organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 5-phenyl­pyrazolo­[5,1-a]isoquino­line-1-carboxyl­ate

aState Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China, and bState Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong 266555, People's Republic of China
*Correspondence e-mail: lyk@upc.edu.cn

(Received 23 November 2011; accepted 24 November 2011; online 30 November 2011)

In the title compound, C25H18N2O2, the pyrazolo­[5,1-a]iso­quin­oline ring system is approximately planar [maximum deviation = 0.027 (2) Å] and is oriented at dihedral angles of 57.22 (6) and 71.36 (7)° with respect to the two phenyl rings. The phenyl rings are twisted to each other by a dihedral angle of 66.33 (8)°. A weak intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, weak C—H⋯π inter­actions are present.

Related literature

For the biological activity of fused isoquinoline compounds, see: Aubry et al. (2004[Aubry, A., Pan, X. S., Fisher, L. M., Jarlier, V. & Cambau, E. (2004). Antimicrob. Agent Chemother. 48, 1281-1288.]); Marco et al. (2005[Marco, E., Laine, W., Tardy, C., Lansiaux, A., Iwao, M., Ishibashi, F., Bailly, C. & Gago, F. (2005). J. Med. Chem. 48, 3796-3807.]); Reddy et al. (1999[Reddy, M. V. R., Rao, M. R., Rhodes, D., Hansen, M. S. T., Rubins, K., Bushman, F. D., Venkateswarlu, Y. & Faulkner, D. J. (1999). J. Med. Chem. 42, 1901-1907.]). For related structures, see: Chen & Wu (2010[Chen, Z.-Y. & Wu, J. (2010). Org. Lett. 12, 4856-4859.]); Ye et al. (2010[Ye, S.-Q., Yang, X.-D. & Wu, J. (2010). Chem. Commun. pp. 5238-5240.]); Yu et al. (2011a[Yu, X.-X., Pan, X.-L. & Wu, J. (2011a). Tetrahedron, 67, 1145-1149.],b[Yu, X.-X., Yang, Q., Lou, H.-L., Peng, Y.-Y. & Wu, J. (2011b). Org. Biomol. Chem. 9, 7033-7037.]). For selected examples of multi-component reactions, see: Dömling & Ugi (2000[Dömling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168-3210.]); Nair et al. (2003[Nair, V., Rajesh, C., Vinod, A. U., Bindu, S., Sreekenth, A. R., Mathen, L. & Balagopal, L. (2003). Acc. Chem. Res. 36, 899-897.]); Ramon & Yus (2005[Ramon, D. J. & Yus, M. (2005). Angew. Chem. Int. Ed. 44, 1602-1634.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18N2O2

  • Mr = 378.41

  • Monoclinic, P 21 /c

  • a = 9.161 (3) Å

  • b = 18.397 (6) Å

  • c = 11.621 (4) Å

  • β = 98.132 (6)°

  • V = 1938.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.22 × 0.15 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 9583 measured reflections

  • 3378 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.116

  • S = 0.87

  • 3378 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2C11/C16/C17 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O1 0.95 2.17 3.012 (3) 148
C1—H1ACg1i 0.95 2.76 3.484 (3) 134
C14—H14ACg2ii 0.95 2.68 3.594 (3) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the last decade, diversity-oriented synthesis has been widely used to efficiently generate diverse small molecules. Among the strategies employed in diversity-oriented chemical synthesis, multi-component reactions are very attractive processes that push the limits of synthetic efficiency by using more than two reactants to create novel products with an optimal number of new bonds and functionalities (Dömling & Ugi, 2000; Nair et al., 2003; Ramon & Yus, 2005). Among the family of isoquinolines, the fused isoquinolines have attracted much attention owing to their biological activities including potent inhibitor of human topoisomerase I and selective inhibition against HIV-1 integrase in vitro (Aubry et al., 2004; Marco et al., 2005; Reddy et al., 1999). We report herein on the single-crystal X-ray diffraction study of the title compound, synthesized from 2-(phenylethynyl)benzaldehyde, sulfonohydrazide and benzyl acrylate in DCE/DMAc.

The molecular structure of the title compound is shown in Fig. 1, the bond lengths and angles are normal and correspond to those observed in related structures (Chen & Wu, 2010; Ye et al., 2010; Yu et al., 2011a; Yu et al., 2011b). It is compound of three aromatic rings namely, a pyrazolo[5,1-a]isoquinoline ring [A = (N1, N2, C7—C17)], two benzene ring [B = (C1—C6)] and [C = (C20—C25], with the dihedral angles of 57.22 (6)°, 71.36 (6)° and 66.33 (8)° between the mean planes A/B, A/C and B/C, respectively; and the carboxyl group is twisted at an angle of 8.78 (9)° relative to the A skeleton. Atoms C16 in A ring and C20 in the benzene ring are joined by the ester group (C18/O1/O2/C19) giving the torsion angles C18—O2—C19—C20 and C19—O2—C18—C16 are -96.2 (2)° and -179.81 (17)°, respectively. Atom N1 has a trigonal configuration, the sum of three bond angles around it being 360°. The mean planes of the adjacent A moieties are parallel [at an angle 0.00 (5)°] or inclined at an angle of 37.69 (4)° in the crystal lattice.

In the crystal structure, molecules are connected via C—H···π interactions (Fig. 2 and Table 1), forming a three-dimensional supramolecular framework (Fig. 3), where Cg1 and Cg2 are the centroids of C11, C16, C17, N1, N2 and C20–C25 rings, respectively.

Related literature top

For the biological activity of fused isoquinoline compounds, see: Aubry et al. (2004); Marco et al. (2005); Reddy et al. (1999). For related structures, see: Chen & Wu (2010); Ye et al. (2010); Yu et al. (2011a,b). For selected examples of multi-component reactions, see: Dömling & Ugi (2000); Nair et al. (2003); Ramon & Yus (2005).

Experimental top

The reaction was performed in test tube under nitrogen atmosphere. 2-(phenylethynyl)benzaldehyde (0.2 mmol) was added to a solution of sulfonohydrazide (0.2 mmol) in DCE (0.5 ml). The mixture was stirred at room temperature for 30 min. Then AgOTf (7.7 mg, 0.01 mmol) was added and the reaction mixture was heated to 70 oC for 1 h. Subsequently, benzyl acrylate (0.4 mmol) and DMAc (2 ml) were added in the mixture. After completion of reaction as indicated by TLC, the reaction was quenched with aqueous NH4Cl (10 ml, 1.0 M), extracted with EtOAc (10 ml), dried by anhydrous Na2SO4. Evaporation of the solvent followed by purification on silica gel provided the crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically with C—H = 0.95–0.99 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

In the last decade, diversity-oriented synthesis has been widely used to efficiently generate diverse small molecules. Among the strategies employed in diversity-oriented chemical synthesis, multi-component reactions are very attractive processes that push the limits of synthetic efficiency by using more than two reactants to create novel products with an optimal number of new bonds and functionalities (Dömling & Ugi, 2000; Nair et al., 2003; Ramon & Yus, 2005). Among the family of isoquinolines, the fused isoquinolines have attracted much attention owing to their biological activities including potent inhibitor of human topoisomerase I and selective inhibition against HIV-1 integrase in vitro (Aubry et al., 2004; Marco et al., 2005; Reddy et al., 1999). We report herein on the single-crystal X-ray diffraction study of the title compound, synthesized from 2-(phenylethynyl)benzaldehyde, sulfonohydrazide and benzyl acrylate in DCE/DMAc.

The molecular structure of the title compound is shown in Fig. 1, the bond lengths and angles are normal and correspond to those observed in related structures (Chen & Wu, 2010; Ye et al., 2010; Yu et al., 2011a; Yu et al., 2011b). It is compound of three aromatic rings namely, a pyrazolo[5,1-a]isoquinoline ring [A = (N1, N2, C7—C17)], two benzene ring [B = (C1—C6)] and [C = (C20—C25], with the dihedral angles of 57.22 (6)°, 71.36 (6)° and 66.33 (8)° between the mean planes A/B, A/C and B/C, respectively; and the carboxyl group is twisted at an angle of 8.78 (9)° relative to the A skeleton. Atoms C16 in A ring and C20 in the benzene ring are joined by the ester group (C18/O1/O2/C19) giving the torsion angles C18—O2—C19—C20 and C19—O2—C18—C16 are -96.2 (2)° and -179.81 (17)°, respectively. Atom N1 has a trigonal configuration, the sum of three bond angles around it being 360°. The mean planes of the adjacent A moieties are parallel [at an angle 0.00 (5)°] or inclined at an angle of 37.69 (4)° in the crystal lattice.

In the crystal structure, molecules are connected via C—H···π interactions (Fig. 2 and Table 1), forming a three-dimensional supramolecular framework (Fig. 3), where Cg1 and Cg2 are the centroids of C11, C16, C17, N1, N2 and C20–C25 rings, respectively.

For the biological activity of fused isoquinoline compounds, see: Aubry et al. (2004); Marco et al. (2005); Reddy et al. (1999). For related structures, see: Chen & Wu (2010); Ye et al. (2010); Yu et al. (2011a,b). For selected examples of multi-component reactions, see: Dömling & Ugi (2000); Nair et al. (2003); Ramon & Yus (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The π-π stacking and C—H···π interactions are represented by dashed lines. H atoms not involved in interactions have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the [201] direction.
Benzyl 5-phenylpyrazolo[5,1-a]isoquinoline-1-carboxylate top
Crystal data top
C25H18N2O2F(000) = 792
Mr = 378.41Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3378 reflections
a = 9.161 (3) Åθ = 2.1–25.0°
b = 18.397 (6) ŵ = 0.08 mm1
c = 11.621 (4) ÅT = 173 K
β = 98.132 (6)°Block, colorless
V = 1938.9 (12) Å30.22 × 0.15 × 0.11 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.098
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
Detector resolution: 10 pixels mm-1h = 910
ω scansk = 2021
9583 measured reflectionsl = 1313
3378 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
3378 reflectionsΔρmax = 0.18 e Å3
263 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0076 (11)
Crystal data top
C25H18N2O2V = 1938.9 (12) Å3
Mr = 378.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.161 (3) ŵ = 0.08 mm1
b = 18.397 (6) ÅT = 173 K
c = 11.621 (4) Å0.22 × 0.15 × 0.11 mm
β = 98.132 (6)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1852 reflections with I > 2σ(I)
9583 measured reflectionsRint = 0.098
3378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.87Δρmax = 0.18 e Å3
3378 reflectionsΔρmin = 0.24 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4210 (2)0.36318 (10)0.06266 (15)0.0314 (5)
N20.2711 (2)0.36122 (10)0.01947 (16)0.0355 (5)
O10.41215 (19)0.59556 (8)0.15872 (15)0.0450 (5)
O20.17077 (19)0.56806 (8)0.10441 (14)0.0401 (5)
C10.3320 (3)0.16526 (14)0.1618 (2)0.0455 (7)
H1A0.28710.16410.24070.055*
C20.3482 (3)0.10140 (14)0.0978 (2)0.0486 (7)
H2B0.31520.05670.13320.058*
C30.4124 (3)0.10268 (13)0.0176 (2)0.0476 (7)
H3A0.42360.05890.06120.057*
C40.4604 (3)0.16836 (12)0.0697 (2)0.0405 (7)
H4A0.50290.16930.14910.049*
C50.4462 (3)0.23300 (12)0.0054 (2)0.0339 (6)
C60.3809 (3)0.23078 (13)0.1113 (2)0.0414 (7)
H6A0.37010.27430.15570.050*
C70.5104 (3)0.30141 (12)0.06079 (19)0.0335 (6)
C80.6539 (3)0.30793 (12)0.1091 (2)0.0387 (6)
H8A0.71680.26690.10950.046*
C90.7137 (3)0.37483 (13)0.1595 (2)0.0359 (6)
C100.6211 (3)0.43691 (12)0.16259 (19)0.0320 (6)
C110.4672 (3)0.43004 (12)0.11022 (19)0.0298 (6)
C120.8650 (3)0.38081 (14)0.2056 (2)0.0468 (7)
H12A0.92820.34020.20210.056*
C130.9217 (3)0.44468 (14)0.2553 (2)0.0496 (7)
H13A1.02360.44800.28510.059*
C140.8296 (3)0.50468 (14)0.2621 (2)0.0463 (7)
H14A0.86840.54800.29920.056*
C150.6817 (3)0.50136 (12)0.2150 (2)0.0384 (7)
H15A0.62080.54290.21800.046*
C160.3387 (3)0.47398 (12)0.09507 (19)0.0308 (6)
C170.2256 (3)0.42822 (12)0.0405 (2)0.0363 (6)
H17A0.12630.44370.02070.044*
C180.3186 (3)0.55095 (13)0.1236 (2)0.0352 (6)
C190.1330 (3)0.64296 (12)0.1286 (2)0.0403 (7)
H19A0.05030.65910.07000.048*
H19B0.21870.67470.12180.048*
C200.0897 (3)0.65106 (12)0.2487 (2)0.0366 (6)
C210.0315 (3)0.69401 (12)0.2649 (2)0.0462 (7)
H21A0.08780.71660.19980.055*
C220.0709 (3)0.70417 (14)0.3754 (3)0.0585 (9)
H22A0.15250.73430.38510.070*
C230.0080 (4)0.67062 (15)0.4707 (3)0.0622 (9)
H23A0.01970.67730.54570.075*
C240.1283 (3)0.62686 (15)0.4565 (2)0.0548 (8)
H24A0.18310.60370.52190.066*
C250.1679 (3)0.61719 (13)0.3465 (2)0.0434 (7)
H25A0.24960.58700.33740.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0286 (13)0.0336 (11)0.0314 (12)0.0006 (10)0.0014 (9)0.0017 (9)
N20.0279 (13)0.0405 (12)0.0365 (12)0.0008 (11)0.0010 (9)0.0006 (9)
O10.0367 (12)0.0391 (10)0.0573 (12)0.0019 (9)0.0002 (9)0.0078 (8)
O20.0341 (11)0.0390 (10)0.0454 (11)0.0070 (9)0.0014 (8)0.0059 (8)
C10.0453 (19)0.0571 (17)0.0327 (16)0.0032 (15)0.0011 (13)0.0113 (13)
C20.0451 (19)0.0430 (16)0.056 (2)0.0034 (14)0.0031 (15)0.0117 (14)
C30.050 (2)0.0409 (16)0.0511 (19)0.0027 (14)0.0032 (15)0.0019 (13)
C40.0387 (17)0.0444 (15)0.0364 (15)0.0014 (14)0.0012 (12)0.0027 (12)
C50.0309 (16)0.0379 (14)0.0327 (15)0.0050 (12)0.0039 (11)0.0019 (11)
C60.0427 (18)0.0430 (15)0.0372 (16)0.0037 (13)0.0016 (12)0.0028 (12)
C70.0348 (17)0.0340 (14)0.0313 (15)0.0058 (13)0.0030 (12)0.0011 (11)
C80.0380 (17)0.0358 (14)0.0408 (16)0.0084 (14)0.0005 (12)0.0008 (11)
C90.0320 (16)0.0419 (15)0.0326 (15)0.0000 (13)0.0004 (12)0.0023 (11)
C100.0298 (16)0.0376 (14)0.0282 (14)0.0023 (13)0.0031 (11)0.0054 (11)
C110.0310 (16)0.0323 (13)0.0259 (13)0.0017 (12)0.0033 (11)0.0011 (10)
C120.0360 (18)0.0512 (17)0.0509 (18)0.0050 (15)0.0018 (13)0.0007 (13)
C130.0307 (17)0.0597 (18)0.0552 (19)0.0032 (16)0.0046 (13)0.0001 (15)
C140.0427 (19)0.0461 (16)0.0466 (17)0.0047 (15)0.0061 (14)0.0030 (12)
C150.0354 (17)0.0373 (15)0.0407 (16)0.0003 (13)0.0004 (12)0.0004 (12)
C160.0308 (16)0.0344 (14)0.0267 (14)0.0002 (13)0.0021 (11)0.0014 (11)
C170.0344 (17)0.0389 (15)0.0348 (15)0.0046 (13)0.0023 (12)0.0019 (11)
C180.0343 (17)0.0422 (16)0.0284 (14)0.0039 (14)0.0026 (12)0.0027 (11)
C190.0403 (17)0.0348 (14)0.0427 (16)0.0098 (13)0.0045 (12)0.0019 (11)
C200.0291 (16)0.0317 (14)0.0479 (17)0.0012 (13)0.0018 (12)0.0028 (12)
C210.0360 (18)0.0400 (15)0.063 (2)0.0044 (14)0.0078 (14)0.0011 (13)
C220.052 (2)0.0469 (17)0.082 (3)0.0066 (16)0.0289 (18)0.0035 (16)
C230.070 (2)0.0604 (19)0.063 (2)0.0046 (19)0.0314 (19)0.0062 (17)
C240.055 (2)0.0675 (19)0.0416 (18)0.0006 (17)0.0048 (15)0.0052 (14)
C250.0349 (17)0.0518 (16)0.0436 (17)0.0002 (14)0.0065 (13)0.0037 (13)
Geometric parameters (Å, º) top
N1—C111.390 (3)C11—C161.418 (3)
N1—N21.394 (3)C12—C131.379 (3)
N1—C71.403 (3)C12—H12A0.9500
N2—C171.335 (3)C13—C141.398 (3)
O1—C181.215 (3)C13—H13A0.9500
O2—C181.377 (3)C14—C151.389 (3)
O2—C191.458 (2)C14—H14A0.9500
C1—C21.387 (3)C15—H15A0.9500
C1—C61.387 (3)C16—C171.414 (3)
C1—H1A0.9500C16—C181.472 (3)
C2—C31.387 (4)C17—H17A0.9500
C2—H2B0.9500C19—C201.511 (3)
C3—C41.394 (3)C19—H19A0.9900
C3—H3A0.9500C19—H19B0.9900
C4—C51.400 (3)C20—C211.397 (3)
C4—H4A0.9500C20—C251.401 (3)
C5—C61.403 (3)C21—C221.395 (4)
C5—C71.496 (3)C21—H21A0.9500
C6—H6A0.9500C22—C231.379 (4)
C7—C81.360 (3)C22—H22A0.9500
C8—C91.438 (3)C23—C241.394 (4)
C8—H8A0.9500C23—H23A0.9500
C9—C121.417 (3)C24—C251.389 (3)
C9—C101.427 (3)C24—H24A0.9500
C10—C151.410 (3)C25—H25A0.9500
C10—C111.460 (3)
C11—N1—N2113.26 (18)C12—C13—H13A119.9
C11—N1—C7125.3 (2)C14—C13—H13A119.9
N2—N1—C7121.39 (18)C15—C14—C13120.4 (2)
C17—N2—N1103.16 (19)C15—C14—H14A119.8
C18—O2—C19116.05 (19)C13—C14—H14A119.8
C2—C1—C6120.3 (2)C14—C15—C10120.7 (2)
C2—C1—H1A119.8C14—C15—H15A119.7
C6—C1—H1A119.8C10—C15—H15A119.7
C3—C2—C1120.2 (2)C17—C16—C11105.01 (19)
C3—C2—H2B119.9C17—C16—C18124.5 (2)
C1—C2—H2B119.9C11—C16—C18130.4 (2)
C2—C3—C4119.9 (2)N2—C17—C16113.8 (2)
C2—C3—H3A120.0N2—C17—H17A123.1
C4—C3—H3A120.0C16—C17—H17A123.1
C3—C4—C5120.3 (2)O1—C18—O2122.1 (2)
C3—C4—H4A119.8O1—C18—C16128.4 (2)
C5—C4—H4A119.8O2—C18—C16109.6 (2)
C4—C5—C6119.0 (2)O2—C19—C20111.82 (18)
C4—C5—C7119.0 (2)O2—C19—H19A109.3
C6—C5—C7121.9 (2)C20—C19—H19A109.3
C1—C6—C5120.2 (2)O2—C19—H19B109.3
C1—C6—H6A119.9C20—C19—H19B109.3
C5—C6—H6A119.9H19A—C19—H19B107.9
C8—C7—N1117.0 (2)C21—C20—C25117.8 (2)
C8—C7—C5123.4 (2)C21—C20—C19119.9 (2)
N1—C7—C5119.6 (2)C25—C20—C19122.3 (2)
C7—C8—C9122.3 (2)C22—C21—C20121.0 (3)
C7—C8—H8A118.9C22—C21—H21A119.5
C9—C8—H8A118.9C20—C21—H21A119.5
C12—C9—C10118.8 (2)C23—C22—C21120.3 (3)
C12—C9—C8121.1 (2)C23—C22—H22A119.9
C10—C9—C8120.1 (2)C21—C22—H22A119.9
C15—C10—C9119.0 (2)C22—C23—C24119.9 (3)
C15—C10—C11123.4 (2)C22—C23—H23A120.1
C9—C10—C11117.6 (2)C24—C23—H23A120.1
N1—C11—C16104.8 (2)C25—C24—C23119.7 (3)
N1—C11—C10117.6 (2)C25—C24—H24A120.1
C16—C11—C10137.6 (2)C23—C24—H24A120.1
C13—C12—C9121.0 (2)C24—C25—C20121.4 (3)
C13—C12—H12A119.5C24—C25—H25A119.3
C9—C12—H12A119.5C20—C25—H25A119.3
C12—C13—C14120.1 (2)
C11—N1—N2—C170.4 (2)C9—C10—C11—C16178.3 (2)
C7—N1—N2—C17177.82 (19)C10—C9—C12—C131.7 (4)
C6—C1—C2—C30.5 (4)C8—C9—C12—C13179.1 (2)
C1—C2—C3—C40.2 (4)C9—C12—C13—C140.7 (4)
C2—C3—C4—C51.0 (4)C12—C13—C14—C152.5 (4)
C3—C4—C5—C61.0 (4)C13—C14—C15—C101.9 (4)
C3—C4—C5—C7174.8 (2)C9—C10—C15—C140.5 (3)
C2—C1—C6—C50.5 (4)C11—C10—C15—C14179.2 (2)
C4—C5—C6—C10.3 (4)N1—C11—C16—C170.8 (2)
C7—C5—C6—C1175.4 (2)C10—C11—C16—C17176.7 (2)
C11—N1—C7—C80.3 (3)N1—C11—C16—C18177.4 (2)
N2—N1—C7—C8177.46 (19)C10—C11—C16—C185.1 (4)
C11—N1—C7—C5179.4 (2)N1—N2—C17—C160.2 (2)
N2—N1—C7—C53.4 (3)C11—C16—C17—N20.7 (3)
C4—C5—C7—C854.6 (3)C18—C16—C17—N2177.6 (2)
C6—C5—C7—C8121.1 (3)C19—O2—C18—O10.0 (3)
C4—C5—C7—N1126.4 (2)C19—O2—C18—C16179.81 (17)
C6—C5—C7—N158.0 (3)C17—C16—C18—O1171.4 (2)
N1—C7—C8—C90.4 (3)C11—C16—C18—O16.5 (4)
C5—C7—C8—C9178.6 (2)C17—C16—C18—O28.4 (3)
C7—C8—C9—C12177.7 (2)C11—C16—C18—O2173.7 (2)
C7—C8—C9—C101.5 (4)C18—O2—C19—C2096.2 (2)
C12—C9—C10—C152.2 (3)O2—C19—C20—C21137.2 (2)
C8—C9—C10—C15178.5 (2)O2—C19—C20—C2543.3 (3)
C12—C9—C10—C11177.5 (2)C25—C20—C21—C221.5 (3)
C8—C9—C10—C111.7 (3)C19—C20—C21—C22178.0 (2)
N2—N1—C11—C160.8 (2)C20—C21—C22—C231.2 (4)
C7—N1—C11—C16178.12 (19)C21—C22—C23—C240.5 (4)
N2—N1—C11—C10177.36 (18)C22—C23—C24—C250.1 (4)
C7—N1—C11—C100.0 (3)C23—C24—C25—C200.5 (4)
C15—C10—C11—N1179.3 (2)C21—C20—C25—C241.2 (3)
C9—C10—C11—N11.0 (3)C19—C20—C25—C24178.4 (2)
C15—C10—C11—C161.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2C11/C16/C17 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O10.952.173.012 (3)148
C1—H1A···Cg1i0.952.763.484 (3)134
C14—H14A···Cg2ii0.952.683.594 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H18N2O2
Mr378.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.161 (3), 18.397 (6), 11.621 (4)
β (°) 98.132 (6)
V3)1938.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.15 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9583, 3378, 1852
Rint0.098
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.116, 0.87
No. of reflections3378
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2C11/C16/C17 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···O10.952.173.012 (3)148
C1—H1A···Cg1i0.952.763.484 (3)134
C14—H14A···Cg2ii0.952.683.594 (3)161
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (ZR2011BQ004) and the Fundamental Research Funds for the Central Universities in China (09CX04045A).

References

First citationAubry, A., Pan, X. S., Fisher, L. M., Jarlier, V. & Cambau, E. (2004). Antimicrob. Agent Chemother. 48, 1281–1288.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, Z.-Y. & Wu, J. (2010). Org. Lett. 12, 4856–4859.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDömling, A. & Ugi, I. (2000). Angew. Chem. Int. Ed. 39, 3168–3210.  CrossRef CAS Google Scholar
First citationMarco, E., Laine, W., Tardy, C., Lansiaux, A., Iwao, M., Ishibashi, F., Bailly, C. & Gago, F. (2005). J. Med. Chem. 48, 3796–3807.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNair, V., Rajesh, C., Vinod, A. U., Bindu, S., Sreekenth, A. R., Mathen, L. & Balagopal, L. (2003). Acc. Chem. Res. 36, 899–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamon, D. J. & Yus, M. (2005). Angew. Chem. Int. Ed. 44, 1602–1634.  CAS Google Scholar
First citationReddy, M. V. R., Rao, M. R., Rhodes, D., Hansen, M. S. T., Rubins, K., Bushman, F. D., Venkateswarlu, Y. & Faulkner, D. J. (1999). J. Med. Chem. 42, 1901–1907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, S.-Q., Yang, X.-D. & Wu, J. (2010). Chem. Commun. pp. 5238–5240.  Web of Science CSD CrossRef Google Scholar
First citationYu, X.-X., Pan, X.-L. & Wu, J. (2011a). Tetrahedron, 67, 1145–1149.  Web of Science CrossRef CAS Google Scholar
First citationYu, X.-X., Yang, Q., Lou, H.-L., Peng, Y.-Y. & Wu, J. (2011b). Org. Biomol. Chem. 9, 7033–7037.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds