organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­benzoic acid–4-(pyridin-4-yl­disulfan­yl)pyridine (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 2 November 2011; accepted 15 November 2011; online 19 November 2011)

The title 1:1 co-crystal, C7H7NO2·C10H8N2S2, features a highly twisted 4-(pyridin-4-yldisulfan­yl)pyridine mol­ecule [dihedral angle between the pyridine rings = 89.06 (10)°]. A small twist is evident in the 2-amino­benzoic acid mol­ecule, with the C—C—C—O torsion angle being −7.7 (3)°. An N—H⋯O hydrogen bond occurs in the 2-amino­benzoic acid mol­ecule. In the crystal, mol­ecules are linked by O—H⋯N and N—H⋯N hydrogen bonds into a supra­molecular chain along the b axis. These are connected into layers by ππ inter­actions occurring between pyridine rings [centroid–centroid distance = 3.8489 (15) Å]. The layers are connected along the a axis by C—H⋯O contacts. The crystal studied was a racemic twin.

Related literature

For related studies on co-crystal formation between carb­oxy­lic acids and pyridyl derivatives, see: Arman & Tiekink (2010[Arman, H. D. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2188.]); Wardell & Tiekink (2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]); Arman et al. (2011[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO2·C10H8N2S2

  • Mr = 357.46

  • Monoclinic, C c

  • a = 8.636 (2) Å

  • b = 12.728 (3) Å

  • c = 15.688 (4) Å

  • β = 103.218 (4)°

  • V = 1678.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 98 K

  • 0.30 × 0.27 × 0.15 mm

Data collection
  • Rigaku AFC12/SATURN724 CCD diffractometer

  • 3149 measured reflections

  • 3149 independent reflections

  • 3115 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.03

  • 3149 reflections

  • 227 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: nd

  • Flack parameter: ?

  • Rogers parameter: ?

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2n⋯O1 0.88 (2) 2.04 (2) 2.667 (2) 128 (2)
N1—H1n⋯N2i 0.88 (1) 2.15 (1) 3.027 (3) 173 (2)
O1—H1o⋯N3ii 0.84 (2) 1.79 (2) 2.621 (2) 173 (3)
C17—H17⋯O2iii 0.95 2.42 3.251 (3) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with recent co-crystallization experiments of carboxylic acids with pyridyl-N-containing molecules (Arman & Tiekink, 2010; Wardell & Tiekink, 2011; Arman et al., 2011), the 1:2 co-crystallization of 4-(pyridin-4-yldisulfanyl)pyridine and 2-aminobenzoic acid was investigated. This led to the isolation and characterization of the title 1:1 co-crystal, (I).

A single molecule of each of 4-(pyridin-4-yldisulfanyl)pyridine (Fig. 1), and 2-aminobenzoic acid (Fig. 2), comprise the crystallographic asymmetric unit of (I). The molecule is twisted with the 4-pyridyl rings being almost perpendicular to each other as seen in the value of the dihedral angle of 89.06 (10)°. The carboxylic acid residue is slightly twisted out of the plane of the benzene ring to which it is connected as seen in the C1—C2—C7—O1 torsion angle of -7.7 (3)°. This twist occurs despite the presence of an intramolecular N—H···O1 hydrogen bond (Table 1).

The most prominent feature of the crystal packing is the formation of supramolecular chains comprising alternating 4-(pyridin-4-yldisulfanyl)pyridine and 2-aminobenzoic acid molecules linked by O—H···N and N—H···N hydrogen bonds (Fig. 3 and Table 1). The chains pack into layers in the bc plane and are arranged so that pairs of chains face each other to allow for the formation of weak ππ interactions and for the interdigitation of the benzoic acid residues. The ππ interactions of 3.8489 (15) Å occur between the ring centroids of the (N2,C8–C12) and (N3,C13–C17)iii pyridyl rings (Fig. 4) [symmetry code (iii) x, -y + 1, z + 1/2]. Layers stack along the a axis, being connected by C—H···O interactions [Fig. 5 and Table 1].

Related literature top

For related studies on co-crystal formation between carboxylic acids and pyridyl derivatives, see: Arman & Tiekink (2010); Wardell & Tiekink (2011); Arman et al. (2011).

Experimental top

Colourless crystals of (I) were isolated from the 1:2 co-crystallization of 4-(pyridin-4-yldisulfanyl)pyridine (Sigma-Aldrich, 0.104 mmol) and 2-aminobenzoic acid (Sigma-Aldrich, 0.182 mmol) in chloroform solution (7 ml).

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.840±0.001 Å and N—H = 0.880±0.001 Å, respectively, and with Uiso(H) = 1.5Ueq(O, N). The crystal studied was a racemic twin.

Structure description top

In connection with recent co-crystallization experiments of carboxylic acids with pyridyl-N-containing molecules (Arman & Tiekink, 2010; Wardell & Tiekink, 2011; Arman et al., 2011), the 1:2 co-crystallization of 4-(pyridin-4-yldisulfanyl)pyridine and 2-aminobenzoic acid was investigated. This led to the isolation and characterization of the title 1:1 co-crystal, (I).

A single molecule of each of 4-(pyridin-4-yldisulfanyl)pyridine (Fig. 1), and 2-aminobenzoic acid (Fig. 2), comprise the crystallographic asymmetric unit of (I). The molecule is twisted with the 4-pyridyl rings being almost perpendicular to each other as seen in the value of the dihedral angle of 89.06 (10)°. The carboxylic acid residue is slightly twisted out of the plane of the benzene ring to which it is connected as seen in the C1—C2—C7—O1 torsion angle of -7.7 (3)°. This twist occurs despite the presence of an intramolecular N—H···O1 hydrogen bond (Table 1).

The most prominent feature of the crystal packing is the formation of supramolecular chains comprising alternating 4-(pyridin-4-yldisulfanyl)pyridine and 2-aminobenzoic acid molecules linked by O—H···N and N—H···N hydrogen bonds (Fig. 3 and Table 1). The chains pack into layers in the bc plane and are arranged so that pairs of chains face each other to allow for the formation of weak ππ interactions and for the interdigitation of the benzoic acid residues. The ππ interactions of 3.8489 (15) Å occur between the ring centroids of the (N2,C8–C12) and (N3,C13–C17)iii pyridyl rings (Fig. 4) [symmetry code (iii) x, -y + 1, z + 1/2]. Layers stack along the a axis, being connected by C—H···O interactions [Fig. 5 and Table 1].

For related studies on co-crystal formation between carboxylic acids and pyridyl derivatives, see: Arman & Tiekink (2010); Wardell & Tiekink (2011); Arman et al. (2011).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of 4-(pyridin-4-yldisulfanyl)pyridine in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the 2-aminobenzoic acid molecule in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular chain in (I) held together by O—H···N and N—H···N hydrogen bonds shown as orange and blue dashed lines, respectively.
[Figure 4] Fig. 4. Supramolecular layer in (I) where the chains shown in Fig. 3 are linked by ππ interactions shown as purple dashed lines.
[Figure 5] Fig. 5. View in projection down the c axis of the unit-cell contents of (I), highlighting the C—H···O connections (green dashed lines) between the layers shown in Fig. 4.
2-Aminobenzoic acid–4-(pyridin-4-yldisulfanyl)pyridine (1/1) top
Crystal data top
C7H7NO2·C10H8N2S2F(000) = 744
Mr = 357.46Dx = 1.414 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3807 reflections
a = 8.636 (2) Åθ = 2.7–40.5°
b = 12.728 (3) ŵ = 0.33 mm1
c = 15.688 (4) ÅT = 98 K
β = 103.218 (4)°Block, colourless
V = 1678.7 (7) Å30.30 × 0.27 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
3115 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω scansh = 1110
3149 measured reflectionsk = 016
3149 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.047P)2 + 0.5616P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3149 reflectionsΔρmax = 0.25 e Å3
227 parametersΔρmin = 0.23 e Å3
6 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H7NO2·C10H8N2S2V = 1678.7 (7) Å3
Mr = 357.46Z = 4
Monoclinic, CcMo Kα radiation
a = 8.636 (2) ŵ = 0.33 mm1
b = 12.728 (3) ÅT = 98 K
c = 15.688 (4) Å0.30 × 0.27 × 0.15 mm
β = 103.218 (4)°
Data collection top
Rigaku AFC12K/SATURN724 CCD
diffractometer
3115 reflections with I > 2σ(I)
3149 measured reflectionsRint = 0.000
3149 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
3149 reflectionsΔρmin = 0.23 e Å3
227 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.03842 (6)0.51910 (4)0.54403 (3)0.02643 (12)
S20.84697 (6)0.53636 (3)0.44236 (3)0.02623 (12)
O10.4176 (2)0.28720 (11)0.58052 (9)0.0301 (3)
H1o0.425 (4)0.2527 (19)0.6269 (10)0.045*
O20.45445 (19)0.42702 (12)0.66806 (9)0.0311 (3)
N10.4410 (2)0.30644 (14)0.41463 (11)0.0323 (4)
H1n0.428 (3)0.2877 (17)0.3594 (5)0.048*
H2n0.418 (4)0.2615 (14)0.4525 (11)0.048*
N20.9169 (2)0.27383 (14)0.73043 (12)0.0302 (4)
N30.9212 (2)0.33036 (13)0.21812 (11)0.0271 (3)
C10.4350 (2)0.41116 (14)0.43227 (12)0.0212 (4)
C20.4369 (2)0.45314 (14)0.51627 (12)0.0213 (4)
C30.4360 (2)0.56293 (16)0.52675 (13)0.0261 (4)
H30.43820.59120.58310.031*
C40.4322 (3)0.63068 (16)0.45784 (15)0.0291 (4)
H40.43220.70460.46650.035*
C50.4282 (3)0.58886 (16)0.37511 (14)0.0276 (4)
H50.42460.63470.32690.033*
C60.4294 (2)0.48188 (15)0.36270 (13)0.0241 (4)
H60.42630.45510.30580.029*
C70.4379 (2)0.38954 (15)0.59532 (12)0.0240 (4)
C81.0466 (3)0.33503 (17)0.75021 (13)0.0309 (4)
H81.11590.32760.80640.037*
C91.0850 (3)0.40835 (17)0.69325 (13)0.0284 (4)
H91.17920.44920.70960.034*
C100.9828 (2)0.42076 (14)0.61162 (12)0.0221 (4)
C110.8478 (2)0.35789 (15)0.58888 (13)0.0236 (4)
H110.77640.36360.53320.028*
C120.8218 (2)0.28615 (15)0.65130 (13)0.0269 (4)
H120.72980.24300.63630.032*
C130.8862 (2)0.45427 (14)0.35820 (12)0.0213 (4)
C141.0171 (2)0.38876 (15)0.36659 (13)0.0246 (4)
H141.09590.38490.41980.030*
C151.0288 (3)0.32873 (16)0.29402 (14)0.0268 (4)
H151.11860.28410.29890.032*
C160.7979 (3)0.39530 (17)0.21060 (13)0.0293 (4)
H160.72210.39810.15620.035*
C170.7749 (3)0.45889 (16)0.27830 (13)0.0264 (4)
H170.68570.50450.27050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (3)0.0275 (2)0.0204 (2)0.0070 (2)0.00692 (19)0.00252 (17)
S20.0341 (3)0.02419 (19)0.0212 (2)0.00549 (19)0.00813 (19)0.00134 (17)
O10.0455 (9)0.0265 (7)0.0172 (6)0.0018 (6)0.0050 (6)0.0027 (5)
O20.0382 (9)0.0363 (8)0.0188 (7)0.0070 (7)0.0064 (6)0.0036 (6)
N10.0531 (12)0.0238 (8)0.0201 (8)0.0013 (8)0.0088 (8)0.0032 (6)
N20.0332 (10)0.0307 (9)0.0260 (9)0.0007 (8)0.0054 (7)0.0039 (7)
N30.0332 (9)0.0268 (8)0.0216 (8)0.0033 (7)0.0066 (7)0.0034 (7)
C10.0197 (8)0.0249 (8)0.0181 (8)0.0014 (7)0.0023 (7)0.0000 (7)
C20.0188 (8)0.0256 (8)0.0185 (9)0.0009 (7)0.0024 (7)0.0031 (7)
C30.0270 (9)0.0290 (9)0.0223 (9)0.0009 (8)0.0053 (8)0.0054 (8)
C40.0306 (11)0.0222 (9)0.0334 (11)0.0015 (8)0.0053 (9)0.0014 (8)
C50.0282 (10)0.0287 (9)0.0253 (10)0.0008 (8)0.0050 (8)0.0060 (8)
C60.0240 (10)0.0291 (9)0.0181 (9)0.0001 (7)0.0025 (8)0.0005 (7)
C70.0210 (9)0.0301 (9)0.0201 (9)0.0019 (7)0.0030 (7)0.0010 (7)
C80.0307 (10)0.0391 (11)0.0207 (10)0.0028 (9)0.0011 (8)0.0023 (8)
C90.0249 (9)0.0349 (10)0.0244 (10)0.0004 (8)0.0033 (8)0.0007 (8)
C100.0245 (9)0.0234 (9)0.0193 (8)0.0013 (7)0.0068 (7)0.0030 (7)
C110.0233 (9)0.0259 (8)0.0209 (9)0.0013 (7)0.0035 (7)0.0009 (7)
C120.0290 (10)0.0247 (9)0.0267 (10)0.0017 (7)0.0057 (8)0.0008 (7)
C130.0270 (10)0.0199 (8)0.0190 (9)0.0005 (7)0.0092 (7)0.0015 (6)
C140.0283 (10)0.0246 (8)0.0203 (9)0.0008 (7)0.0043 (8)0.0000 (7)
C150.0291 (10)0.0258 (9)0.0257 (10)0.0015 (8)0.0069 (8)0.0004 (7)
C160.0319 (10)0.0362 (10)0.0185 (9)0.0031 (8)0.0031 (8)0.0025 (8)
C170.0276 (10)0.0319 (9)0.0202 (9)0.0027 (8)0.0068 (8)0.0047 (7)
Geometric parameters (Å, º) top
S1—C101.7762 (19)C4—H40.9500
S1—S22.0297 (8)C5—C61.376 (3)
S2—C131.7761 (18)C5—H50.9500
O1—C71.328 (2)C6—H60.9500
O1—H1o0.8399 (10)C8—C91.384 (3)
O2—C71.215 (2)C8—H80.9500
N1—C11.365 (2)C9—C101.388 (3)
N1—H1n0.8800 (11)C9—H90.9500
N1—H2n0.8801 (10)C10—C111.391 (3)
N2—C121.332 (3)C11—C121.394 (3)
N2—C81.341 (3)C11—H110.9500
N3—C161.332 (3)C12—H120.9500
N3—C151.332 (3)C13—C141.387 (3)
C1—C61.407 (3)C13—C171.396 (3)
C1—C21.418 (2)C14—C151.394 (3)
C2—C31.407 (3)C14—H140.9500
C2—C71.479 (2)C15—H150.9500
C3—C41.377 (3)C16—C171.385 (3)
C3—H30.9500C16—H160.9500
C4—C51.396 (3)C17—H170.9500
C10—S1—S2105.22 (7)N2—C8—H8118.2
C13—S2—S1105.12 (7)C9—C8—H8118.2
C7—O1—H1o112 (2)C8—C9—C10118.5 (2)
C1—N1—H1n117.5 (15)C8—C9—H9120.8
C1—N1—H2n118.2 (15)C10—C9—H9120.8
H1n—N1—H2n119.4 (18)C9—C10—C11119.33 (18)
C12—N2—C8116.85 (18)C9—C10—S1115.41 (15)
C16—N3—C15117.96 (17)C11—C10—S1125.26 (16)
N1—C1—C6117.63 (17)C10—C11—C12117.17 (19)
N1—C1—C2124.29 (18)C10—C11—H11121.4
C6—C1—C2118.07 (17)C12—C11—H11121.4
C3—C2—C1118.91 (17)N2—C12—C11124.59 (19)
C3—C2—C7116.40 (16)N2—C12—H12117.7
C1—C2—C7124.69 (17)C11—C12—H12117.7
C4—C3—C2121.99 (18)C14—C13—C17119.32 (17)
C4—C3—H3119.0C14—C13—S2124.98 (16)
C2—C3—H3119.0C17—C13—S2115.70 (15)
C3—C4—C5118.82 (18)C13—C14—C15117.50 (19)
C3—C4—H4120.6C13—C14—H14121.2
C5—C4—H4120.6C15—C14—H14121.3
C6—C5—C4120.63 (18)N3—C15—C14123.7 (2)
C6—C5—H5119.7N3—C15—H15118.1
C4—C5—H5119.7C14—C15—H15118.1
C5—C6—C1121.56 (18)N3—C16—C17123.1 (2)
C5—C6—H6119.2N3—C16—H16118.4
C1—C6—H6119.2C17—C16—H16118.4
O2—C7—O1122.14 (18)C16—C17—C13118.30 (19)
O2—C7—C2123.34 (18)C16—C17—H17120.8
O1—C7—C2114.52 (16)C13—C17—H17120.8
N2—C8—C9123.6 (2)
C10—S1—S2—C1395.20 (9)C8—C9—C10—C111.5 (3)
N1—C1—C2—C3177.7 (2)C8—C9—C10—S1178.27 (16)
C6—C1—C2—C31.1 (3)S2—S1—C10—C9169.32 (13)
N1—C1—C2—C73.1 (3)S2—S1—C10—C1110.46 (18)
C6—C1—C2—C7178.12 (18)C9—C10—C11—C121.1 (3)
C1—C2—C3—C40.5 (3)S1—C10—C11—C12178.70 (14)
C7—C2—C3—C4178.81 (18)C8—N2—C12—C110.3 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—N20.1 (3)
C3—C4—C5—C60.5 (3)S1—S2—C13—C143.90 (18)
C4—C5—C6—C10.2 (3)S1—S2—C13—C17175.51 (13)
N1—C1—C6—C5177.9 (2)C17—C13—C14—C151.2 (3)
C2—C1—C6—C51.0 (3)S2—C13—C14—C15179.40 (15)
C3—C2—C7—O27.8 (3)C16—N3—C15—C141.9 (3)
C1—C2—C7—O2172.92 (19)C13—C14—C15—N30.6 (3)
C3—C2—C7—O1171.55 (19)C15—N3—C16—C171.5 (3)
C1—C2—C7—O17.7 (3)N3—C16—C17—C130.2 (3)
C12—N2—C8—C90.2 (3)C14—C13—C17—C161.6 (3)
N2—C8—C9—C101.1 (3)S2—C13—C17—C16178.97 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2n···O10.88 (2)2.04 (2)2.667 (2)128 (2)
N1—H1n···N2i0.88 (1)2.15 (1)3.027 (3)173 (2)
O1—H1o···N3ii0.84 (2)1.79 (2)2.621 (2)173 (3)
C17—H17···O2iii0.952.423.251 (3)146
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC7H7NO2·C10H8N2S2
Mr357.46
Crystal system, space groupMonoclinic, Cc
Temperature (K)98
a, b, c (Å)8.636 (2), 12.728 (3), 15.688 (4)
β (°) 103.218 (4)
V3)1678.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.27 × 0.15
Data collection
DiffractometerRigaku AFC12K/SATURN724 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3149, 3149, 3115
Rint0.000
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections3149
No. of parameters227
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23
Absolute structureNd

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2n···O10.88 (2)2.036 (18)2.667 (2)127.9 (15)
N1—H1n···N2i0.881 (10)2.151 (12)3.027 (3)172.8 (19)
O1—H1o···N3ii0.840 (18)1.79 (2)2.621 (2)173 (3)
C17—H17···O2iii0.952.423.251 (3)146
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z1/2.
 

Acknowledgements

The Ministry of Higher Education, Malaysia, is thanked for the award of a research grant (RG125/10AFR).

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds