organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(4-amino­phen­yl)-4,5-di­hydro-1H-imidazol-3-ium] dichloride monohydrate

aLaboratory of Chemical and Biological Crystallography, Department of Physical Chemistry, Rudjer Bošković Institute, POB-180, HR-10002 Zagreb, Croatia, and bDepartment of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
*Correspondence e-mail: kmolcano@irb.hr

(Received 7 November 2011; accepted 22 November 2011; online 25 November 2011)

The asymmetric unit of the title compound, 2C9H12N3+·2Cl·H2O, comprises two mol­ecules, two chloride anions and one mol­ecule of crystal water. In the imidazolinium ring, the protonation contributes to delocalization of the positive charge over the two C—N bonds. Both chloride anions are acceptors of four hydrogen bonds in a flattened tetra­hedron environment. The donors are NH2 groups, the NH groups of the imidazolinium rings and the water mol­ecule. These hydrogen bonds and N—H⋯O(H2O) hydrogen bonds form a three-dimensional network.

Related literature

For background and the biological activity of aromatic amidines, see: Chen et al. (2010[Chen, X., Orser, B. A. & MacDonald, J. F. (2010). Eur. J. Pharmacol. 648, 15-23.]); Hu et al. (2009[Hu, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626-4629.]); Del Poeta et al. (1998[Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Czarny, A., Bajić, M., Bajić, Ma., Kumar, A., Boykin, D. W. & Perfect, J. R. (1998). Antimicrob. Agents Chemother. 42, 2495-2502.]); Baraldi et al. (2004[Baraldi, P. G., Bovero, A., Fruttarolo, F., Preti, D., Tabrizi, M. A., Pavani, M. G. & Romagnoli, R. (2004). Med. Res. Rev. 24, 475-528.]); Jarak et al. (2011[Jarak, I., Marjanović, M., Piantanida, I., Kralj, M. & Karminski-Zamola, G. (2011). Eur. J. Med. Chem. 46, 2807-2815.]); Neidle (2001[Neidle, S. (2001). Nat. Prod. Rep. 18, 291-309.]); Stolić et al. (2011[Stolić, I., Mišković, K., Piantanida, I., Baus Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743-755.]). For the synthesis, see Widra et al. (1990[Widra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803-805.]). For related compounds see: Jarak et al. (2005[Jarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98-o100.]); Legrand et al. (2008[Legrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967-o968.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]);

[Scheme 1]

Experimental

Crystal data
  • 2C9H12N3+·2Cl·H2O

  • Mr = 413.35

  • Orthorhombic, P b c a

  • a = 10.5307 (2) Å

  • b = 17.9659 (4) Å

  • c = 22.4290 (5) Å

  • V = 4243.42 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.91 mm−1

  • T = 293 K

  • 0.4 × 0.05 × 0.04 mm

Data collection
  • Oxford Xcalibur Nova R Ruby diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2010[Oxford Diffraction (2010). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.389, Tmax = 0.892

  • 13695 measured reflections

  • 4375 independent reflections

  • 3054 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.00

  • 4375 reflections

  • 348 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11⋯Cl2i 0.86 2.45 3.296 (2) 170
N1A—H12⋯Cl1 0.86 2.45 3.304 (2) 170
N1B—H21⋯Cl2ii 0.86 2.59 3.448 (2) 174
N1B—H22⋯O1iii 0.86 2.02 2.882 (3) 177
N2A—H2C⋯Cl2 0.86 2.29 3.1113 (18) 160
N2B—H2D⋯Cl1ii 0.86 2.35 3.1615 (19) 157
N3A—H3C⋯Cl1i 0.86 2.36 3.1900 (17) 162
O1—H1A⋯Cl2iv 0.93 (2) 2.21 (2) 3.1329 (19) 178 (3)
O1—H1B⋯Cl1v 0.95 (2) 2.21 (2) 3.147 (2) 170 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic amidines which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen et al., 2010), antibacterial (Hu et al., 2009), antifungal (Del Poeta et al., 1998), and antitumor activity (Baraldi et al., 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak et al., 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted amidines (Stolić et al., 2011). Detail analysis of interactions of these compounds with nucleic acids can help to design more potent agents against different types of diseases.

The asymmetric unit of I comprises two molecules (labeled as A and B) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parameters Θ being 3.2° and 0.6° for A and B molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH2 group and a water molecule; Cl2 is surrounded by two NH2 groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H···O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).

Related literature top

For background and the biological activity of aromatic amidines, see: Chen et al. (2010); Hu et al. (2009); Del Poeta et al. (1998); Baraldi et al. (2004); Jarak et al. (2011); Neidle (2001); Stolić et al. (2011). For the synthesis, see Widra et al. (1990). For related compounds see: Jarak et al. (2005); Legrand et al. (2008). For puckering parameters, see: Cremer & Pople (1975);

Experimental top

The crude imidate ester hydrochloride (2.39 g, 12.8 mmol) prepared from 4-aminobenzonitrile (1.66 g, 14.1 mmol) in anhydrous methanol by Pinner reaction was suspended in anhydrous methanol (50 ml), 1,2-diaminoethane (12 ml) was added and mixture was refluxed for 12 h under the nitrogen atmosphere. The solvent was removed under reduced pressure and residue was recrystallized from ethanol-diethyl ether to yield 1.27 g (50.5%) of pale brown powder, m.p. 473 K; IR (νmax/cm-1): 3353, 3099, 1582, 1502, 1364, 1191, 949, 835; 1H NMR (DMSO-d6) δ/p.p.m.: 10.12 (s, 2H, NH), 7.76 (s, 2H, NH2), 6.65 (s, 2H, ArH), 6.46 (s, 2H, ArH), 2.50 (s, 4H, CH2).

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and 0.97 Å for C and 0.86 Å for N atom and Uiso(H) = 1.2Ueq(C,N). The H atoms of water were located in difference map and then allowed to ride on their parent atoms, with O—H = 0.95 Å and 1.5Ueq(O).

Structure description top

Nucleic acids are important targets for many biomolecules and small molecules. Many anticancer drugs are known to exert their biological activity through bonding into minor groove of DNA. Aromatic amidines which bind strongly into the DNA minor groove exhibit outstandindg antiparasitic (Chen et al., 2010), antibacterial (Hu et al., 2009), antifungal (Del Poeta et al., 1998), and antitumor activity (Baraldi et al., 2004). The amidinium moiety is known to contribute to DNA binding of small molecules by electrostatic, van der Waals and hydrogen bonding interactions (Neidle, 2001). Aminobenzamidine derivatives are very useful building blocks for construction of target complex molecules (Jarak et al., 2011). We found out that 4,5-dihydroimidazoles with cyclic amidine moiety at the terminal positions show sometimes better antitumor activity than corresponding unsubstituted or alkyl substituted amidines (Stolić et al., 2011). Detail analysis of interactions of these compounds with nucleic acids can help to design more potent agents against different types of diseases.

The asymmetric unit of I comprises two molecules (labeled as A and B) and a single molecule of crystal water (Fig. 1). The five-membered rings of the cations are almost planar, the Cremer-Pople (Cremer & Pople, 1975) puckering parameters Θ being 3.2° and 0.6° for A and B molecules, respectively. The cations, however, are not planar, since mean planes of six- and five-membered rings are tilted by 9.3° and 14.8°, respectively. Both imino nitrogen atoms of the imidazolinium ring are protonated, since the imidazole is stronger proton acceptor than the amine nitrogen. The positive charge is delocalized over the two C—N bonds in the five-membered ring (Scheme 1, Fig. 1), further stabilizing the cation. The chloride anions are acceptors of four hydrogen bonds in the shapes of flattened tetrahedra with different donor groups: Cl1 accepts hydrogen bonds from two NH group of the imidazolinium ring, one NH2 group and a water molecule; Cl2 is surrounded by two NH2 groups, one imidazolinium NH and a water molecule. The molecule of crystal water is a proton donor to chloride ions and acceptor of N—H···O bonds. Thus, crystal packing comprises three-dimensional hydrogen bonding network (Fig. 2, Table 1).

For background and the biological activity of aromatic amidines, see: Chen et al. (2010); Hu et al. (2009); Del Poeta et al. (1998); Baraldi et al. (2004); Jarak et al. (2011); Neidle (2001); Stolić et al. (2011). For the synthesis, see Widra et al. (1990). For related compounds see: Jarak et al. (2005); Legrand et al. (2008). For puckering parameters, see: Cremer & Pople (1975);

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the asymmetric unit of I. Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are depicted as spheres of arbitrary radii.
[Figure 2] Fig. 2. Hydrogen bonding in I. Symmetry operators: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, y - 3/2, -z + 1/2; (iv) x, y - 1, z; (v) - x + 1, -y, -z + 1.
Bis[2-(4-aminophenyl)-4,5-dihydro-1H-imidazol-3-ium] dichloride hydrate top
Crystal data top
2C9H12N3+·2Cl·H2OF(000) = 1744
Mr = 413.35Dx = 1.294 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 4375 reflections
a = 10.5307 (2) Åθ = 3.2–76.0°
b = 17.9659 (4) ŵ = 2.91 mm1
c = 22.4290 (5) ÅT = 293 K
V = 4243.42 (16) Å3Prism, colourless
Z = 80.4 × 0.05 × 0.04 mm
Data collection top
Oxford Xcalibur Nova R Ruby
diffractometer
3054 reflections with I > 2σ(I)
CCD detector, ω scansRint = 0.030
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2010)
θmax = 76.2°, θmin = 3.9°
Tmin = 0.389, Tmax = 0.892h = 1013
13695 measured reflectionsk = 2218
4375 independent reflectionsl = 1227
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.1666P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.24 e Å3
4375 reflectionsΔρmin = 0.13 e Å3
348 parameters
Crystal data top
2C9H12N3+·2Cl·H2OV = 4243.42 (16) Å3
Mr = 413.35Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.5307 (2) ŵ = 2.91 mm1
b = 17.9659 (4) ÅT = 293 K
c = 22.4290 (5) Å0.4 × 0.05 × 0.04 mm
Data collection top
Oxford Xcalibur Nova R Ruby
diffractometer
4375 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2010)
3054 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.892Rint = 0.030
13695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
4375 reflectionsΔρmin = 0.13 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.15472 (18)0.24466 (12)0.46353 (9)0.0591 (4)
C2A0.2329 (2)0.20468 (13)0.50240 (9)0.0677 (5)
H2A0.27990.16470.4880.081*
C3A0.2413 (2)0.22367 (13)0.56166 (9)0.0649 (5)
H3A0.29470.19660.58660.078*
C4A0.17150 (17)0.28251 (10)0.58513 (8)0.0529 (4)
C5A0.09206 (18)0.32174 (11)0.54635 (9)0.0590 (4)
H5A0.04340.36090.5610.071*
C6A0.08469 (19)0.30346 (12)0.48693 (9)0.0630 (5)
H6A0.0320.33090.46190.076*
C7A0.17897 (17)0.30141 (10)0.64793 (8)0.0536 (4)
C8A0.2419 (2)0.29987 (16)0.74592 (10)0.0797 (6)
H8110.31750.32380.76160.096*
H8120.21770.25940.77220.096*
C9A0.1344 (2)0.35524 (14)0.73860 (10)0.0759 (6)
H9110.06250.34230.76360.091*
H9120.16180.40540.74810.091*
N1A0.1465 (2)0.22627 (13)0.40482 (8)0.0825 (6)
H110.09740.25110.38150.099*
H120.19040.18980.3910.099*
N2A0.26224 (17)0.27362 (11)0.68540 (8)0.0705 (5)
H2C0.32180.24340.67530.085*
N3A0.10317 (17)0.34793 (10)0.67552 (8)0.0671 (4)
H3C0.04210.37140.65840.081*
C1B0.7185 (2)0.49540 (12)0.38839 (10)0.0699 (5)
C2B0.7994 (2)0.48300 (13)0.43669 (11)0.0726 (6)
H2B0.87180.45420.43140.087*
C3B0.7741 (2)0.51242 (13)0.49165 (10)0.0677 (5)
H3B0.82880.50240.52320.081*
C4B0.66745 (19)0.55730 (11)0.50120 (9)0.0597 (4)
C5B0.5881 (2)0.57082 (13)0.45265 (11)0.0679 (5)
H5B0.51710.6010.45770.082*
C6B0.6124 (2)0.54067 (14)0.39764 (11)0.0738 (6)
H6B0.55760.55050.36610.089*
C7B0.64277 (17)0.58804 (11)0.55951 (10)0.0593 (5)
C8B0.6543 (2)0.60604 (14)0.66131 (11)0.0752 (6)
H8210.72380.6320.68070.09*
H8220.61430.57280.68970.09*
C9B0.5585 (2)0.66057 (15)0.63481 (12)0.0809 (7)
H9210.47440.65270.65120.097*
H9220.58390.71170.64190.097*
N1B0.7415 (2)0.46400 (14)0.33459 (10)0.0947 (7)
H210.80670.43590.32980.114*
H220.69080.47220.30530.114*
N2B0.69789 (18)0.56590 (11)0.60876 (8)0.0702 (5)
H2D0.75410.53120.60990.084*
N3B0.56234 (18)0.64252 (11)0.57148 (9)0.0762 (5)
H3D0.51740.66480.54490.091*
Cl10.33702 (5)0.08741 (3)0.36842 (2)0.06847 (16)
Cl20.48675 (5)0.16106 (3)0.68365 (3)0.08017 (19)
O10.4366 (2)0.99224 (11)0.26032 (8)0.0905 (5)
H1A0.461 (3)0.9475 (12)0.2776 (14)0.136*
H1B0.396 (3)1.0191 (15)0.2913 (12)0.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0660 (10)0.0683 (11)0.0431 (10)0.0008 (9)0.0021 (9)0.0024 (9)
C2A0.0789 (12)0.0720 (13)0.0522 (12)0.0194 (10)0.0007 (10)0.0040 (10)
C3A0.0728 (11)0.0716 (12)0.0503 (11)0.0160 (10)0.0065 (9)0.0001 (9)
C4A0.0563 (9)0.0563 (10)0.0461 (10)0.0010 (8)0.0003 (8)0.0006 (8)
C5A0.0666 (10)0.0577 (10)0.0527 (11)0.0084 (9)0.0027 (9)0.0007 (8)
C6A0.0677 (10)0.0707 (12)0.0506 (11)0.0092 (10)0.0040 (9)0.0071 (9)
C7A0.0588 (9)0.0527 (9)0.0492 (10)0.0024 (8)0.0012 (8)0.0008 (8)
C8A0.0945 (15)0.0948 (17)0.0499 (12)0.0214 (13)0.0123 (11)0.0105 (11)
C9A0.0898 (14)0.0868 (15)0.0511 (12)0.0187 (13)0.0059 (11)0.0109 (11)
N1A0.1041 (14)0.0982 (15)0.0453 (10)0.0272 (12)0.0067 (10)0.0056 (9)
N2A0.0768 (10)0.0855 (12)0.0491 (10)0.0234 (9)0.0076 (8)0.0075 (8)
N3A0.0762 (10)0.0756 (11)0.0496 (10)0.0201 (9)0.0077 (8)0.0088 (8)
C1B0.0866 (13)0.0648 (12)0.0582 (12)0.0045 (11)0.0046 (11)0.0040 (10)
C2B0.0807 (13)0.0690 (13)0.0682 (14)0.0124 (11)0.0058 (11)0.0054 (11)
C3B0.0758 (12)0.0672 (12)0.0601 (13)0.0098 (10)0.0006 (10)0.0069 (10)
C4B0.0647 (10)0.0540 (10)0.0606 (12)0.0013 (9)0.0017 (9)0.0084 (9)
C5B0.0686 (11)0.0669 (12)0.0684 (14)0.0044 (10)0.0027 (10)0.0054 (10)
C6B0.0821 (13)0.0794 (15)0.0600 (13)0.0002 (12)0.0092 (11)0.0080 (11)
C7B0.0587 (9)0.0559 (10)0.0634 (12)0.0002 (8)0.0003 (9)0.0057 (9)
C8B0.0797 (13)0.0808 (15)0.0652 (14)0.0153 (12)0.0023 (11)0.0055 (11)
C9B0.0854 (14)0.0821 (15)0.0753 (16)0.0220 (13)0.0018 (13)0.0069 (12)
N1B0.1131 (15)0.1059 (17)0.0651 (13)0.0179 (14)0.0007 (12)0.0067 (12)
N2B0.0787 (10)0.0727 (11)0.0592 (10)0.0204 (9)0.0019 (9)0.0008 (8)
N3B0.0819 (11)0.0759 (11)0.0707 (12)0.0247 (10)0.0048 (10)0.0015 (9)
Cl10.0833 (3)0.0644 (3)0.0577 (3)0.0134 (2)0.0066 (2)0.0012 (2)
Cl20.0760 (3)0.0766 (3)0.0879 (4)0.0119 (3)0.0061 (3)0.0194 (3)
O10.1249 (14)0.0828 (11)0.0637 (10)0.0098 (11)0.0000 (10)0.0030 (8)
Geometric parameters (Å, º) top
C1A—N1A1.360 (3)C1B—C2B1.396 (3)
C1A—C6A1.391 (3)C1B—C6B1.397 (3)
C1A—C2A1.398 (3)C2B—C3B1.367 (3)
C2A—C3A1.375 (3)C2B—H2B0.93
C2A—H2A0.93C3B—C4B1.399 (3)
C3A—C4A1.391 (3)C3B—H3B0.93
C3A—H3A0.93C4B—C5B1.394 (3)
C4A—C5A1.398 (3)C4B—C7B1.443 (3)
C4A—C7A1.451 (3)C5B—C6B1.372 (3)
C5A—C6A1.375 (3)C5B—H5B0.93
C5A—H5A0.93C6B—H6B0.93
C6A—H6A0.93C7B—N2B1.310 (3)
C7A—N3A1.311 (2)C7B—N3B1.322 (3)
C7A—N2A1.313 (2)C8B—N2B1.456 (3)
C8A—N2A1.453 (3)C8B—C9B1.527 (3)
C8A—C9A1.516 (3)C8B—H8210.97
C8A—H8110.97C8B—H8220.97
C8A—H8120.97C9B—N3B1.458 (3)
C9A—N3A1.458 (3)C9B—H9210.97
C9A—H9110.97C9B—H9220.97
C9A—H9120.97N1B—H210.86
N1A—H110.86N1B—H220.86
N1A—H120.86N2B—H2D0.86
N2A—H2C0.86N3B—H3D0.86
N3A—H3C0.86O1—H1A0.928 (17)
C1B—N1B1.354 (3)O1—H1B0.947 (17)
N1A—C1A—C6A121.06 (19)N1B—C1B—C6B121.2 (2)
N1A—C1A—C2A121.1 (2)C2B—C1B—C6B117.7 (2)
C6A—C1A—C2A117.84 (19)C3B—C2B—C1B121.3 (2)
C3A—C2A—C1A120.9 (2)C3B—C2B—H2B119.4
C3A—C2A—H2A119.6C1B—C2B—H2B119.4
C1A—C2A—H2A119.6C2B—C3B—C4B121.1 (2)
C2A—C3A—C4A121.37 (19)C2B—C3B—H3B119.4
C2A—C3A—H3A119.3C4B—C3B—H3B119.4
C4A—C3A—H3A119.3C5B—C4B—C3B117.5 (2)
C3A—C4A—C5A117.64 (18)C5B—C4B—C7B122.24 (19)
C3A—C4A—C7A121.11 (17)C3B—C4B—C7B120.26 (19)
C5A—C4A—C7A121.23 (17)C6B—C5B—C4B121.5 (2)
C6A—C5A—C4A121.10 (19)C6B—C5B—H5B119.3
C6A—C5A—H5A119.4C4B—C5B—H5B119.3
C4A—C5A—H5A119.4C5B—C6B—C1B120.8 (2)
C5A—C6A—C1A121.15 (19)C5B—C6B—H6B119.6
C5A—C6A—H6A119.4C1B—C6B—H6B119.6
C1A—C6A—H6A119.4N2B—C7B—N3B109.7 (2)
N3A—C7A—N2A110.29 (18)N2B—C7B—C4B124.63 (18)
N3A—C7A—C4A125.06 (17)N3B—C7B—C4B125.64 (19)
N2A—C7A—C4A124.64 (18)N2B—C8B—C9B102.17 (19)
N2A—C8A—C9A102.81 (17)N2B—C8B—H821111.3
N2A—C8A—H811111.2C9B—C8B—H821111.3
C9A—C8A—H811111.2N2B—C8B—H822111.3
N2A—C8A—H812111.2C9B—C8B—H822111.3
C9A—C8A—H812111.2H821—C8B—H822109.2
H811—C8A—H812109.1N3B—C9B—C8B102.61 (18)
N3A—C9A—C8A102.38 (17)N3B—C9B—H921111.2
N3A—C9A—H911111.3C8B—C9B—H921111.2
C8A—C9A—H911111.3N3B—C9B—H922111.2
N3A—C9A—H912111.3C8B—C9B—H922111.2
C8A—C9A—H912111.3H921—C9B—H922109.2
H911—C9A—H912109.2C1B—N1B—H21120
C1A—N1A—H11120C1B—N1B—H22120
C1A—N1A—H12120H21—N1B—H22120
H11—N1A—H12120C7B—N2B—C8B113.13 (18)
C7A—N2A—C8A112.10 (18)C7B—N2B—H2D123.4
C7A—N2A—H2C124C8B—N2B—H2D123.4
C8A—N2A—H2C124C7B—N3B—C9B112.36 (19)
C7A—N3A—C9A112.22 (17)C7B—N3B—H3D123.8
C7A—N3A—H3C123.9C9B—N3B—H3D123.8
C9A—N3A—H3C123.9H1A—O1—H1B105 (2)
N1B—C1B—C2B121.1 (2)
N1A—C1A—C2A—C3A179.7 (2)N1B—C1B—C2B—C3B177.6 (2)
C6A—C1A—C2A—C3A0.8 (3)C6B—C1B—C2B—C3B1.7 (4)
C1A—C2A—C3A—C4A0.7 (4)C1B—C2B—C3B—C4B1.3 (4)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B0.0 (3)
C2A—C3A—C4A—C7A178.9 (2)C2B—C3B—C4B—C7B179.8 (2)
C3A—C4A—C5A—C6A0.9 (3)C3B—C4B—C5B—C6B0.8 (3)
C7A—C4A—C5A—C6A179.66 (19)C7B—C4B—C5B—C6B179.5 (2)
C4A—C5A—C6A—C1A0.9 (3)C4B—C5B—C6B—C1B0.3 (4)
N1A—C1A—C6A—C5A179.4 (2)N1B—C1B—C6B—C5B178.4 (2)
C2A—C1A—C6A—C5A0.0 (3)C2B—C1B—C6B—C5B0.9 (3)
C3A—C4A—C7A—N3A169.1 (2)C5B—C4B—C7B—N2B165.7 (2)
C5A—C4A—C7A—N3A9.6 (3)C3B—C4B—C7B—N2B14.6 (3)
C3A—C4A—C7A—N2A10.2 (3)C5B—C4B—C7B—N3B14.6 (3)
C5A—C4A—C7A—N2A171.1 (2)C3B—C4B—C7B—N3B165.2 (2)
N2A—C8A—C9A—N3A4.1 (3)N2B—C8B—C9B—N3B0.3 (3)
N3A—C7A—N2A—C8A2.6 (3)N3B—C7B—N2B—C8B0.8 (3)
C4A—C7A—N2A—C8A176.8 (2)C4B—C7B—N2B—C8B179.5 (2)
C9A—C8A—N2A—C7A4.3 (3)C9B—C8B—N2B—C7B0.7 (3)
N2A—C7A—N3A—C9A0.5 (3)N2B—C7B—N3B—C9B0.6 (3)
C4A—C7A—N3A—C9A179.9 (2)C4B—C7B—N3B—C9B179.7 (2)
C8A—C9A—N3A—C7A3.1 (3)C8B—C9B—N3B—C7B0.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11···Cl2i0.862.453.296 (2)170
N1A—H12···Cl10.862.453.304 (2)170
N1B—H21···Cl2ii0.862.593.448 (2)174
N1B—H22···O1iii0.862.022.882 (3)177
N2A—H2C···Cl20.862.293.1113 (18)160
N2B—H2D···Cl1ii0.862.353.1615 (19)157
N3A—H3C···Cl1i0.862.363.1900 (17)162
O1—H1A···Cl2iv0.93 (2)2.21 (2)3.1329 (19)178 (3)
O1—H1B···Cl1v0.95 (2)2.21 (2)3.147 (2)170 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C9H12N3+·2Cl·H2O
Mr413.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.5307 (2), 17.9659 (4), 22.4290 (5)
V3)4243.42 (16)
Z8
Radiation typeCu Kα
µ (mm1)2.91
Crystal size (mm)0.4 × 0.05 × 0.04
Data collection
DiffractometerOxford Xcalibur Nova R Ruby
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2010)
Tmin, Tmax0.389, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
13695, 4375, 3054
Rint0.030
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.00
No. of reflections4375
No. of parameters348
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.13

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11···Cl2i0.862.453.296 (2)169.8
N1A—H12···Cl10.862.453.304 (2)169.7
N1B—H21···Cl2ii0.862.593.448 (2)173.8
N1B—H22···O1iii0.862.022.882 (3)176.7
N2A—H2C···Cl20.862.293.1113 (18)160
N2B—H2D···Cl1ii0.862.353.1615 (19)156.7
N3A—H3C···Cl1i0.862.363.1900 (17)162.2
O1—H1A···Cl2iv0.928 (17)2.206 (17)3.1329 (19)178 (3)
O1—H1B···Cl1v0.947 (17)2.210 (18)3.147 (2)170 (3)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

Acknowledgements

This research was funded by the Croatian Ministry of Science, Education and Sports, grant Nos. 098–1191344-2943 and 053–0982914-2965.

References

First citationBaraldi, P. G., Bovero, A., Fruttarolo, F., Preti, D., Tabrizi, M. A., Pavani, M. G. & Romagnoli, R. (2004). Med. Res. Rev. 24, 475–528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, X., Orser, B. A. & MacDonald, J. F. (2010). Eur. J. Pharmacol. 648, 15–23.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDel Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S. K., Tidwell, R. R., Czarny, A., Bajić, M., Bajić, Ma., Kumar, A., Boykin, D. W. & Perfect, J. R. (1998). Antimicrob. Agents Chemother. 42, 2495–2502.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHu, L., Kully, M. L., Boykin, D. W. & Abood, N. (2009). Bioorg. Med. Chem. Lett. 19, 4626–4629.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarak, I., Karminski-Zamola, G., Pavlović, G. & Popović, Z. (2005). Acta Cryst. C61, o98–o100.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJarak, I., Marjanović, M., Piantanida, I., Kralj, M. & Karminski-Zamola, G. (2011). Eur. J. Med. Chem. 46, 2807–2815.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLegrand, Y. M., Lee, A. van der & Barboiu, M. (2008). Acta Cryst. E64, o967–o968.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNeidle, S. (2001). Nat. Prod. Rep. 18, 291–309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). ABSPACK and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStolić, I., Mišković, K., Piantanida, I., Baus Lončar, M., Glavaš-Obrovac, Lj. & Bajić, M. (2011). Eur. J. Med. Chem. 46, 743–755.  Web of Science PubMed Google Scholar
First citationWidra, R. L., Patterson, S. E. & Strekowski, L. (1990). J. Heterocycl. Chem. 27, 803–805.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds