organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-2-methyl­sulfanyl-1,3-benzo­thia­zole

aUniversity of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland, and bMedical University of Warsaw, Faculty of Medicine, Oczki 3, 02-007 Warsaw, Poland
*Correspondence e-mail: miked@chem.uw.edu.pl

(Received 25 October 2011; accepted 22 November 2011; online 25 November 2011)

The title mol­ecule, C8H6BrNS2, is almost planar with a dihedral angle of 0.9 (1)° between the benzene and thia­zole rings. The values of the geometry-based index of aromaticity (HOMA) and the nucleus-independent chemical shift (NICS) for the two cyclic fragments of the title mol­ecule are 0.95 and −9.61, respectively, for the benzene ring, and 0.69 and −7.71, respectively, for the thia­zole ring. They show that the benzene ring exhibits substanti­ally higher cyclic π-electron delocalization than the thia­zole ring. Comparison with other similar benzothia­zole fragments reveals a similar trend.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Chen et al. (2003[Chen, C., Su, C., Zhang, H., Xu, A. & Kang, B. (2003). Acta Cryst. E59, o453-o454.], 2010[Chen, H.-G., Li, X.-F., An, Y., Yao, L.-H. & Liu, W.-S. (2010). Acta Cryst. E66, o125.]); Li et al. (2009[Li, Q.-Z., Song, B.-A., Yang, S., Zheng, Y.-G. & Guo, Q.-Q. (2009). Acta Cryst. E65, o37.]); Liu et al. (2003[Liu, Q.-J., Shi, D.-Q., Ma, C.-L., Pan, F.-M., Qu, R.-J., Yu, K.-B. & Xu, J.-H. (2003). Acta Cryst. C59, o219-o220.]); Loghmani-Khouzani et al. (2009[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009). Acta Cryst. E65, o2441.]); Matthews et al. (1996[Matthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531-1538.]); Saravanan et al. (2007[Saravanan, S., Muthusubramanian, S., Vasantha, S., Sivakolunthu, S. & Raghavaiah, P. (2007). J. Sulfur Chem. 28, 181-199.]); Zhao et al. (2009[Zhao, B., Wang, H., Li, Q., Gao, Y. & Liang, D. (2009). Acta Cryst. E65, o958.]); Zou et al. (2003[Zou, R.-Q., Li, J.-R., Zheng, Y., Zhang, R.-H. & Bu, X.-H. (2003). Acta Cryst. E59, o393-o394.]). For the aromaticity of benzothia­zoles, see: Karolak-Wojciechowska et al. (2007[Karolak-Wojciechowska, J., Mrozek, A., Czylkowski, R., Tekiner-Gulbas, B., Akı-Şener, E. & Yalçin, I. (2007). J. Mol. Struct. 839, 125-131.]). For the Gaussian program, see: Frisch et al. (2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.]). For the HOMA index, see: Kruszewski & Krygowski (1972[Kruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839-3842.]); Krygowski & Cyrański (2001[Krygowski, T. M. & Cyrański, M. K. (2001). Chem. Rev. 101, 1385-1420.]) and for the NICS index, see: Schleyer et al. (1996[Schleyer, P., v, R., Maerker, C., Dransfeld, H., Jiao, H. & van Eikemma Hommes, N. J. R. (1996). J. Am. Chem. Soc. 118, 6317-6318.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrNS2

  • Mr = 260.18

  • Monoclinic, P 21

  • a = 9.7843 (4) Å

  • b = 3.9514 (2) Å

  • c = 11.6076 (5) Å

  • β = 96.353 (4)°

  • V = 446.01 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.01 mm−1

  • T = 100 K

  • 0.4 × 0.15 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.422, Tmax = 0.606

  • 3437 measured reflections

  • 1227 independent reflections

  • 1125 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.033

  • S = 0.99

  • 1227 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 315 Friedel pairs

  • Flack parameter: 0.005 (9)

Table 1
HOMA indices for compounds containing benzothia­zole moieties.

BT = benzothia­zole; MePyr = methyl­pyridine.

refcode R = HOMA (total) HOMA (thia­zole) HOMA (benzene)
This work H 0.82 0.69 0.95
DIDBAUa -C(Ph)=N—NH—C(O)—NH2 0.85 0.73 0.99
HUFSILb -CH2—O—CH2—CH2—S—BT 0.83 0.69 0.98
HUYYIJc -CH2—CH2—CH2—S—BT 0.84 0.70 0.98
MACMOTd -CH2—S—BT 0.85 0.72 0.97
  -CH2—S—BT 0.85 0.71 0.98
MACMOT01e -CH2—S—BT 0.85 0.70 0.98
  -CH2—S—BT 0.85 0.71 0.97
MOKJIGf -C(O)—C(COOCH3)=N—O—CH3 0.83 0.70 0.96
PUFGEDg -C(O)—Ph 0.84 0.70 0.96
QOTQASh -C(O)—NH-2-MePyr 0.85 0.71 0.98
ZUQQEHi -CH2—O—CH2—CH2—O– CH2—CH2—S—BT 0.83 0.67 0.98
Mean   0.84 0.70 0.97
E.s.d.   0.01 0.01 0.01
Notes: (a) Saravanan et al. (2007[Saravanan, S., Muthusubramanian, S., Vasantha, S., Sivakolunthu, S. & Raghavaiah, P. (2007). J. Sulfur Chem. 28, 181-199.]); (b) Chen et al. (2010[Chen, H.-G., Li, X.-F., An, Y., Yao, L.-H. & Liu, W.-S. (2010). Acta Cryst. E66, o125.]); (c) Chen et al. (2003[Chen, C., Su, C., Zhang, H., Xu, A. & Kang, B. (2003). Acta Cryst. E59, o453-o454.]); (d) Liu et al. (2003[Liu, Q.-J., Shi, D.-Q., Ma, C.-L., Pan, F.-M., Qu, R.-J., Yu, K.-B. & Xu, J.-H. (2003). Acta Cryst. C59, o219-o220.]); (e) Zou et al. (2003[Zou, R.-Q., Li, J.-R., Zheng, Y., Zhang, R.-H. & Bu, X.-H. (2003). Acta Cryst. E59, o393-o394.]); (f) Li et al. (2009[Li, Q.-Z., Song, B.-A., Yang, S., Zheng, Y.-G. & Guo, Q.-Q. (2009). Acta Cryst. E65, o37.]); (g) Loghmani-Khouzani et al. (2009[Loghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009). Acta Cryst. E65, o2441.]); (h) Matthews et al. (1996[Matthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531-1538.]); (i) Zhao et al. (2009[Zhao, B., Wang, H., Li, Q., Gao, Y. & Liang, D. (2009). Acta Cryst. E65, o958.]).

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our report concerns 6-bromo-2-(methylthio)benzo[d]thiazole (Fig.1). Its structure is essentially planar with dihedral angle between conjugated thiazole and benzene rings equal to 1.0 (1)°. Random deviation from 5-membered ring plane is 0.0019 Å. This is very similar to previously investigated systems containing benzothiazole moiety (Karolak-Wojciechowska et al., 2007).

There are four C—S bonds present in the molecule, which are formally single. However, except for C8—S2 [1.805 (3) Å ; reference bond length for single C—S bond used for HOMA is 1.807 Å, Krygowski & Cyrański (2001)], three other bonds are shorter [C7—S2 1.744 (3) Å, C7—S1 1.760 (3) Å, C3—S1 1.730 (3) Å, Fig 1]. This results from π···π conjugation and leads to higher cyclic delocalization in the thiazole ring. There are no hydrogen bonds present, but a short contact of 3.6133 (9) Å between bromine and sulfur atoms is observed (Fig. 2).

It has been shown for benzothiazoles that global aromaticity is always higher than for the single five-membered ring (Karolak-Wojciechowska et al., 2007). This is the consequence of the thiazole ring conjugation with fully aromatic benzene ring.

To estimate cyclic π-electron delocalization in our system we used geometry based Harmonic Oscillator Model of Aromaticity. HOMA can be calculated for both the whole molecule or individual moiety. For the title benzothiazole moiety HOMA equals 0.82, whereas for thiazole ring 0.69 and 0.95 for benzene ring (Table 1). The value of HOMA for benzene ring is higher than for thiazole, what is additionally corroborated by the magnetic indices of aromaticity. For thiazole ring NICS(0) = -7.71, NICS(1)zz = -15.89. For benzene ring NICS(0) = -9.61, NICS(1)zz = -25.44. For comparison we calculated HOMA indices for other 9 compounds derived from the Cambridge Structural Database (Allen, 2002) containing benzothiazole fragment. All of them showed similar trend. Selected compounds had to fulfill the following criteria: (i) R factor below 5%, (ii) only the carbon atom of the methylthio group bears a substituent and this substituent binds through the carbon atom, (iii) benzothiazole moiety is not embedded in heterocyclic ring. The values of indices are gathered in Table 1. HOMA values indicate large π-electron delocalization in benzene ring in all compounds. Thiazole ring shows lower aromaticity than the global HOMA in all cases. Noteworthy, the variation of indices for both fragments is very small, but it is fair to note that the structure modifications are not important as only the substituents joined to the carbon atom of methylthio group change.

Related literature top

For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Chen et al. (2003, 2010); Li et al. (2009); Liu et al. (2003); Loghmani-Khouzani et al. (2009); Matthews et al. (1996); Saravanan et al. (2007); Zhao et al. (2009); Zou et al. (2003). For the aromaticity of benzothiazoles, see: Karolak-Wojciechowska et al. (2007). For the Gaussian program, see: Frisch et al. (2009). For the HOMA index, see: Kruszewski & Krygowski (1972); Krygowski & Cyrański (2001) and for the NICS index, see: Schleyer et al. (1996).

Experimental top

To a 5.01 g (0.025 mol) of 2-(methylthio)benzo[d]thiazole suspended in 50 ml of methanol the 1.5 ml of pure Br2 was added dropwise in portions (5 drops every 20 min). Since the beginning of the reaction the solution was extensively stirred for 8 h, and then obtained precipitate (4.67 g, 93%) was separated from reaction mixture and washed with ice cold methanol (3 portions of 50 ml). White solid residue was crystallized from absolute ethanol. Melting point 98-101°C. Single crystals were obtained immediately after slow evaporation of ethanol.

The calculations were carried out using Gaussian09 program (Frisch et al., 2009), starting from the X-ray geometry. Effective core potential for the bromine atom at the B3LYP/LANL2DZ theoretical level was used. NICS values were computed at GIAO/B3LYP/6–311+G**; the NICS(1) points are 1 Å above ring centres, perpendicular to the averaged planes of the rings. HOMA indices were calculated using personal program by one of the authors (M. A. D.).

Refinement top

H atoms were placed in calculated positions with C—H = 0.95–0.98 Å, and refined in riding mode with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

Our report concerns 6-bromo-2-(methylthio)benzo[d]thiazole (Fig.1). Its structure is essentially planar with dihedral angle between conjugated thiazole and benzene rings equal to 1.0 (1)°. Random deviation from 5-membered ring plane is 0.0019 Å. This is very similar to previously investigated systems containing benzothiazole moiety (Karolak-Wojciechowska et al., 2007).

There are four C—S bonds present in the molecule, which are formally single. However, except for C8—S2 [1.805 (3) Å ; reference bond length for single C—S bond used for HOMA is 1.807 Å, Krygowski & Cyrański (2001)], three other bonds are shorter [C7—S2 1.744 (3) Å, C7—S1 1.760 (3) Å, C3—S1 1.730 (3) Å, Fig 1]. This results from π···π conjugation and leads to higher cyclic delocalization in the thiazole ring. There are no hydrogen bonds present, but a short contact of 3.6133 (9) Å between bromine and sulfur atoms is observed (Fig. 2).

It has been shown for benzothiazoles that global aromaticity is always higher than for the single five-membered ring (Karolak-Wojciechowska et al., 2007). This is the consequence of the thiazole ring conjugation with fully aromatic benzene ring.

To estimate cyclic π-electron delocalization in our system we used geometry based Harmonic Oscillator Model of Aromaticity. HOMA can be calculated for both the whole molecule or individual moiety. For the title benzothiazole moiety HOMA equals 0.82, whereas for thiazole ring 0.69 and 0.95 for benzene ring (Table 1). The value of HOMA for benzene ring is higher than for thiazole, what is additionally corroborated by the magnetic indices of aromaticity. For thiazole ring NICS(0) = -7.71, NICS(1)zz = -15.89. For benzene ring NICS(0) = -9.61, NICS(1)zz = -25.44. For comparison we calculated HOMA indices for other 9 compounds derived from the Cambridge Structural Database (Allen, 2002) containing benzothiazole fragment. All of them showed similar trend. Selected compounds had to fulfill the following criteria: (i) R factor below 5%, (ii) only the carbon atom of the methylthio group bears a substituent and this substituent binds through the carbon atom, (iii) benzothiazole moiety is not embedded in heterocyclic ring. The values of indices are gathered in Table 1. HOMA values indicate large π-electron delocalization in benzene ring in all compounds. Thiazole ring shows lower aromaticity than the global HOMA in all cases. Noteworthy, the variation of indices for both fragments is very small, but it is fair to note that the structure modifications are not important as only the substituents joined to the carbon atom of methylthio group change.

For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Chen et al. (2003, 2010); Li et al. (2009); Liu et al. (2003); Loghmani-Khouzani et al. (2009); Matthews et al. (1996); Saravanan et al. (2007); Zhao et al. (2009); Zou et al. (2003). For the aromaticity of benzothiazoles, see: Karolak-Wojciechowska et al. (2007). For the Gaussian program, see: Frisch et al. (2009). For the HOMA index, see: Kruszewski & Krygowski (1972); Krygowski & Cyrański (2001) and for the NICS index, see: Schleyer et al. (1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Short contacts between bromine and sulfur atoms; view along the b axis. Intermolecular Br···S are shown with dashed lines.
6-Bromo-2-methylsulfanyl-1,3-benzothiazole top
Crystal data top
C8H6BrNS2F(000) = 256
Mr = 260.18Dx = 1.937 Mg m3
Monoclinic, P21Melting point = 371–374 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.7843 (4) ÅCell parameters from 2764 reflections
b = 3.9514 (2) Åθ = 2.9–28.5°
c = 11.6076 (5) ŵ = 5.01 mm1
β = 96.353 (4)°T = 100 K
V = 446.01 (3) Å3Needle, colourless
Z = 20.4 × 0.15 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
1227 independent reflections
Radiation source: fine-focus sealed tube1125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.6479 pixels mm-1θmax = 25.0°, θmin = 2.9°
phi and ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 43
Tmin = 0.422, Tmax = 0.606l = 1313
3437 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.033 w = 1/[σ2(Fo2) + (0.0143P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
1227 reflectionsΔρmax = 0.36 e Å3
110 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 315 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (9)
Crystal data top
C8H6BrNS2V = 446.01 (3) Å3
Mr = 260.18Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.7843 (4) ŵ = 5.01 mm1
b = 3.9514 (2) ÅT = 100 K
c = 11.6076 (5) Å0.4 × 0.15 × 0.1 mm
β = 96.353 (4)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
1227 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1125 reflections with I > 2σ(I)
Tmin = 0.422, Tmax = 0.606Rint = 0.024
3437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.033Δρmax = 0.36 e Å3
S = 0.99Δρmin = 0.22 e Å3
1227 reflectionsAbsolute structure: Flack (1983), 315 Friedel pairs
110 parametersAbsolute structure parameter: 0.005 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7671 (3)0.6254 (7)0.9919 (3)0.0141 (7)
C20.8559 (3)0.5366 (12)0.9147 (2)0.0123 (6)
C30.8181 (3)0.6157 (7)0.7984 (3)0.0121 (7)
C40.6939 (3)0.7815 (8)0.7626 (3)0.0121 (7)
C50.6060 (3)0.8712 (7)0.8439 (3)0.0137 (7)
C60.6430 (3)0.7938 (8)0.9590 (3)0.0135 (7)
C70.7722 (3)0.7402 (8)0.5934 (3)0.0127 (7)
C80.6257 (3)0.9551 (10)0.3940 (3)0.0192 (8)
N10.6702 (3)0.8486 (6)0.6440 (2)0.0131 (6)
S10.90775 (7)0.5420 (3)0.68048 (6)0.01509 (19)
S20.79094 (8)0.7776 (2)0.44632 (7)0.01761 (19)
Br10.81246 (3)0.50973 (9)1.15124 (2)0.01701 (9)
H20.94030.42540.93900.015*
H50.52180.98410.82050.016*
H60.58450.85461.01580.016*
H8A0.60841.15560.43990.029*
H8B0.55370.78670.40110.029*
H8C0.62541.01960.31240.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (18)0.0130 (17)0.0109 (16)0.0034 (13)0.0003 (14)0.0000 (13)
C20.0133 (13)0.0076 (16)0.0157 (14)0.0013 (16)0.0000 (10)0.0028 (16)
C30.0103 (16)0.0095 (15)0.0169 (16)0.0012 (12)0.0029 (13)0.0044 (12)
C40.0120 (17)0.0099 (16)0.0144 (17)0.0050 (14)0.0012 (13)0.0032 (14)
C50.0122 (17)0.0110 (15)0.0178 (18)0.0005 (12)0.0013 (13)0.0010 (13)
C60.0134 (17)0.0123 (16)0.0157 (18)0.0017 (14)0.0051 (13)0.0050 (14)
C70.0137 (17)0.0090 (15)0.0150 (17)0.0048 (14)0.0001 (14)0.0006 (14)
C80.0213 (17)0.019 (2)0.0171 (16)0.0014 (17)0.0006 (13)0.0025 (17)
N10.0132 (15)0.0136 (13)0.0122 (14)0.0018 (11)0.0011 (11)0.0012 (11)
S10.0140 (4)0.0166 (5)0.0149 (4)0.0027 (5)0.0027 (3)0.0012 (5)
S20.0190 (5)0.0197 (4)0.0149 (4)0.0020 (4)0.0049 (3)0.0010 (4)
Br10.02064 (16)0.01663 (14)0.01365 (15)0.0003 (2)0.00146 (11)0.0021 (2)
Geometric parameters (Å, º) top
S1—C31.730 (3)C6—H60.9500
S1—C71.760 (3)C3—C41.402 (4)
N1—C71.286 (4)C4—C51.391 (4)
N1—C41.396 (4)C5—H50.9500
C2—C11.362 (4)C7—S21.744 (3)
C2—C31.395 (4)S2—C81.805 (3)
C2—H20.9500C8—H8A0.9800
C1—C61.400 (4)C8—H8B0.9800
C1—Br11.909 (3)C8—H8C0.9800
C6—C51.379 (4)
C3—S1—C787.90 (14)C5—C4—C3119.9 (3)
C7—N1—C4109.5 (3)N1—C4—C3115.2 (3)
C1—C2—C3117.3 (3)C6—C5—C4119.0 (3)
C1—C2—H2121.3C6—C5—H5120.5
C3—C2—H2121.3C4—C5—H5120.5
C2—C1—C6122.7 (3)N1—C7—S2126.2 (2)
C2—C1—Br1118.6 (2)N1—C7—S1117.4 (2)
C6—C1—Br1118.7 (2)S2—C7—S1116.46 (18)
C5—C6—C1119.8 (3)C7—S2—C8100.09 (15)
C5—C6—H6120.1S2—C8—H8A109.5
C1—C6—H6120.1S2—C8—H8B109.5
C2—C3—C4121.3 (3)H8A—C8—H8B109.5
C2—C3—S1128.6 (2)S2—C8—H8C109.5
C4—C3—S1110.0 (2)H8A—C8—H8C109.5
C5—C4—N1124.9 (3)H8B—C8—H8C109.5
C3—C2—C1—C60.9 (5)C2—C3—C4—N1179.2 (3)
C3—C2—C1—Br1178.1 (3)S1—C3—C4—N10.1 (3)
C2—C1—C6—C51.0 (5)C1—C6—C5—C40.4 (4)
Br1—C1—C6—C5178.1 (2)N1—C4—C5—C6179.0 (3)
C1—C2—C3—C40.3 (5)C3—C4—C5—C60.1 (4)
C1—C2—C3—S1179.3 (3)C4—N1—C7—S2178.1 (2)
C7—S1—C3—C2178.8 (4)C4—N1—C7—S10.6 (3)
C7—S1—C3—C40.2 (2)C3—S1—C7—N10.5 (3)
C7—N1—C4—C5178.5 (3)C3—S1—C7—S2178.36 (19)
C7—N1—C4—C30.4 (4)N1—C7—S2—C86.0 (3)
C2—C3—C4—C50.2 (5)S1—C7—S2—C8175.2 (2)
S1—C3—C4—C5178.9 (2)

Experimental details

Crystal data
Chemical formulaC8H6BrNS2
Mr260.18
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)9.7843 (4), 3.9514 (2), 11.6076 (5)
β (°) 96.353 (4)
V3)446.01 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.01
Crystal size (mm)0.4 × 0.15 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur S
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.422, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
3437, 1227, 1125
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.033, 0.99
No. of reflections1227
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.22
Absolute structureFlack (1983), 315 Friedel pairs
Absolute structure parameter0.005 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

HOMA indices for compounds containing benzothiazole moieties. top
BT = benzothiazole; MePyr = methylpyridine.
refcodeR =HOMA (total)HOMA (thiazole)HOMA (benzene)
This workH0.820.690.95
DIDBAUa-C(Ph)=N-NH-C(O)-NH20.850.730.99
HUFSILb-CH2-O-CH2-CH2-S-BT0.830.690.98
HUYYIJc-CH2-CH2-CH2-S-BT0.840.700.98
MACMOTd-CH2-S-BT0.850.720.97
-CH2-S-BT0.850.710.98
MACMOT01e-CH2-S-BT0.850.700.98
-CH2-S-BT0.850.710.97
MOKJIGf-C(O)-C(COOCH3)=N-O-CH30.830.700.96
PUFGEDg-C(O)-Ph0.840.700.96
QOTQASh-C(O)-NH-2-MePyr0.850.710.98
ZUQQEHi-CH2-O-CH2-CH2-O- CH2-CH2-S-BT0.830.670.98
Mean0.840.700.97
E.s.d.0.010.010.01
Notes: (a) Saravanan et al. (2007); (b) Chen et al. (2010); (c) Chen et al. (2003); (d) Liu et al. (2003); (e) Zou et al. (2003); (f) Li et al. (2009); (g) Loghmani-Khouzani et al. (2009); (h) Matthews et al. (1996); (i) Zhao et al. (2009).
 

Acknowledgements

The Inter­disciplinary Centre for Mathematical and Computational Modelling (Warsaw, Poland) provided computational facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, H.-G., Li, X.-F., An, Y., Yao, L.-H. & Liu, W.-S. (2010). Acta Cryst. E66, o125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, C., Su, C., Zhang, H., Xu, A. & Kang, B. (2003). Acta Cryst. E59, o453–o454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationKarolak-Wojciechowska, J., Mrozek, A., Czylkowski, R., Tekiner-Gulbas, B., Akı-Şener, E. & Yalçin, I. (2007). J. Mol. Struct. 839, 125–131.  CAS Google Scholar
First citationKruszewski, J. & Krygowski, T. M. (1972). Tetrahedron Lett. 13, 3839–3842.  CrossRef Google Scholar
First citationKrygowski, T. M. & Cyrański, M. K. (2001). Chem. Rev. 101, 1385–1420.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Q.-Z., Song, B.-A., Yang, S., Zheng, Y.-G. & Guo, Q.-Q. (2009). Acta Cryst. E65, o37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Q.-J., Shi, D.-Q., Ma, C.-L., Pan, F.-M., Qu, R.-J., Yu, K.-B. & Xu, J.-H. (2003). Acta Cryst. C59, o219–o220.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLoghmani-Khouzani, H., Hajiheidari, D., Robinson, W. T., Abdul Rahman, N. & Kia, R. (2009). Acta Cryst. E65, o2441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. & Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 1531–1538.  CSD CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaravanan, S., Muthusubramanian, S., Vasantha, S., Sivakolunthu, S. & Raghavaiah, P. (2007). J. Sulfur Chem. 28, 181–199.  CSD CrossRef CAS Google Scholar
First citationSchleyer, P., v, R., Maerker, C., Dransfeld, H., Jiao, H. & van Eikemma Hommes, N. J. R. (1996). J. Am. Chem. Soc. 118, 6317–6318.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Wang, H., Li, Q., Gao, Y. & Liang, D. (2009). Acta Cryst. E65, o958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, R.-Q., Li, J.-R., Zheng, Y., Zhang, R.-H. & Bu, X.-H. (2003). Acta Cryst. E59, o393–o394.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds