organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazolium hemi(benzene-1,4-di­carboxyl­ate) trihydrate

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: lihengdajlsp@yahoo.cn

(Received 22 October 2011; accepted 27 October 2011; online 2 November 2011)

The asymmetric unit of the title compound, C9H9N2+.0.5C8H4O4·3H2O, contains one 2-phenyl­imidazolium cation, half a benzene-1,4-dicarboxyl­ate anion and three water mol­ecules, which are connected by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the structures of 2-phenyl­imidazolium nitrate and 2-phenyl­imidazolium acetate, see: Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]); Xia & Yao (2010[Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·0.5C8H4O42−·3H2O

  • Mr = 281.29

  • Triclinic, [P \overline 1]

  • a = 7.208 (1) Å

  • b = 9.164 (2) Å

  • c = 11.368 (2) Å

  • α = 78.506 (1)°

  • β = 75.478 (5)°

  • γ = 86.774 (5)°

  • V = 712.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.55, Tmax = 0.72

  • 4505 measured reflections

  • 2611 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.120

  • S = 0.99

  • 2611 reflections

  • 205 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.91 2.768 (3) 172
N2—H2A⋯O3Wi 0.86 1.82 2.663 (3) 168
O1W—HW11⋯O2 0.85 (1) 2.02 (1) 2.850 (3) 167 (3)
O1W—HW12⋯O2ii 0.85 (1) 2.33 (3) 2.955 (3) 131 (3)
O2W—HW21⋯O1iii 0.86 (1) 2.03 (2) 2.818 (3) 153 (3)
O2W—HW22⋯O2ii 0.85 (1) 2.01 (1) 2.828 (3) 161 (3)
O3W—HW31⋯O1Wiv 0.85 (1) 1.94 (2) 2.749 (4) 160 (4)
O3W—HW32⋯O2Wv 0.85 (1) 1.89 (1) 2.723 (4) 167 (4)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) x, y-1, z; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylimidazolium nitrate and 2-phenylimidazolium acetate have been reported (Xia et al., 2009; Xia & Yao, 2010). Here, I report the synthesis and crystal structure of the 2-phenylimidazolium hemi-benzene-1,4-dicarboxylate trihydrate.

The asymmetric unit of the title compound is composed of one 2-phenylimidazolium cation, half a benzene-1,4-dicarboxylate anion, and three water molecules (Fig. 1) which are connected by O—H···O and N—H···O hydrogen bonds to a three-dimensional network.

Related literature top

For the structures of 2-phenylimidazolium nitrate and 2-phenylimidazolium acetate, see: Xia et al. (2009); Xia & Yao (2010).

Experimental top

A mixture of 2-phenylimidazole (0.5 mmol), benzene-1,4-dicarboxylic acid (0.3 mmol) and H2O (10 ml) was mixed. After several days, colorless crystals were obtained at room temperature.

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). Water H atoms were located in a difference Fourier map and refined as riding with the O—H and H···H distances restrainted to 0.85±0.01 and 1.35±0.01 Å, respectively.

Structure description top

2-Phenylimidazolium nitrate and 2-phenylimidazolium acetate have been reported (Xia et al., 2009; Xia & Yao, 2010). Here, I report the synthesis and crystal structure of the 2-phenylimidazolium hemi-benzene-1,4-dicarboxylate trihydrate.

The asymmetric unit of the title compound is composed of one 2-phenylimidazolium cation, half a benzene-1,4-dicarboxylate anion, and three water molecules (Fig. 1) which are connected by O—H···O and N—H···O hydrogen bonds to a three-dimensional network.

For the structures of 2-phenylimidazolium nitrate and 2-phenylimidazolium acetate, see: Xia et al. (2009); Xia & Yao (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 1 - x, 1 - y, 1 - z.
2-Phenylimidazolium hemi(benzene-1,4-dicarboxylate) trihydrate top
Crystal data top
C9H9N2+·0.5C8H4O42·3H2OZ = 2
Mr = 281.29F(000) = 298
Triclinic, P1Dx = 1.311 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.208 (1) ÅCell parameters from 4505 reflections
b = 9.164 (2) Åθ = 1.9–25.4°
c = 11.368 (2) ŵ = 0.10 mm1
α = 78.506 (1)°T = 293 K
β = 75.478 (5)°Block, colorless
γ = 86.774 (5)°0.17 × 0.15 × 0.12 mm
V = 712.3 (2) Å3
Data collection top
Bruker APEX
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.55, Tmax = 0.72k = 1011
4505 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
2611 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.18 e Å3
9 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H9N2+·0.5C8H4O42·3H2Oγ = 86.774 (5)°
Mr = 281.29V = 712.3 (2) Å3
Triclinic, P1Z = 2
a = 7.208 (1) ÅMo Kα radiation
b = 9.164 (2) ŵ = 0.10 mm1
c = 11.368 (2) ÅT = 293 K
α = 78.506 (1)°0.17 × 0.15 × 0.12 mm
β = 75.478 (5)°
Data collection top
Bruker APEX
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1519 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.72Rint = 0.044
4505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0519 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.18 e Å3
2611 reflectionsΔρmin = 0.22 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9035 (4)0.2035 (3)0.8466 (3)0.0553 (7)
H10.93280.10230.85630.066*
C20.9084 (4)0.2981 (3)0.7392 (3)0.0543 (7)
H20.94100.27500.66050.065*
C30.8178 (3)0.4256 (2)0.8904 (2)0.0391 (6)
C40.7537 (3)0.5458 (2)0.9583 (2)0.0386 (6)
C50.7153 (4)0.5189 (3)1.0870 (2)0.0514 (7)
H50.73390.42411.13030.062*
C60.6498 (4)0.6324 (3)1.1502 (3)0.0604 (8)
H60.62300.61351.23620.072*
C70.6238 (4)0.7730 (3)1.0875 (3)0.0641 (9)
H70.58060.84951.13060.077*
C80.6617 (4)0.8005 (3)0.9604 (3)0.0639 (8)
H80.64370.89580.91770.077*
C90.7263 (4)0.6880 (3)0.8957 (3)0.0542 (7)
H90.75150.70760.80970.065*
C100.7373 (3)0.7275 (2)0.5307 (2)0.0387 (6)
C110.6137 (3)0.6093 (2)0.5159 (2)0.0342 (6)
C120.6925 (3)0.4735 (2)0.4926 (2)0.0381 (6)
H120.82230.45550.48730.046*
C130.4193 (3)0.6353 (2)0.5229 (2)0.0373 (6)
H130.36470.72620.53800.045*
N10.8561 (3)0.4352 (2)0.76772 (18)0.0446 (5)
H1A0.84900.51540.71480.054*
N20.8474 (3)0.2839 (2)0.93913 (19)0.0483 (6)
H2A0.83330.24851.01680.058*
O10.8703 (2)0.68667 (16)0.58457 (15)0.0455 (5)
O20.7039 (3)0.86002 (17)0.48727 (17)0.0574 (5)
O1W0.4795 (4)0.9746 (2)0.31515 (19)0.0722 (6)
O2W0.0067 (4)0.9337 (3)0.6501 (2)0.0830 (7)
O3W0.7934 (5)0.1375 (3)0.1721 (2)0.0883 (7)
HW110.529 (4)0.934 (4)0.374 (2)0.127 (16)*
HW120.373 (3)1.010 (4)0.350 (3)0.132 (17)*
HW210.004 (4)0.858 (2)0.616 (3)0.106 (13)*
HW220.084 (4)0.994 (2)0.595 (2)0.109 (14)*
HW310.683 (2)0.107 (4)0.214 (3)0.132 (18)*
HW320.862 (4)0.129 (4)0.224 (3)0.120 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0659 (19)0.0421 (14)0.0546 (19)0.0025 (14)0.0106 (15)0.0078 (14)
C20.0643 (19)0.0479 (16)0.0483 (18)0.0019 (14)0.0064 (14)0.0133 (14)
C30.0400 (14)0.0422 (14)0.0330 (15)0.0070 (11)0.0096 (11)0.0002 (11)
C40.0368 (14)0.0431 (14)0.0368 (15)0.0047 (11)0.0102 (11)0.0075 (11)
C50.0567 (17)0.0583 (16)0.0380 (17)0.0048 (13)0.0112 (13)0.0061 (13)
C60.0636 (19)0.077 (2)0.0435 (18)0.0051 (16)0.0107 (15)0.0196 (16)
C70.063 (2)0.071 (2)0.067 (2)0.0036 (16)0.0152 (17)0.0362 (18)
C80.080 (2)0.0494 (17)0.065 (2)0.0021 (16)0.0202 (18)0.0141 (15)
C90.0691 (19)0.0492 (16)0.0425 (17)0.0030 (14)0.0094 (14)0.0092 (13)
C100.0456 (16)0.0362 (13)0.0327 (15)0.0064 (11)0.0046 (12)0.0076 (11)
C110.0417 (14)0.0314 (12)0.0288 (14)0.0005 (11)0.0085 (11)0.0045 (10)
C120.0383 (14)0.0390 (13)0.0363 (15)0.0003 (11)0.0090 (11)0.0056 (11)
C130.0431 (15)0.0300 (12)0.0389 (15)0.0019 (11)0.0090 (11)0.0083 (10)
N10.0526 (13)0.0421 (12)0.0362 (13)0.0008 (10)0.0090 (10)0.0027 (9)
N20.0594 (14)0.0436 (12)0.0375 (13)0.0023 (11)0.0102 (11)0.0011 (10)
O10.0495 (11)0.0452 (9)0.0447 (11)0.0091 (8)0.0194 (9)0.0032 (8)
O20.0735 (13)0.0318 (9)0.0722 (14)0.0085 (9)0.0346 (11)0.0010 (9)
O1W0.0924 (18)0.0683 (14)0.0497 (14)0.0082 (13)0.0121 (13)0.0059 (11)
O2W0.127 (2)0.0710 (14)0.0531 (15)0.0447 (15)0.0272 (14)0.0016 (12)
O3W0.106 (2)0.0951 (18)0.0560 (15)0.0288 (16)0.0322 (17)0.0270 (13)
Geometric parameters (Å, º) top
C1—C21.343 (3)C9—H90.9300
C1—N21.369 (3)C10—O21.251 (3)
C1—H10.9300C10—O11.263 (3)
C2—N11.368 (3)C10—C111.501 (3)
C2—H20.9300C11—C121.385 (3)
C3—N21.334 (3)C11—C131.393 (3)
C3—N11.338 (3)C12—C13i1.381 (3)
C3—C41.458 (3)C12—H120.9300
C4—C91.384 (3)C13—C12i1.381 (3)
C4—C51.393 (3)C13—H130.9300
C5—C61.376 (3)N1—H1A0.8600
C5—H50.9300N2—H2A0.8600
C6—C71.371 (4)O1W—HW110.852 (10)
C6—H60.9300O1W—HW120.850 (10)
C7—C81.375 (4)O2W—HW210.859 (10)
C7—H70.9300O2W—HW220.854 (10)
C8—C91.377 (3)O3W—HW310.850 (10)
C8—H80.9300O3W—HW320.847 (10)
C2—C1—N2107.1 (2)C8—C9—C4120.2 (3)
C2—C1—H1126.4C8—C9—H9119.9
N2—C1—H1126.4C4—C9—H9119.9
C1—C2—N1106.9 (2)O2—C10—O1124.1 (2)
C1—C2—H2126.6O2—C10—C11117.9 (2)
N1—C2—H2126.6O1—C10—C11118.0 (2)
N2—C3—N1106.71 (19)C12—C11—C13119.0 (2)
N2—C3—C4126.4 (2)C12—C11—C10120.3 (2)
N1—C3—C4126.8 (2)C13—C11—C10120.69 (19)
C9—C4—C5119.0 (2)C13i—C12—C11120.8 (2)
C9—C4—C3120.4 (2)C13i—C12—H12119.6
C5—C4—C3120.6 (2)C11—C12—H12119.6
C6—C5—C4120.1 (2)C12i—C13—C11120.2 (2)
C6—C5—H5120.0C12i—C13—H13119.9
C4—C5—H5120.0C11—C13—H13119.9
C7—C6—C5120.6 (3)C3—N1—C2109.7 (2)
C7—C6—H6119.7C3—N1—H1A125.2
C5—C6—H6119.7C2—N1—H1A125.2
C6—C7—C8119.7 (2)C3—N2—C1109.6 (2)
C6—C7—H7120.2C3—N2—H2A125.2
C8—C7—H7120.2C1—N2—H2A125.2
C7—C8—C9120.5 (3)HW11—O1W—HW12104.8 (15)
C7—C8—H8119.7HW21—O2W—HW22103.8 (14)
C9—C8—H8119.7HW31—O3W—HW32106.0 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.912.768 (3)172
N2—H2A···O3Wii0.861.822.663 (3)168
O1W—HW11···O20.85 (1)2.02 (1)2.850 (3)167 (3)
O1W—HW12···O2iii0.85 (1)2.33 (3)2.955 (3)131 (3)
O2W—HW21···O1iv0.86 (1)2.03 (2)2.818 (3)153 (3)
O2W—HW22···O2iii0.85 (1)2.01 (1)2.828 (3)161 (3)
O3W—HW31···O1Wv0.85 (1)1.94 (2)2.749 (4)160 (4)
O3W—HW32···O2Wi0.85 (1)1.89 (1)2.723 (4)167 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H9N2+·0.5C8H4O42·3H2O
Mr281.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.208 (1), 9.164 (2), 11.368 (2)
α, β, γ (°)78.506 (1), 75.478 (5), 86.774 (5)
V3)712.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerBruker APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.55, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
4505, 2611, 1519
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.120, 0.99
No. of reflections2611
No. of parameters205
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.912.768 (3)171.6
N2—H2A···O3Wi0.861.822.663 (3)168.0
O1W—HW11···O20.852 (10)2.015 (12)2.850 (3)167 (3)
O1W—HW12···O2ii0.850 (10)2.33 (3)2.955 (3)131 (3)
O2W—HW21···O1iii0.859 (10)2.026 (15)2.818 (3)153 (3)
O2W—HW22···O2ii0.854 (10)2.005 (13)2.828 (3)161 (3)
O3W—HW31···O1Wiv0.850 (10)1.935 (17)2.749 (4)160 (4)
O3W—HW32···O2Wv0.847 (10)1.891 (14)2.723 (4)167 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Jilin Normal University for support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds