organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-(Pyridine-2,6-di­yl)bis­­(pyrrolo­[3,4-b]pyridine-5,7-dione)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: vanderbergpcw@ufs.ac.za

(Received 5 October 2011; accepted 24 October 2011; online 29 October 2011)

The title compound, C19H9N5O4, has crystallographically imposed twofold rotational symmetry. The asymmetric unit contains one half-mol­ecule. The crystal structure is stabilized by ππ stacking of inversion-related pyrrolo­[3,4-b]pyridine rings, with a centroid–centroid distance between stacked pyridines of 3.6960 (8) Å. The dihedral angle between the central pyridine ring and the pyrrolo-pyridine side rings is 77.86 (2)° while the angle between the two side chains is 60.87 (2)°.

Related literature

For related structures, see: Jain et al. (2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862-871.]). For related metal complexes, see: Schutte et al. (2009[Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575-m1576.], 2010[Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859-m860.]); Brink et al. (2011[Brink, A., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, m34-m35.]).

[Scheme 1]

Experimental

Crystal data
  • C19H9N5O4

  • Mr = 371.31

  • Monoclinic, C 2/c

  • a = 14.539 (1) Å

  • b = 7.391 (1) Å

  • c = 15.686 (1) Å

  • β = 108.752 (2)°

  • V = 1596.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.34 × 0.29 × 0.27 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.746

  • 12803 measured reflections

  • 1920 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 1920 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized as a ligand for potential use in medical and radiopharmaceutical applications (Schutte et al., 2009; Schutte et al., 2010; Brink et al., 2011).

The title compound, C19H9N5O4, has crystallographically imposed two-fold rotational symmetry. The asymmetric unit contains one half-molecule with C1, H1 and N1 lying on a two-fold rotational axis. The dihedral angle between the central pyridine ring and the pyrrolo-pyridine side rings is 77.86 (2)° while the angle between the two side chains is 60.87 (2)°.

In the crystal, all bond distances and angles are normal (Jain et al. (2004). The molecules pack in layers, diagonally across the ac plane in a head-to-tail fashion and the structure is stabilized by π-π stacking between the outlying pyridine rings of inversion-related structures. The centroid to centroid distances between these stacked rings = 3.6960 (8) Å (see Fig. 2).

Related literature top

For related structures, see: Jain et al. (2004). For related metal complexes, see: Schutte et al. (2009, 2010); Brink et al. (2011).

Experimental top

Under oxygen atmosphere: 2,3-pyridinedicarboxylic acid (1.000 g, 5.982 mmol) was added as a solid in one portion to a suspension of 2,6-diaminopyridine (0.3092 g, 2.833 mmol) in pyridine (10 ml) and the mixture was stirred at 40 °C for 40 min. Triphenylphosphite (10 ml) was added dropwise over 10 minutes after which the temperature was increased to 90–100 °C and stirred for a further 24 h. On cooling the precipitate was filtered, washed with H2O (50 ml) and then MeOH (50 ml). The precipitate was recrystallized in chloroform to obtain colourless crystals after five days.

Refinement top

The aromatic H atoms were placed in geometrically idealized positions at C—H = 0.93 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.67 Å from C5 and the deepest hole is situated 1.26 Å from C1

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by a crystallographic 2-fold rotation about b.
[Figure 2] Fig. 2. Packing and illustration of π-π stacking in the crystal.
6,6'-(Pyridine-2,6-diyl)bis(pyrrolo[3,4-b]pyridine-5,7-dione) top
Crystal data top
C19H9N5O4F(000) = 760
Mr = 371.31Dx = 1.545 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.539 (1) ÅCell parameters from 6738 reflections
b = 7.391 (1) Åθ = 2.7–28.3°
c = 15.686 (1) ŵ = 0.11 mm1
β = 108.752 (2)°T = 100 K
V = 1596.1 (3) Å3Cuboid, colourless
Z = 40.34 × 0.29 × 0.27 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
1920 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 28°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1915
Tmin = 0.681, Tmax = 0.746k = 99
12803 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 1.2599P]
where P = (Fo2 + 2Fc2)/3
1920 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H9N5O4V = 1596.1 (3) Å3
Mr = 371.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.539 (1) ŵ = 0.11 mm1
b = 7.391 (1) ÅT = 100 K
c = 15.686 (1) Å0.34 × 0.29 × 0.27 mm
β = 108.752 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
1920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1717 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.746Rint = 0.024
12803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
1920 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1758 frames were collected with a frame width of 0.5° covering up to θ = 28.00° with 99.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05122 (6)0.18475 (11)0.00789 (5)0.0226 (2)
O20.22325 (6)0.31769 (14)0.24267 (6)0.0327 (2)
N100.22247 (19)0.250.0206 (3)
N20.07684 (7)0.22769 (13)0.13958 (6)0.0209 (2)
N30.07688 (7)0.39842 (13)0.07379 (6)0.0212 (2)
C70.17897 (8)0.39008 (15)0.08242 (7)0.0210 (2)
C40.02795 (8)0.24566 (15)0.04720 (7)0.0186 (2)
C100.15034 (8)0.48687 (16)0.09009 (8)0.0231 (2)
H100.14190.52240.1490.028*
C60.16835 (8)0.31349 (16)0.16665 (8)0.0232 (2)
C50.09539 (8)0.35189 (15)0.01192 (7)0.0184 (2)
C80.25407 (8)0.48175 (16)0.06507 (8)0.0249 (3)
H80.31150.51020.11040.03*
C90.23809 (8)0.52873 (16)0.02460 (8)0.0246 (3)
H90.28630.58840.04070.029*
C30.03783 (8)0.12612 (16)0.19763 (7)0.0205 (2)
C20.04021 (8)0.06106 (16)0.19451 (7)0.0228 (2)
H20.06780.12080.15650.027*
C100.1562 (2)0.250.0237 (3)
H100.2820.250.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0175 (4)0.0269 (4)0.0224 (4)0.0041 (3)0.0052 (3)0.0019 (3)
O20.0241 (5)0.0474 (6)0.0219 (4)0.0071 (4)0.0010 (4)0.0015 (4)
N10.0173 (6)0.0254 (7)0.0177 (6)00.0037 (5)0
N20.0179 (5)0.0265 (5)0.0180 (4)0.0026 (4)0.0053 (4)0.0012 (4)
N30.0210 (5)0.0210 (5)0.0226 (5)0.0000 (4)0.0084 (4)0.0002 (4)
C70.0184 (5)0.0217 (5)0.0223 (5)0.0000 (4)0.0059 (4)0.0032 (4)
C40.0182 (5)0.0193 (5)0.0187 (5)0.0010 (4)0.0064 (4)0.0017 (4)
C100.0250 (6)0.0208 (5)0.0262 (5)0.0007 (4)0.0120 (5)0.0008 (4)
C60.0189 (5)0.0268 (6)0.0230 (5)0.0019 (4)0.0053 (4)0.0033 (4)
C50.0162 (5)0.0176 (5)0.0221 (5)0.0005 (4)0.0070 (4)0.0027 (4)
C80.0177 (5)0.0251 (6)0.0306 (6)0.0027 (4)0.0062 (5)0.0037 (5)
C90.0214 (5)0.0206 (5)0.0352 (6)0.0021 (4)0.0141 (5)0.0011 (5)
C30.0168 (5)0.0271 (6)0.0162 (5)0.0012 (4)0.0033 (4)0.0001 (4)
C20.0227 (5)0.0272 (6)0.0168 (5)0.0012 (4)0.0043 (4)0.0023 (4)
C10.0273 (8)0.0232 (8)0.0179 (7)00.0036 (6)0
Geometric parameters (Å, º) top
O1—C41.2047 (13)C4—C51.4944 (15)
O2—C61.2033 (14)C10—C91.3915 (17)
N1—C31.3322 (13)C10—H100.93
N1—C3i1.3322 (13)C8—C91.3938 (17)
N2—C41.4001 (14)C8—H80.93
N2—C61.4105 (14)C9—H90.93
N2—C31.4306 (14)C3—C21.3851 (17)
N3—C51.3286 (14)C2—C11.3860 (14)
N3—C101.3450 (15)C2—H20.93
C7—C51.3840 (15)C1—C2i1.3860 (14)
C7—C81.3843 (16)C1—H10.93
C7—C61.4904 (16)
C3—N1—C3i115.37 (14)N3—C5—C4124.55 (10)
C4—N2—C6112.63 (9)C7—C5—C4108.86 (9)
C4—N2—C3122.37 (9)C7—C8—C9115.73 (11)
C6—N2—C3124.95 (9)C7—C8—H8122.1
C5—N3—C10113.78 (10)C9—C8—H8122.1
C5—C7—C8119.22 (10)C10—C9—C8120.36 (11)
C5—C7—C6108.44 (10)C10—C9—H9119.8
C8—C7—C6132.32 (10)C8—C9—H9119.8
O1—C4—N2125.30 (10)N1—C3—C2125.15 (11)
O1—C4—C5129.75 (10)N1—C3—N2116.02 (10)
N2—C4—C5104.95 (9)C2—C3—N2118.82 (10)
N3—C10—C9124.28 (11)C3—C2—C1117.65 (11)
N3—C10—H10117.9C3—C2—H2121.2
C9—C10—H10117.9C1—C2—H2121.2
O2—C6—N2124.82 (11)C2—C1—C2i119.04 (16)
O2—C6—C7130.09 (11)C2—C1—H1120.5
N2—C6—C7105.09 (9)C2i—C1—H1120.5
N3—C5—C7126.59 (10)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H9N5O4
Mr371.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)14.539 (1), 7.391 (1), 15.686 (1)
β (°) 108.752 (2)
V3)1596.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.29 × 0.27
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.681, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12803, 1920, 1717
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections1920
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

The Research fund of the University of the Free State, the NRF and NTembi are thankfully acknowledged for funding.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, m34–m35.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSchutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds