1C11—C19—C18121.4 (2)
C7—C6—H6120.1C25—C20—C21117.97 (19)
C2—C7—C6119.3 (2)C25—C20—C10121.14 (19)
C2—C7—C8117.3 (2)C21—C20—C10120.55 (18)
C6—C7—C8123.4 (2)C22—C21—C20121.3 (2)
O3—C8—C9124.8 (2)C22—C21—H21119.3
O3—C8—C7114.90 (19)C20—C21—H21119.3
C9—C8—C7120.27 (19)C23—C22—C21118.7 (2)
C8—C9—C1119.29 (19)C23—C22—H22120.7
C8—C9—C10125.86 (18)C21—C22—H22120.7
C1—C9—C10114.72 (18)C24—C23—C22121.9 (2)
C11—C10—C9111.69 (17)C24—C23—N1119.0 (2)
C11—C10—C20115.59 (16)C22—C23—N1119.1 (2)
C9—C10—C20115.37 (17)C23—C24—C25118.3 (2)
C11—C10—H10104.2C23—C24—H24120.8
C9—C10—H10104.2C25—C24—H24120.8
C20—C10—H10104.2C24—C25—C20121.7 (2)
C19—C11—C12119.1 (2)C24—C25—H25119.1
C19—C11—C10123.00 (18)C20—C25—H25119.1
C12—C11—C10117.63 (17)O8—N1—O7123.9 (2)
O5—C12—O4116.10 (19)O8—N1—C23118.2 (2)
O5—C12—C11124.8 (2)O7—N1—C23117.9 (3)
O4—C12—C11119.12 (19)C1—O2—C2121.44 (17)
O4—C13—C18122.2 (2)C8—O3—H3A109.5
O4—C13—C14116.4 (2)C12—O4—C13120.87 (19)
C18—C13—C14121.3 (2)C19—O6—H6A109.5
C15—C14—C13117.5 (3)
O2—C2—C3—C4176.3 (2)O4—C13—C18—C17176.8 (2)
C7—C2—C3—C41.3 (4)C14—C13—C18—C170.7 (3)
C2—C3—C4—C50.8 (5)O4—C13—C18—C191.8 (3)
C3—C4—C5—C60.0 (5)C14—C13—C18—C19179.3 (2)
C4—C5—C6—C70.4 (5)C16—C17—C18—C130.5 (4)
O2—C2—C7—C6176.6 (2)C16—C17—C18—C19179.0 (2)
C3—C2—C7—C61.0 (4)C12—C11—C19—O6174.1 (2)
O2—C2—C7—C83.1 (3)C10—C11—C19—O60.3 (3)
C3—C2—C7—C8179.3 (2)C12—C11—C19—C184.3 (3)
C5—C6—C7—C20.1 (4)C10—C11—C19—C18178.79 (19)
C5—C6—C7—C8179.8 (2)C13—C18—C19—O6179.0 (2)
C2—C7—C8—O3177.99 (19)C17—C18—C19—O60.5 (3)
C6—C7—C8—O31.7 (3)C13—C18—C19—C110.4 (3)
C2—C7—C8—C92.4 (3)C17—C18—C19—C11178.1 (2)
C6—C7—C8—C9177.9 (2)C11—C10—C20—C2528.4 (3)
O3—C8—C9—C1172.24 (19)C9—C10—C20—C25161.27 (19)
C7—C8—C9—C18.2 (3)C11—C10—C20—C21158.45 (19)
O3—C8—C9—C103.4 (3)C9—C10—C20—C2125.6 (3)
C7—C8—C9—C10176.20 (19)C25—C20—C21—C223.1 (3)
O1—C1—C9—C8168.8 (2)C10—C20—C21—C22170.3 (2)
O2—C1—C9—C88.8 (3)C20—C21—C22—C230.8 (3)
O1—C1—C9—C107.3 (3)C21—C22—C23—C242.7 (3)
O2—C1—C9—C10175.05 (17)C21—C22—C23—N1175.6 (2)
C8—C9—C10—C1184.8 (2)C22—C23—C24—C253.7 (3)
C1—C9—C10—C1191.0 (2)N1—C23—C24—C25174.5 (2)
C8—C9—C10—C2049.9 (3)C23—C24—C25—C201.3 (3)
C1—C9—C10—C20134.28 (18)C21—C20—C25—C242.0 (3)
C9—C10—C11—C1989.4 (2)C10—C20—C25—C24171.3 (2)
C20—C10—C11—C19136.0 (2)C24—C23—N1—O8173.4 (2)
C9—C10—C11—C1285.1 (2)C22—C23—N1—O84.9 (3)
C20—C10—C11—C1249.5 (3)C24—C23—N1—O75.9 (3)
C19—C11—C12—O5171.1 (2)C22—C23—N1—O7175.9 (2)
C10—C11—C12—O53.7 (3)O1—C1—O2—C2174.34 (19)
C19—C11—C12—O47.8 (3)C9—C1—O2—C23.5 (3)
C10—C11—C12—O4177.41 (17)C7—C2—O2—C12.5 (3)
O4—C13—C14—C15177.5 (2)C3—C2—O2—C1179.8 (2)
C18—C13—C14—C150.1 (4)O5—C12—O4—C13172.42 (19)
C13—C14—C15—C160.8 (4)C11—C12—O4—C136.6 (3)
C14—C15—C16—C171.0 (4)C18—C13—O4—C121.8 (3)
C15—C16—C17—C180.3 (4)C14—C13—O4—C12175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.821.792.597 (2)166
O6—H6A···O10.821.802.617 (2)173
C10—H10···O10.982.342.809 (3)109
C10—H10···O60.982.492.928 (3)107

Experimental details

Crystal data
Chemical formulaC25H15NO8
Mr457.38
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)14.0061 (6), 14.1511 (6), 10.4179 (4)
V3)2064.85 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.902, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
15733, 3316, 2913
Rint0.030
(sin θ/λ)max1)0.579
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.04
No. of reflections3316
No. of parameters310
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O50.821.792.597 (2)166
O6—H6A···O10.821.802.617 (2)173
C10—H10···O10.982.342.809 (3)109
C10—H10···O60.982.492.928 (3)107
 

Acknowledgements

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge, the Head, SAIF, IIT-Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMehrabi, H. & Abusaidi, H. (2010). J. Iran. Chem. Soc. 4, 890–894.  CrossRef Google Scholar
First citationNolan, A. K., Doncaster, R. J., Dunstan, S. M., Scot, A. K., Frenkel, D., Siegel, D., Ross, D., Barnes, J., Levy, C. & Leys, D. (2009). J. Med. Chem. 57, 7142–7156.  Web of Science CrossRef Google Scholar
First citationPrakash, O., Kumar, R. & Prakash, V. (2008). Eur. J. Med. Chem. 43, 435–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZavršnik, D., Muratović, S., Damjan Makuc, D., Plavec, J., Cetina, M., Nagl, A., Clercq, E. D., Balzarini, J. & Mintas, M. (2011). Molecules, 16, 6023–6040.  Web of Science PubMed Google Scholar
First citationZhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne George, W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242–249.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds