organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Adamantan-2-yl­­idene)thio­phene-2-carbohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 October 2011; accepted 26 October 2011; online 29 October 2011)

In the title mol­ecule, C15H18N2OS, a small twist is noted, with the dihedral angle between the central carbohydrazone residue (r.m.s. deviation = 0.029 Å) and the thio­phene ring being 12.47 (10)°. The syn arrangement of the amide H and carbonyl O atoms allows for the formation of centrosymmetric dimers via N—H⋯O hydrogen bonds. These are linked in the three-dimensional structure by C—H⋯π inter­actions. The thio­phene ring is disordered over two co-planar orientations, the major component having a site-occupancy factor of 0.833 (2).

Related literature

For the biological activity of adamantane derivatives see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For background to our work into the biological activity of adamantane derivatives, see: Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]). For a related structure, see: Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N2OS

  • Mr = 274.37

  • Monoclinic, C 2/c

  • a = 16.7262 (2) Å

  • b = 12.5663 (1) Å

  • c = 13.5562 (2) Å

  • β = 102.473 (1)°

  • V = 2782.08 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.01 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.584, Tmax = 0.690

  • 5687 measured reflections

  • 2849 independent reflections

  • 2671 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.04

  • 2849 reflections

  • 189 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1,C1–C4 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.93 (2) 1.92 (2) 2.844 (1) 173 (2)
C13—H13⋯Cg1ii 1.00 2.61 3.5791 (16) 163
C15—H15a⋯Cg1iii 0.99 2.69 3.5683 (16) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including anti-viral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives (Kadi et al., 2010; Al-Omar et al., 2010; Al-Tamimi et al., 2010), we synthesized the title compound, N'-(2-thienylcarbonyl)-2-adamantanone hydrazone, (I), as a potential chemotherapeutic agent. Herein, the crystal and molecular structures are described.

A small twist is noted in the molecule of (I), Fig. 1, as seen in the value of the dihedral between the thiophene ring and the central carbohydrazone residue (O1,N1,N2,C4,C5; r.m.s. deviation = 0.029 Å) being 12.47 (10)°. In the major component of the disordered molecule, the thiophene-S atom is proximate to the hydrazone-N atom, S1···N1 = 2.7797 (11) Å, whereas in the minor component, the C3'—H3' atom is 2.29 Å from N2. The amide-H and carbonyl-O atoms are syn. This arrangement allows for the formation of centrosymmetric dimers, Fig. 2 and Table 1, and eight-membered {···HNCO}2 synthons. The dimers thus formed are consolidated in the crystal packing by C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For the biological activity of adamantane derivatives see: Vernier et al. (1969); El-Emam et al. (2004). For background to our work into the biological activity of adamantane derivatives, see: Kadi et al. (2010); Al-Omar et al. (2010). For a related structure, see: Al-Tamimi et al. (2010).

Experimental top

Thiophene-2-carbohydrazide (1.42 g, 0.01 mol) and 2-adamantanone (1.5 g, 0.01 mol) were heated in ethanol (10 ml) for 4 h. The solid that separated upon cooling was collected and recrystallized from ethanol to yield 2.44 g (98%) of C15H18N2OS as colourless crystals, M.pt. 464–467 K. The formulation was established by solution NMR spectroscopy. 1H-NMR (CDCl3): δ 1.91–2.05 (m, 14 adamantyl-H), 7.12 (s, 1 thienyl H), 7.60–7.63 (m, 1 thienyl H), 8.17 (s, 1 thienyl H), 10.04 (s, 1 amino H) p.p.m.. 13C-NMR: 27.78, 30.86, 36.38, 37.81, 39.21, 163.32 (adamantyl), 129.25, 133.78,134.30, 134.90 (thienyl)), 164.15 (carbonyl) p.p.m..

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was freely refined. The thienyl ring was disordered over two positions in respect of the sulfur atom and three of the four carbon atoms; the carbon atom connected to the carbonyl group is ordered. The C—S single bond distances were restrained to 1.71±0.01 Å, the formal C—C double-bond distances were restrained to 1.36±0.01 Å and the formal C—C single-bond distances to 1.46±0.01 Å. The anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones. The major component refined to a site occupancy factor = 0.833 (1).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered thiophene ring is shown for reasons of clarity.
[Figure 2] Fig. 2. Centrosymmetric dimer in (I) sustained by N—H···O hydrogen bonds shown as blue dashed lines.
[Figure 3] Fig. 3. Unit-cell contents for (I) shown in projection down the b axis. The N—H···O hydrogen bonds and C—H···π interactions are shown as blue and purple dashed lines, respectively.
N'-(Adamantan-2-ylidene)thiophene-2-carbohydrazide top
Crystal data top
C15H18N2OSF(000) = 1168
Mr = 274.37Dx = 1.310 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 4116 reflections
a = 16.7262 (2) Åθ = 3.3–76.3°
b = 12.5663 (1) ŵ = 2.01 mm1
c = 13.5562 (2) ÅT = 100 K
β = 102.473 (1)°Prism, colourless
V = 2782.08 (6) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2849 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2671 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 76.5°, θmin = 4.4°
ω scanh = 2021
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1515
Tmin = 0.584, Tmax = 0.690l = 1611
5687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0511P)2 + 1.8544P]
where P = (Fo2 + 2Fc2)/3
2849 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.38 e Å3
10 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H18N2OSV = 2782.08 (6) Å3
Mr = 274.37Z = 8
Monoclinic, C2/cCu Kα radiation
a = 16.7262 (2) ŵ = 2.01 mm1
b = 12.5663 (1) ÅT = 100 K
c = 13.5562 (2) Å0.30 × 0.25 × 0.20 mm
β = 102.473 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2849 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2671 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.690Rint = 0.015
5687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03210 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
2849 reflectionsΔρmin = 0.39 e Å3
189 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.32529 (2)0.46310 (4)0.24150 (3)0.01360 (14)0.833 (2)
C10.26341 (15)0.55387 (19)0.1659 (2)0.0172 (5)0.833 (2)
H1A0.27770.58840.10980.021*0.833 (2)
C20.1909 (2)0.5709 (3)0.1958 (2)0.0187 (4)0.833 (2)
H20.14930.61910.16460.022*0.833 (2)
C30.18762 (10)0.5073 (2)0.2781 (2)0.0223 (5)0.833 (2)
H30.14170.50810.30880.027*0.833 (2)
S1'0.16790 (19)0.5096 (3)0.2790 (2)0.01360 (14)0.167 (2)
C1'0.2016 (12)0.5693 (15)0.1820 (12)0.0172 (5)0.167 (2)
H1'0.17030.62040.13840.021*0.167 (2)
C2'0.2765 (11)0.5375 (13)0.1731 (14)0.0187 (4)0.167 (2)
H2'0.30440.56170.12340.022*0.167 (2)
C3'0.3071 (7)0.4624 (12)0.2493 (10)0.0223 (5)0.167 (2)
H3'0.35880.42850.25650.027*0.167 (2)
O10.19394 (5)0.34953 (7)0.42862 (7)0.0180 (2)
N10.32838 (6)0.32219 (8)0.44331 (8)0.0143 (2)
H10.3254 (10)0.2681 (13)0.4887 (12)0.023 (4)*
N20.39858 (6)0.33902 (8)0.40601 (7)0.0147 (2)
C40.25352 (7)0.44346 (9)0.31283 (8)0.0135 (2)
C50.25708 (7)0.36818 (9)0.39748 (9)0.0137 (2)
C60.46677 (7)0.30469 (9)0.45855 (9)0.0137 (2)
C70.54146 (7)0.31718 (10)0.41432 (9)0.0172 (3)
H70.52740.35750.34930.021*
C80.57170 (8)0.20454 (11)0.39590 (10)0.0216 (3)
H8A0.52900.16660.34640.026*
H8B0.62140.20950.36760.026*
C90.59118 (7)0.14246 (10)0.49565 (10)0.0194 (3)
H90.61070.06940.48350.023*
C100.51402 (7)0.13459 (10)0.53943 (10)0.0195 (3)
H10A0.52650.09410.60350.023*
H10B0.47060.09620.49140.023*
C110.48369 (7)0.24706 (10)0.55881 (9)0.0147 (2)
H110.43290.24280.58620.018*
C120.55174 (7)0.30665 (11)0.63301 (9)0.0193 (3)
H12A0.53280.37920.64490.023*
H12B0.56440.26870.69850.023*
C130.62905 (7)0.31363 (10)0.58972 (9)0.0177 (3)
H130.67310.35140.63880.021*
C140.60877 (7)0.37598 (10)0.49038 (10)0.0196 (3)
H14A0.65850.38300.46230.024*
H14B0.58970.44830.50280.024*
C150.65806 (7)0.20126 (10)0.57098 (9)0.0184 (3)
H15A0.67120.16150.63550.022*
H15B0.70840.20560.54390.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0146 (3)0.0164 (2)0.0113 (2)0.00024 (18)0.00607 (15)0.00223 (12)
C10.0211 (13)0.0172 (11)0.0118 (8)0.0019 (8)0.0004 (8)0.0070 (7)
C20.0190 (12)0.0181 (7)0.0184 (12)0.0026 (7)0.0026 (6)0.0013 (8)
C30.0147 (11)0.0256 (8)0.0287 (8)0.0040 (10)0.0096 (9)0.0030 (7)
S1'0.0146 (3)0.0164 (2)0.0113 (2)0.00024 (18)0.00607 (15)0.00223 (12)
C1'0.0211 (13)0.0172 (11)0.0118 (8)0.0019 (8)0.0004 (8)0.0070 (7)
C2'0.0190 (12)0.0181 (7)0.0184 (12)0.0026 (7)0.0026 (6)0.0013 (8)
C3'0.0147 (11)0.0256 (8)0.0287 (8)0.0040 (10)0.0096 (9)0.0030 (7)
O10.0134 (4)0.0194 (4)0.0217 (4)0.0002 (3)0.0053 (3)0.0062 (3)
N10.0125 (5)0.0153 (5)0.0153 (5)0.0001 (4)0.0036 (4)0.0035 (4)
N20.0139 (5)0.0153 (5)0.0159 (5)0.0005 (4)0.0052 (4)0.0016 (4)
C40.0149 (5)0.0128 (5)0.0125 (5)0.0014 (4)0.0024 (4)0.0010 (4)
C50.0141 (5)0.0118 (5)0.0147 (5)0.0010 (4)0.0021 (4)0.0015 (4)
C60.0149 (5)0.0128 (5)0.0138 (5)0.0000 (4)0.0041 (4)0.0006 (4)
C70.0160 (6)0.0213 (6)0.0160 (6)0.0026 (4)0.0068 (4)0.0059 (5)
C80.0214 (6)0.0266 (7)0.0176 (6)0.0041 (5)0.0062 (5)0.0034 (5)
C90.0187 (6)0.0145 (6)0.0249 (6)0.0031 (4)0.0045 (5)0.0001 (5)
C100.0167 (6)0.0152 (6)0.0251 (6)0.0025 (4)0.0009 (5)0.0059 (5)
C110.0115 (5)0.0189 (6)0.0141 (5)0.0009 (4)0.0035 (4)0.0040 (4)
C120.0155 (6)0.0274 (7)0.0148 (6)0.0014 (5)0.0029 (5)0.0027 (5)
C130.0130 (5)0.0202 (6)0.0196 (6)0.0035 (4)0.0028 (4)0.0011 (5)
C140.0153 (5)0.0161 (6)0.0289 (7)0.0009 (4)0.0081 (5)0.0051 (5)
C150.0132 (5)0.0204 (6)0.0215 (6)0.0012 (4)0.0037 (5)0.0060 (5)
Geometric parameters (Å, º) top
S1—C41.7142 (12)C7—C81.5415 (18)
S1—C11.7215 (15)C7—C141.5412 (17)
C1—C21.377 (2)C7—H71.0000
C1—H1A0.9500C8—C91.5340 (18)
C2—C31.382 (3)C8—H8A0.9900
C2—H20.9500C8—H8B0.9900
C3—C41.362 (2)C9—C151.5319 (17)
C3—H30.9500C9—C101.5358 (17)
S1'—C41.634 (3)C9—H91.0000
S1'—C1'1.712 (9)C10—C111.5432 (17)
C1'—C2'1.344 (9)C10—H10A0.9900
C1'—H1'0.9500C10—H10B0.9900
C2'—C3'1.411 (10)C11—C121.5406 (16)
C2'—H2'0.9500C11—H111.0000
C3'—C41.391 (8)C12—C131.5336 (16)
C3'—H3'0.9500C12—H12A0.9900
O1—C51.2414 (14)C12—H12B0.9900
N1—C51.3499 (15)C13—C141.5313 (17)
N1—N21.3912 (13)C13—C151.5321 (17)
N1—H10.926 (17)C13—H131.0000
N2—C61.2820 (15)C14—H14A0.9900
C4—C51.4784 (16)C14—H14B0.9900
C6—C71.5062 (15)C15—H15A0.9900
C6—C111.5118 (15)C15—H15B0.9900
C4—S1—C191.53 (11)C7—C8—H8A109.7
C2—C1—S1112.5 (3)C9—C8—H8B109.7
C2—C1—H1A123.7C7—C8—H8B109.7
S1—C1—H1A123.7H8A—C8—H8B108.2
C1—C2—C3109.8 (3)C15—C9—C8109.14 (10)
C1—C2—H2125.1C15—C9—C10109.09 (10)
C3—C2—H2125.1C8—C9—C10109.70 (10)
C4—C3—C2116.73 (19)C15—C9—H9109.6
C4—C3—H3121.6C8—C9—H9109.6
C2—C3—H3121.6C10—C9—H9109.6
C4—S1'—C1'91.4 (7)C9—C10—C11109.97 (10)
C2'—C1'—S1'114.0 (15)C9—C10—H10A109.7
C2'—C1'—H1'123.0C11—C10—H10A109.7
S1'—C1'—H1'123.0C9—C10—H10B109.7
C1'—C2'—C3'109.4 (17)C11—C10—H10B109.7
C1'—C2'—H2'125.3H10A—C10—H10B108.2
C3'—C2'—H2'125.3C6—C11—C12108.82 (10)
C4—C3'—C2'112.8 (12)C6—C11—C10106.87 (10)
C4—C3'—H3'123.6C12—C11—C10109.43 (10)
C2'—C3'—H3'123.6C6—C11—H11110.5
C5—N1—N2119.91 (10)C12—C11—H11110.5
C5—N1—H1116.8 (10)C10—C11—H11110.5
N2—N1—H1121.6 (10)C13—C12—C11110.07 (10)
C6—N2—N1117.79 (10)C13—C12—H12A109.6
C3—C4—C3'105.5 (6)C11—C12—H12A109.6
C3—C4—C5122.63 (13)C13—C12—H12B109.6
C3'—C4—C5131.8 (6)C11—C12—H12B109.6
C3'—C4—S1'112.5 (6)H12A—C12—H12B108.2
C5—C4—S1'115.42 (13)C14—C13—C15110.10 (10)
C3—C4—S1109.44 (12)C14—C13—C12108.72 (10)
C5—C4—S1127.90 (9)C15—C13—C12109.52 (10)
S1'—C4—S1116.54 (13)C14—C13—H13109.5
O1—C5—N1119.64 (10)C15—C13—H13109.5
O1—C5—C4119.35 (10)C12—C13—H13109.5
N1—C5—C4120.98 (10)C13—C14—C7109.52 (10)
N2—C6—C7117.30 (10)C13—C14—H14A109.8
N2—C6—C11129.20 (11)C7—C14—H14A109.8
C7—C6—C11113.42 (9)C13—C14—H14B109.8
C6—C7—C8107.35 (10)C7—C14—H14B109.8
C6—C7—C14109.42 (10)H14A—C14—H14B108.2
C8—C7—C14109.31 (10)C13—C15—C9110.08 (10)
C6—C7—H7110.2C13—C15—H15A109.6
C8—C7—H7110.2C9—C15—H15A109.6
C14—C7—H7110.2C13—C15—H15B109.6
C9—C8—C7109.81 (10)C9—C15—H15B109.6
C9—C8—H8A109.7H15A—C15—H15B108.2
C4—S1—C1—C21.5 (2)S1—C4—C5—N115.62 (17)
S1—C1—C2—C31.4 (3)N1—N2—C6—C7176.23 (10)
C1—C2—C3—C40.4 (4)N1—N2—C6—C110.37 (18)
C4—S1'—C1'—C2'1.7 (16)N2—C6—C7—C8115.56 (12)
S1'—C1'—C2'—C3'1 (2)C11—C6—C7—C861.57 (13)
C1'—C2'—C3'—C41 (2)N2—C6—C7—C14125.92 (11)
C5—N1—N2—C6171.74 (11)C11—C6—C7—C1456.95 (13)
C2—C3—C4—C3'0.8 (7)C6—C7—C8—C958.56 (13)
C2—C3—C4—C5177.5 (2)C14—C7—C8—C960.04 (13)
C2—C3—C4—S1'161 (2)C7—C8—C9—C1560.03 (13)
C2—C3—C4—S10.8 (3)C7—C8—C9—C1059.45 (13)
C2'—C3'—C4—C30.4 (14)C15—C9—C10—C1159.76 (12)
C2'—C3'—C4—C5175.8 (10)C8—C9—C10—C1159.75 (13)
C2'—C3'—C4—S1'2.4 (16)N2—C6—C11—C12126.71 (13)
C2'—C3'—C4—S1160 (10)C7—C6—C11—C1256.58 (13)
C1'—S1'—C4—C318.8 (18)N2—C6—C11—C10115.21 (13)
C1'—S1'—C4—C3'2.3 (11)C7—C6—C11—C1061.49 (12)
C1'—S1'—C4—C5176.8 (7)C9—C10—C11—C658.68 (12)
C1'—S1'—C4—S10.8 (7)C9—C10—C11—C1258.99 (13)
C1—S1—C4—C31.28 (18)C6—C11—C12—C1357.90 (13)
C1—S1—C4—C3'19 (9)C10—C11—C12—C1358.55 (13)
C1—S1—C4—C5176.83 (14)C11—C12—C13—C1461.27 (13)
C1—S1—C4—S1'1.40 (18)C11—C12—C13—C1559.07 (13)
N2—N1—C5—O1177.15 (10)C15—C13—C14—C759.00 (12)
N2—N1—C5—C44.97 (16)C12—C13—C14—C760.97 (13)
C3—C4—C5—O111.4 (2)C6—C7—C14—C1358.13 (13)
C3'—C4—C5—O1164.3 (9)C8—C7—C14—C1359.16 (13)
S1'—C4—C5—O19.0 (2)C14—C13—C15—C959.43 (12)
S1—C4—C5—O1166.49 (9)C12—C13—C15—C960.06 (13)
C3—C4—C5—N1166.50 (17)C8—C9—C15—C1359.55 (13)
C3'—C4—C5—N117.8 (9)C10—C9—C15—C1360.30 (13)
S1'—C4—C5—N1168.90 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.93 (2)1.92 (2)2.844 (1)173 (2)
C13—H13···Cg1ii1.002.613.5791 (16)163
C15—H15a···Cg1iii0.992.693.5683 (16)148
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+3/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H18N2OS
Mr274.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.7262 (2), 12.5663 (1), 13.5562 (2)
β (°) 102.473 (1)
V3)2782.08 (6)
Z8
Radiation typeCu Kα
µ (mm1)2.01
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.584, 0.690
No. of measured, independent and
observed [I > 2σ(I)] reflections
5687, 2849, 2671
Rint0.015
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.04
No. of reflections2849
No. of parameters189
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.39

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1,C1–C4 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.93 (2)1.92 (2)2.844 (1)173 (2)
C13—H13···Cg1ii1.002.613.5791 (16)163
C15—H15a···Cg1iii0.992.693.5683 (16)148
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+3/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.  Web of Science CAS PubMed Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds