metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-benzene-1,3,5-tri­carboxyl­ato)bis­­(di­methyl sulfoxide-κO)­neodymium(III)]

aThe Department of Physics–Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: lizhongyue@hpu.edu.cn

(Received 18 October 2011; accepted 21 November 2011; online 25 November 2011)

The asymmetric unit of the title compound, [Nd(C9H3O6)(C2H6OS)2]n, contains one Nd3+ ion, one benzene-1,3,5-tricarb­oxy­lic ligand and two coordinating dimethyl sulfoxide mol­ecules. The Nd3+ ion is coordinated by six O atoms from four carboxyl­ate groups of the benzene-1,3,5-tricarboxyl­ate ligands and two O atoms from two dimethyl sulfoxide mol­ecules. The metal-organic cluster formed upon symmetry expansion of the asymmetric unit consists of two metal atoms and four benzene-1,3,5-tricarboxyl­ate groups, creating a paddle-wheel-type building block arrangement. The remaining coordination sites are occupied by additional benzene-1,3,5-tricarboxyl­ate groups and dimethyl sulfoxide mol­ecules, forming a three-dimensional polymeric rare earth metal-organic framework structure.

Related literature

For metal-organic framework structures with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006[Sun, D. F., Ma, S. Q., & Ke, Y. X., Collins, D. J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896-3897.]); Ravon et al. (2008[Ravon, U., Domine, M. E. & Gaudillere, C. (2008). New J. Chem. 32, 937-940.]); Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A. & Bhakta, R. K. (2009). Chem. Soc. Rev. 38, 1330-1352.]). For isostructural rare earth complexes, see: Thirumurugan & Natarajan (2004[Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.]); For rare earth coordination polymers, see: Guo et al. (2006[Guo, X. D., Zhu, G., Li, Z. Y., Chen, Y., Li, X. T. & Qiu, S. L. (2006). Inorg. Chem. 45, 4065-4070.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C9H3O6)(C2H6OS)2]

  • Mr = 507.61

  • Monoclinic, P 21 /n

  • a = 10.380 (2) Å

  • b = 10.752 (3) Å

  • c = 16.025 (4) Å

  • β = 106.419 (4)°

  • V = 1715.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 273 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.289, Tmax = 0.351

  • 8925 measured reflections

  • 3008 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.082

  • S = 0.98

  • 3008 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 1.92 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic framework design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption (Sun et al., 2006), catalytic (Ravon et al., 2008) and fluorescence (Allendorf et al., 2009) properties of these types of compounds. As functional metal centers, rare earth metals are attracting more attention from synthetic chemists for their unusual coordination properties and special chemical characteristics arising from interactions with the 4f electrons and the propensity to form isostructural complexes (Thirumurugan & Natarajan, 2004). Many coordination polymers utilizing the rare earth elements have been synthesized (Guo et al., 2006).

The title compound poly[(benzene-1,3,5-tricarboxylato)bis(dimethyl sulfoxide)neodymium(III)]n represents a rare-earth three-dimensional metal-organic framework structure (Fig. 1). In this compound, the asymmetric unit, Nd(C9H3O6)(C2H6OS)2, contains one eight-coordinated Nd3+ ion, one benzene-1,3,5-tricarboxylate ligand and two coordinated dimethyl sulfoxide molecules, without any guest molecule. Each of two metal center Nd3+ ions in a formed cluster is coordinated with six oxygen atoms from four carboxylate groups of the 1,3,5- benzenetricarboxylic ligands and two oxygen atoms from two terminal dimethyl sulfoxide molecules. Upon symmetry expansion of the asymmetric unit, the metal organic cluster formed therefore consists of two metal centers and four benzene-1,3,5-tricarboxylate groups creating a paddle-wheel type building block arrangement. The remaining coordination sites are occupied by additional benzene-1,3,5-tricarboxylate groups and dimethyl sulfoxide molecules forming a polymeric rare earth three-dimensional metal-organic framework structure.

Related literature top

For metal-organic framework structures with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006); Ravon et al. (2008); Allendorf et al. (2009). For isostructural rare earth complexes, see: Thirumurugan & Natarajan (2004); For rare earth coordination polymers, see: Guo et al. (2006).

Experimental top

All reagents were of analytical grade. A mixture of neodymium nitrate (40 mg, 0.10 mmol) and benzene-1,3,5-tricarboxylate acid (10 mg, 0.05 mmol) was dissolved in N,N'-dimethylformamide (15 ml) and dimethyl sulfoxide (10 ml) at room temperature. Two drops of NaOH (aq, 2 M) was added, followed by some nitric acid (aq, 2 M) until the solution is clear. This mixture was placed at 55°C for 20 days giving rise to purple rod crystals suitable for x-ray crystallographic analysis.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.96 Å (methly C) and with Uiso(H) = 1.2Ueq(C). S1 and S2 have been restrained with DFIX = 0.02.

Structure description top

Metal-organic framework design and construction is currently a flourishing field of research owing to the intriguing molecular topologies and the potentially exploitable adsorption (Sun et al., 2006), catalytic (Ravon et al., 2008) and fluorescence (Allendorf et al., 2009) properties of these types of compounds. As functional metal centers, rare earth metals are attracting more attention from synthetic chemists for their unusual coordination properties and special chemical characteristics arising from interactions with the 4f electrons and the propensity to form isostructural complexes (Thirumurugan & Natarajan, 2004). Many coordination polymers utilizing the rare earth elements have been synthesized (Guo et al., 2006).

The title compound poly[(benzene-1,3,5-tricarboxylato)bis(dimethyl sulfoxide)neodymium(III)]n represents a rare-earth three-dimensional metal-organic framework structure (Fig. 1). In this compound, the asymmetric unit, Nd(C9H3O6)(C2H6OS)2, contains one eight-coordinated Nd3+ ion, one benzene-1,3,5-tricarboxylate ligand and two coordinated dimethyl sulfoxide molecules, without any guest molecule. Each of two metal center Nd3+ ions in a formed cluster is coordinated with six oxygen atoms from four carboxylate groups of the 1,3,5- benzenetricarboxylic ligands and two oxygen atoms from two terminal dimethyl sulfoxide molecules. Upon symmetry expansion of the asymmetric unit, the metal organic cluster formed therefore consists of two metal centers and four benzene-1,3,5-tricarboxylate groups creating a paddle-wheel type building block arrangement. The remaining coordination sites are occupied by additional benzene-1,3,5-tricarboxylate groups and dimethyl sulfoxide molecules forming a polymeric rare earth three-dimensional metal-organic framework structure.

For metal-organic framework structures with adsorption, catalytic and fluorescence properties, see: Sun et al. (2006); Ravon et al. (2008); Allendorf et al. (2009). For isostructural rare earth complexes, see: Thirumurugan & Natarajan (2004); For rare earth coordination polymers, see: Guo et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-numbering scheme of the asymmetric unit and symmetry expanded metal-organic framework structure. Displacement ellipsoids are drawn at the 30% probability level.
Poly[(µ4-benzene-1,3,5-tricarboxylato)bis(dimethyl sulfoxide-κO) neodymium(III)] top
Crystal data top
[Nd(C9H3O6)(C2H6OS)2]F(000) = 996
Mr = 507.61Dx = 1.965 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2282 reflections
a = 10.380 (2) Åθ = 2.3–24.8°
b = 10.752 (3) ŵ = 3.31 mm1
c = 16.025 (4) ÅT = 273 K
β = 106.419 (4)°Rod, purple
V = 1715.6 (7) Å30.50 × 0.40 × 0.40 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.1°
phi and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1012
Tmin = 0.289, Tmax = 0.351l = 1819
8925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
3008 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 1.92 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Nd(C9H3O6)(C2H6OS)2]V = 1715.6 (7) Å3
Mr = 507.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.380 (2) ŵ = 3.31 mm1
b = 10.752 (3) ÅT = 273 K
c = 16.025 (4) Å0.50 × 0.40 × 0.40 mm
β = 106.419 (4)°
Data collection top
Bruker APEX CCD
diffractometer
3008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2453 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.351Rint = 0.049
8925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 0.98Δρmax = 1.92 e Å3
3008 reflectionsΔρmin = 0.83 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.36554 (3)0.12931 (3)0.02773 (2)0.01539 (12)
S10.0680 (2)0.2768 (2)0.08861 (14)0.0492 (6)
S20.3373 (3)0.4585 (2)0.08367 (18)0.0664 (8)
O10.1446 (4)0.0876 (4)0.0571 (3)0.0280 (11)
O20.2784 (4)0.2139 (4)0.1508 (3)0.0301 (11)
O30.3430 (4)0.0586 (4)0.0532 (3)0.0297 (11)
O40.4178 (4)0.1981 (4)0.1279 (3)0.0360 (12)
O50.0801 (4)0.4650 (4)0.3619 (3)0.0268 (11)
O60.0472 (4)0.3271 (4)0.4070 (3)0.0309 (11)
O70.1768 (5)0.1920 (5)0.1004 (3)0.0462 (14)
O80.3616 (5)0.3615 (4)0.0214 (3)0.0476 (14)
C10.1662 (6)0.1639 (5)0.1191 (4)0.0204 (15)
C20.0514 (6)0.1983 (6)0.1562 (4)0.0179 (14)
C30.0760 (6)0.1517 (5)0.1195 (4)0.0196 (14)
H30.09160.09870.07190.024*
C40.1821 (6)0.1837 (6)0.1535 (4)0.0190 (14)
C50.1545 (6)0.2560 (5)0.2286 (4)0.0202 (15)
H50.22280.27350.25400.024*
C60.0262 (6)0.3024 (5)0.2661 (4)0.0165 (13)
C70.0737 (6)0.2764 (5)0.2272 (4)0.0196 (14)
H70.15790.31230.24940.024*
C80.3236 (6)0.1436 (6)0.1090 (4)0.0223 (15)
C90.0043 (6)0.3722 (6)0.3517 (4)0.0204 (14)
C100.3202 (10)0.6008 (7)0.0260 (7)0.080 (3)
H10A0.39110.60830.00130.121*
H10B0.32510.66870.06570.121*
H10C0.23500.60250.01760.121*
C110.4971 (10)0.4797 (10)0.1533 (7)0.106 (4)
H11A0.53450.40050.17520.159*
H11B0.49220.53180.20100.159*
H11C0.55310.51860.12240.159*
C120.0497 (10)0.3915 (8)0.1710 (6)0.075 (3)
H12A0.12850.44300.15800.113*
H12B0.02750.44200.17330.113*
H12C0.03830.35150.22620.113*
C130.0810 (8)0.1947 (9)0.1314 (7)0.079 (3)
H13A0.08570.16720.18920.119*
H13B0.15610.24780.13330.119*
H13C0.08320.12390.09530.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01401 (19)0.01665 (19)0.01629 (19)0.00024 (16)0.00554 (13)0.00076 (15)
S10.0391 (12)0.0561 (14)0.0477 (14)0.0094 (11)0.0047 (10)0.0119 (10)
S20.102 (2)0.0324 (12)0.082 (2)0.0009 (13)0.0536 (17)0.0043 (12)
O10.024 (3)0.037 (3)0.027 (3)0.002 (2)0.012 (2)0.012 (2)
O20.019 (3)0.037 (3)0.037 (3)0.004 (2)0.014 (2)0.011 (2)
O30.032 (3)0.024 (3)0.028 (3)0.003 (2)0.001 (2)0.009 (2)
O40.014 (3)0.049 (3)0.045 (3)0.001 (2)0.008 (2)0.017 (3)
O50.031 (3)0.028 (3)0.023 (3)0.011 (2)0.009 (2)0.006 (2)
O60.033 (3)0.039 (3)0.025 (3)0.011 (2)0.015 (2)0.013 (2)
O70.032 (3)0.065 (4)0.045 (4)0.019 (3)0.017 (3)0.012 (3)
O80.071 (4)0.023 (3)0.053 (4)0.001 (3)0.025 (3)0.009 (2)
C10.019 (4)0.023 (4)0.021 (4)0.001 (3)0.010 (3)0.004 (3)
C20.016 (3)0.024 (4)0.015 (3)0.002 (3)0.008 (3)0.000 (3)
C30.020 (3)0.023 (4)0.015 (3)0.002 (3)0.003 (3)0.003 (3)
C40.017 (3)0.023 (3)0.019 (4)0.000 (3)0.007 (3)0.000 (3)
C50.014 (3)0.023 (4)0.025 (4)0.002 (3)0.009 (3)0.005 (3)
C60.015 (3)0.015 (3)0.018 (4)0.002 (3)0.002 (3)0.001 (3)
C70.015 (3)0.021 (3)0.021 (4)0.001 (3)0.002 (3)0.000 (3)
C80.025 (4)0.021 (4)0.020 (4)0.004 (3)0.004 (3)0.004 (3)
C90.015 (3)0.028 (4)0.019 (4)0.001 (3)0.007 (3)0.006 (3)
C100.091 (8)0.038 (6)0.118 (10)0.004 (5)0.038 (7)0.004 (5)
C110.112 (10)0.112 (10)0.072 (9)0.054 (8)0.009 (7)0.003 (7)
C120.098 (8)0.054 (6)0.065 (7)0.008 (5)0.009 (6)0.035 (5)
C130.029 (5)0.106 (8)0.092 (9)0.007 (5)0.001 (5)0.004 (7)
Geometric parameters (Å, º) top
Nd1—O3i2.376 (4)C1—C21.519 (8)
Nd1—O6ii2.403 (4)C2—C31.381 (8)
Nd1—O5iii2.451 (4)C2—C71.380 (8)
Nd1—O4iv2.478 (4)C3—C41.401 (8)
Nd1—O72.497 (5)C3—H30.9300
Nd1—O82.498 (4)C4—C51.394 (8)
Nd1—O12.509 (4)C4—C81.503 (8)
Nd1—O22.559 (4)C5—C61.390 (8)
Nd1—C12.878 (6)C5—H50.9300
S1—O71.505 (5)C6—C71.381 (8)
S1—C131.744 (8)C6—C91.515 (8)
S1—C121.777 (8)C7—H70.9300
S2—O81.513 (5)C10—H10A0.9600
S2—C111.733 (10)C10—H10B0.9600
S2—C101.770 (9)C10—H10C0.9600
O1—C11.258 (7)C11—H11A0.9600
O2—C11.253 (7)C11—H11B0.9600
O3—C81.255 (7)C11—H11C0.9600
O3—Nd1i2.376 (4)C12—H12A0.9600
O4—C81.249 (7)C12—H12B0.9600
O4—Nd1v2.478 (4)C12—H12C0.9600
O5—C91.253 (7)C13—H13A0.9600
O5—Nd1vi2.451 (4)C13—H13B0.9600
O6—C91.255 (7)C13—H13C0.9600
O6—Nd1vii2.403 (4)
O3i—Nd1—O6ii74.21 (15)O1—C1—C2118.9 (5)
O3i—Nd1—O5iii75.39 (15)O2—C1—Nd162.7 (3)
O6ii—Nd1—O5iii131.26 (14)O1—C1—Nd160.5 (3)
O3i—Nd1—O4iv122.58 (15)C2—C1—Nd1170.6 (4)
O6ii—Nd1—O4iv89.06 (16)C3—C2—C7119.2 (5)
O5iii—Nd1—O4iv76.48 (15)C3—C2—C1120.5 (5)
O3i—Nd1—O781.22 (16)C7—C2—C1120.3 (5)
O6ii—Nd1—O770.85 (15)C2—C3—C4120.6 (6)
O5iii—Nd1—O7139.05 (16)C2—C3—H3119.7
O4iv—Nd1—O7144.05 (17)C4—C3—H3119.7
O3i—Nd1—O8146.04 (16)C5—C4—C3118.7 (6)
O6ii—Nd1—O877.17 (15)C5—C4—C8120.3 (5)
O5iii—Nd1—O8138.39 (15)C3—C4—C8121.0 (5)
O4iv—Nd1—O874.30 (16)C6—C5—C4120.8 (5)
O7—Nd1—O872.36 (17)C6—C5—H5119.6
O3i—Nd1—O189.81 (14)C4—C5—H5119.6
O6ii—Nd1—O1139.36 (15)C7—C6—C5118.8 (5)
O5iii—Nd1—O176.81 (14)C7—C6—C9121.2 (5)
O4iv—Nd1—O1129.95 (14)C5—C6—C9119.9 (5)
O7—Nd1—O169.90 (15)C2—C7—C6121.6 (6)
O8—Nd1—O1100.41 (15)C2—C7—H7119.2
O3i—Nd1—O2136.16 (14)C6—C7—H7119.2
O6ii—Nd1—O2147.93 (15)O4—C8—O3122.4 (6)
O5iii—Nd1—O276.07 (14)O4—C8—C4118.6 (5)
O4iv—Nd1—O281.29 (14)O3—C8—C4119.1 (6)
O7—Nd1—O299.90 (15)O5—C9—O6126.3 (6)
O8—Nd1—O270.79 (15)O5—C9—C6118.4 (5)
O1—Nd1—O251.48 (13)O6—C9—C6115.3 (5)
O3i—Nd1—C1114.43 (16)S2—C10—H10A109.5
O6ii—Nd1—C1150.90 (16)S2—C10—H10B109.5
O5iii—Nd1—C177.15 (15)H10A—C10—H10B109.5
O4iv—Nd1—C1106.46 (17)S2—C10—H10C109.5
O7—Nd1—C182.76 (16)H10A—C10—H10C109.5
O8—Nd1—C183.44 (16)H10B—C10—H10C109.5
O1—Nd1—C125.87 (15)S2—C11—H11A109.5
O2—Nd1—C125.79 (15)S2—C11—H11B109.5
O7—S1—C13104.9 (4)H11A—C11—H11B109.5
O7—S1—C12104.7 (4)S2—C11—H11C109.5
C13—S1—C1299.3 (5)H11A—C11—H11C109.5
O8—S2—C11102.0 (4)H11B—C11—H11C109.5
O8—S2—C10105.2 (4)S1—C12—H12A109.5
C11—S2—C1099.2 (5)S1—C12—H12B109.5
C1—O1—Nd193.7 (4)H12A—C12—H12B109.5
C1—O2—Nd191.5 (4)S1—C12—H12C109.5
C8—O3—Nd1i168.4 (4)H12A—C12—H12C109.5
C8—O4—Nd1v109.4 (4)H12B—C12—H12C109.5
C9—O5—Nd1vi132.6 (4)S1—C13—H13A109.5
C9—O6—Nd1vii145.7 (4)S1—C13—H13B109.5
S1—O7—Nd1120.2 (3)H13A—C13—H13B109.5
S2—O8—Nd1131.7 (3)S1—C13—H13C109.5
O2—C1—O1122.5 (5)H13A—C13—H13C109.5
O2—C1—C2118.6 (5)H13B—C13—H13C109.5
O3i—Nd1—O1—C1162.7 (4)O7—Nd1—C1—O2131.4 (4)
O6ii—Nd1—O1—C1132.2 (4)O8—Nd1—C1—O258.4 (4)
O5iii—Nd1—O1—C187.7 (4)O1—Nd1—C1—O2170.7 (6)
O4iv—Nd1—O1—C128.3 (4)O3i—Nd1—C1—O119.0 (4)
O7—Nd1—O1—C1116.5 (4)O6ii—Nd1—C1—O182.6 (5)
O8—Nd1—O1—C149.8 (4)O5iii—Nd1—C1—O186.2 (4)
O2—Nd1—O1—C15.1 (3)O4iv—Nd1—C1—O1157.7 (4)
O3i—Nd1—O2—C138.5 (4)O7—Nd1—C1—O157.9 (4)
O6ii—Nd1—O2—C1118.6 (4)O8—Nd1—C1—O1130.8 (4)
O5iii—Nd1—O2—C189.2 (4)O2—Nd1—C1—O1170.7 (6)
O4iv—Nd1—O2—C1167.4 (4)O2—C1—C2—C3175.7 (6)
O7—Nd1—O2—C149.1 (4)O1—C1—C2—C33.3 (9)
O8—Nd1—O2—C1116.3 (4)O2—C1—C2—C74.5 (9)
O1—Nd1—O2—C15.2 (3)O1—C1—C2—C7176.5 (6)
C13—S1—O7—Nd1123.4 (4)C7—C2—C3—C40.4 (9)
C12—S1—O7—Nd1132.5 (4)C1—C2—C3—C4179.8 (5)
O3i—Nd1—O7—S1144.9 (3)C2—C3—C4—C54.5 (9)
O6ii—Nd1—O7—S1138.8 (4)C2—C3—C4—C8174.1 (5)
O5iii—Nd1—O7—S189.5 (4)C3—C4—C5—C64.1 (9)
O4iv—Nd1—O7—S179.4 (4)C8—C4—C5—C6174.5 (5)
O8—Nd1—O7—S156.7 (3)C4—C5—C6—C70.5 (9)
O1—Nd1—O7—S151.9 (3)C4—C5—C6—C9175.2 (6)
O2—Nd1—O7—S19.4 (3)C3—C2—C7—C64.4 (9)
C1—Nd1—O7—S128.7 (3)C1—C2—C7—C6175.4 (5)
C11—S2—O8—Nd187.3 (5)C5—C6—C7—C24.9 (9)
C10—S2—O8—Nd1169.6 (4)C9—C6—C7—C2170.7 (6)
O3i—Nd1—O8—S2157.4 (3)Nd1v—O4—C8—O36.6 (7)
O6ii—Nd1—O8—S2169.6 (4)Nd1v—O4—C8—C4171.9 (4)
O5iii—Nd1—O8—S229.9 (5)Nd1i—O3—C8—O4105 (2)
O4iv—Nd1—O8—S276.9 (4)Nd1i—O3—C8—C476 (2)
O7—Nd1—O8—S2116.7 (4)C5—C4—C8—O416.2 (9)
O1—Nd1—O8—S251.9 (4)C3—C4—C8—O4162.4 (6)
O2—Nd1—O8—S29.2 (4)C5—C4—C8—O3165.3 (6)
C1—Nd1—O8—S232.3 (4)C3—C4—C8—O316.1 (9)
Nd1—O2—C1—O19.6 (6)Nd1vi—O5—C9—O614.0 (10)
Nd1—O2—C1—C2169.4 (5)Nd1vi—O5—C9—C6168.5 (4)
Nd1—O1—C1—O29.8 (7)Nd1vii—O6—C9—O532.1 (11)
Nd1—O1—C1—C2169.2 (5)Nd1vii—O6—C9—C6150.3 (5)
O3i—Nd1—C1—O2151.7 (3)C7—C6—C9—O543.1 (8)
O6ii—Nd1—C1—O2106.7 (5)C5—C6—C9—O5141.3 (6)
O5iii—Nd1—C1—O284.5 (4)C7—C6—C9—O6134.6 (6)
O4iv—Nd1—C1—O213.0 (4)C5—C6—C9—O640.9 (8)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Nd(C9H3O6)(C2H6OS)2]
Mr507.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.380 (2), 10.752 (3), 16.025 (4)
β (°) 106.419 (4)
V3)1715.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.289, 0.351
No. of measured, independent and
observed [I > 2σ(I)] reflections
8925, 3008, 2453
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.082, 0.98
No. of reflections3008
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.92, 0.83

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We would like to thank the Open Research Fund of the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (grant No. 2011–08).

References

First citationAllendorf, M. D., Bauer, C. A. & Bhakta, R. K. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, X. D., Zhu, G., Li, Z. Y., Chen, Y., Li, X. T. & Qiu, S. L. (2006). Inorg. Chem. 45, 4065-4070.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRavon, U., Domine, M. E. & Gaudillere, C. (2008). New J. Chem. 32, 937–940.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D. F., Ma, S. Q., & Ke, Y. X., Collins, D. J. & Zhou, H.-C. (2006). J. Am. Chem. Soc. 128, 3896–3897.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923–2928.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds