organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Pyridin-3-yl­amino)­meth­yl]phenol

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2011; accepted 7 November 2011; online 12 November 2011)

In the title compound, C12H12N2O, the aromatic rings at either ends of the –CH2–NH– link are twisted by 68.79 (7)°. In the crystal, the hy­droxy substituent is a hydrogen-bond donor to the N atom of the pyridine ring of an adjacent mol­ecule, and the hydrogen bond generates a chain along the b axis; it is also a hydrogen-bond acceptor to the amino group of another adjacent mol­ecule. The two hydrogen bonds lead to the formation of a layer structure.

Related literature

For the N-salicyl­idene-3-amino­pyridine precursor, see: Csaszar (1990[Csaszar, J. (1990). Acta Chim. Hung. 127, 277-286.]); Kaya & Guelel (2005[Kaya, I. & Guelel, R. (2005). Int. J. Polym. Anal. Charact. 10, 109-122.]); Robert et al. (2009[Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327-4342.]). For a related structure, see: Xu et al. (2011[Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O

  • Mr = 200.24

  • Monoclinic, P 21 /c

  • a = 5.8386 (11) Å

  • b = 13.399 (3) Å

  • c = 13.169 (3) Å

  • β = 90.519 (6)°

  • V = 1030.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.990

  • 9845 measured reflections

  • 2358 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.08

  • 2358 reflections

  • 144 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N2i 0.86 (1) 1.80 (1) 2.6568 (16) 175 (2)
N1—H1n⋯O1ii 0.88 (1) 2.38 (1) 3.2296 (17) 163 (1)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are numerous studies on the Schiff bases derived by condensing salicyldehyde and an aromatic amine. In this study, the azomethine double-bond of N-salicylidene-3-aminopyridine (Csaszar, 1990; Kaya & Guelel, 2005; Robert et al. 2009) is reduced by sodium borohydride to yield the title secondary amine (Scheme I). The two aromatic rings at either ends of the –CH2–NH– link of C12H12N2O are twisted by 68.79 (7)° (Fig. 1). The hydroxy substituent is hydrogen-bond donor to the N atom of the pyridyl ring of an adjacent molecule, and the hydrogen bond generates a linear chain along the b-axis. It is also hydrogen-bond acceptor to the amino group of another adjacent molecule; the two hydrogen bonds lead to the formation of a layer structure (Table 1).

Related literature top

For the N-salicylidene-3-aminopyridine precursor, see: Csaszar (1990); Kaya & Guelel (2005); Robert et al. (2009). For a related structure, see: Xu et al. (2011).

Experimental top

A solution of 3-aminopyridine (1 mmol) and salicylaldehyde (1 mmol) in toluene (50 ml) was heated for 10 h. The solvent was removed under vacuum, and the residue was reduced in absolute methanol by sodium borohydride. Colorless crystals were obtained by recrystallization from methanol; yield 80%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints N–H 0.88±0.01 Å and O–H 0.84±0.01 Å; their temperature factors were refined.

Structure description top

There are numerous studies on the Schiff bases derived by condensing salicyldehyde and an aromatic amine. In this study, the azomethine double-bond of N-salicylidene-3-aminopyridine (Csaszar, 1990; Kaya & Guelel, 2005; Robert et al. 2009) is reduced by sodium borohydride to yield the title secondary amine (Scheme I). The two aromatic rings at either ends of the –CH2–NH– link of C12H12N2O are twisted by 68.79 (7)° (Fig. 1). The hydroxy substituent is hydrogen-bond donor to the N atom of the pyridyl ring of an adjacent molecule, and the hydrogen bond generates a linear chain along the b-axis. It is also hydrogen-bond acceptor to the amino group of another adjacent molecule; the two hydrogen bonds lead to the formation of a layer structure (Table 1).

For the N-salicylidene-3-aminopyridine precursor, see: Csaszar (1990); Kaya & Guelel (2005); Robert et al. (2009). For a related structure, see: Xu et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H12N2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-[(Pyridin-3-ylamino)methyl]phenol top
Crystal data top
C12H12N2OF(000) = 424
Mr = 200.24Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5377 reflections
a = 5.8386 (11) Åθ = 3.0–27.5°
b = 13.399 (3) ŵ = 0.08 mm1
c = 13.169 (3) ÅT = 293 K
β = 90.519 (6)°Prism, colorless
V = 1030.1 (4) Å30.21 × 0.12 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.983, Tmax = 0.990k = 1717
9845 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0952P]
where P = (Fo2 + 2Fc2)/3
2358 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.26 e Å3
2 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H12N2OV = 1030.1 (4) Å3
Mr = 200.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8386 (11) ŵ = 0.08 mm1
b = 13.399 (3) ÅT = 293 K
c = 13.169 (3) Å0.21 × 0.12 × 0.12 mm
β = 90.519 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1879 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.990Rint = 0.042
9845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.26 e Å3
2358 reflectionsΔρmin = 0.18 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.17862 (17)0.30493 (7)0.38420 (7)0.0517 (3)
H1O1.249 (3)0.2486 (9)0.3790 (12)0.073 (5)*
N10.6391 (2)0.42170 (9)0.32008 (9)0.0512 (3)
H1N0.534 (2)0.3813 (10)0.3444 (11)0.059 (4)*
N20.61025 (18)0.63154 (8)0.14353 (8)0.0493 (3)
C11.0374 (2)0.30367 (9)0.46539 (9)0.0396 (3)
C21.0673 (2)0.23629 (11)0.54458 (10)0.0499 (3)
H21.18820.19110.54290.060*
C30.9202 (3)0.23577 (13)0.62516 (10)0.0591 (4)
H30.94070.18970.67730.071*
C40.7428 (3)0.30289 (14)0.62928 (11)0.0669 (5)
H40.64180.30220.68350.080*
C50.7166 (3)0.37110 (12)0.55208 (11)0.0597 (4)
H50.59820.41730.55570.072*
C60.8605 (2)0.37334 (9)0.46929 (9)0.0431 (3)
C70.8270 (2)0.44915 (10)0.38681 (11)0.0484 (3)
H7A0.79610.51380.41690.058*
H7B0.96640.45470.34770.058*
C80.5640 (2)0.48446 (9)0.24474 (9)0.0416 (3)
C90.6833 (2)0.57012 (10)0.21638 (10)0.0449 (3)
H90.82000.58500.24990.054*
C100.4163 (2)0.61131 (11)0.09441 (11)0.0545 (4)
H100.36590.65430.04340.065*
C110.2877 (2)0.52808 (12)0.11717 (11)0.0586 (4)
H110.15220.51520.08190.070*
C120.3611 (2)0.46471 (11)0.19197 (10)0.0528 (4)
H120.27550.40830.20770.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (6)0.0440 (5)0.0517 (6)0.0094 (4)0.0165 (5)0.0042 (4)
N10.0588 (7)0.0428 (6)0.0519 (6)0.0104 (5)0.0083 (5)0.0094 (5)
N20.0515 (6)0.0442 (6)0.0522 (6)0.0019 (5)0.0093 (5)0.0090 (5)
C10.0424 (6)0.0385 (6)0.0380 (6)0.0015 (5)0.0016 (5)0.0046 (5)
C20.0494 (7)0.0527 (8)0.0476 (7)0.0131 (6)0.0022 (6)0.0037 (6)
C30.0645 (9)0.0721 (10)0.0408 (7)0.0146 (7)0.0030 (6)0.0107 (6)
C40.0663 (9)0.0880 (12)0.0467 (8)0.0213 (8)0.0168 (7)0.0033 (7)
C50.0570 (8)0.0670 (10)0.0551 (8)0.0241 (7)0.0097 (7)0.0013 (7)
C60.0448 (6)0.0413 (7)0.0432 (6)0.0053 (5)0.0032 (5)0.0040 (5)
C70.0465 (7)0.0396 (7)0.0589 (8)0.0025 (5)0.0045 (6)0.0019 (6)
C80.0473 (6)0.0377 (6)0.0400 (6)0.0011 (5)0.0038 (5)0.0009 (5)
C90.0403 (6)0.0434 (7)0.0511 (7)0.0022 (5)0.0045 (5)0.0029 (5)
C100.0592 (8)0.0578 (8)0.0465 (7)0.0034 (6)0.0008 (6)0.0120 (6)
C110.0558 (8)0.0701 (10)0.0498 (8)0.0095 (7)0.0094 (6)0.0057 (7)
C120.0584 (8)0.0518 (8)0.0481 (7)0.0169 (6)0.0026 (6)0.0037 (6)
Geometric parameters (Å, º) top
O1—C11.3562 (15)C4—H40.9300
O1—H1O0.86 (1)C5—C61.383 (2)
N1—C81.3695 (16)C5—H50.9300
N1—C71.4472 (17)C6—C71.4986 (17)
N1—H1N0.88 (1)C7—H7A0.9700
N2—C101.3269 (18)C7—H7B0.9700
N2—C91.3312 (16)C8—C121.3936 (18)
C1—C21.3892 (18)C8—C91.3953 (18)
C1—C61.3933 (17)C9—H90.9300
C2—C31.371 (2)C10—C111.379 (2)
C2—H20.9300C10—H100.9300
C3—C41.373 (2)C11—C121.366 (2)
C3—H30.9300C11—H110.9300
C4—C51.374 (2)C12—H120.9300
C1—O1—H1O110.3 (12)C1—C6—C7121.29 (12)
C8—N1—C7121.31 (11)N1—C7—C6111.17 (11)
C8—N1—H1N114.9 (10)N1—C7—H7A109.4
C7—N1—H1N117.6 (10)C6—C7—H7A109.4
C10—N2—C9119.43 (11)N1—C7—H7B109.4
O1—C1—C2121.78 (11)C6—C7—H7B109.4
O1—C1—C6118.47 (11)H7A—C7—H7B108.0
C2—C1—C6119.73 (12)N1—C8—C12120.65 (11)
C3—C2—C1120.58 (12)N1—C8—C9122.81 (11)
C3—C2—H2119.7C12—C8—C9116.54 (12)
C1—C2—H2119.7N2—C9—C8122.96 (12)
C2—C3—C4120.35 (13)N2—C9—H9118.5
C2—C3—H3119.8C8—C9—H9118.5
C4—C3—H3119.8N2—C10—C11121.55 (12)
C3—C4—C5119.01 (14)N2—C10—H10119.2
C3—C4—H4120.5C11—C10—H10119.2
C5—C4—H4120.5C12—C11—C10119.44 (13)
C4—C5—C6122.24 (13)C12—C11—H11120.3
C4—C5—H5118.9C10—C11—H11120.3
C6—C5—H5118.9C11—C12—C8120.07 (12)
C5—C6—C1118.05 (12)C11—C12—H12120.0
C5—C6—C7120.66 (11)C8—C12—H12120.0
O1—C1—C2—C3179.14 (13)C5—C6—C7—N177.50 (16)
C6—C1—C2—C31.9 (2)C1—C6—C7—N1102.91 (14)
C1—C2—C3—C40.9 (2)C7—N1—C8—C12169.54 (13)
C2—C3—C4—C50.7 (3)C7—N1—C8—C910.6 (2)
C3—C4—C5—C61.2 (3)C10—N2—C9—C80.4 (2)
C4—C5—C6—C10.2 (2)N1—C8—C9—N2179.66 (12)
C4—C5—C6—C7179.76 (14)C12—C8—C9—N20.5 (2)
O1—C1—C6—C5179.63 (12)C9—N2—C10—C110.2 (2)
C2—C1—C6—C51.41 (19)N2—C10—C11—C120.0 (2)
O1—C1—C6—C70.77 (17)C10—C11—C12—C80.1 (2)
C2—C1—C6—C7178.19 (11)N1—C8—C12—C11179.81 (14)
C8—N1—C7—C6174.01 (12)C9—C8—C12—C110.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.86 (1)1.80 (1)2.6568 (16)175 (2)
N1—H1n···O1ii0.88 (1)2.38 (1)3.2296 (17)163 (1)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O
Mr200.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.8386 (11), 13.399 (3), 13.169 (3)
β (°) 90.519 (6)
V3)1030.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.983, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9845, 2358, 1879
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.08
No. of reflections2358
No. of parameters144
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···N2i0.862 (14)1.797 (14)2.6568 (16)175.0 (16)
N1—H1n···O1ii0.881 (13)2.376 (12)3.2296 (17)163.2 (12)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023), Heilongjiang University (Hdtd2010–04) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCsaszar, J. (1990). Acta Chim. Hung. 127, 277–286.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaya, I. & Guelel, R. (2005). Int. J. Polym. Anal. Charact. 10, 109–122.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). Chem. Eur. J. 15, 4327–4342.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds