organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-bromo­phenyl)-1-[3-(1H-imidazol-1-yl)prop­yl]-1H-benzimidazole-5-carboxyl­ate monohydrate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title compound, C22H21BrN4O2·H2O, the two pyrazole rings are essentially planar [maximum deviations 0.002 (1) and 0.002 (1) Å], and form a dihedral angle of 73.46 (9)°. The dihedral angle between the benzene rings is 29.33 (7)°. In the crystal, mol­ecules are connected via C—H⋯O and O—H⋯N hydrogen bonds, forming layers in the ab plane.

Related literature

For applications of benzimidazole derivatives, see: Garuti et al. (2000[Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193-2195.]); Rao et al. (2002[Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819-823.]); Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacologyonline, 1, 314-329.]); Yoon et al. (2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21BrN4O2·H2O

  • Mr = 471.35

  • Monoclinic, P 21 /n

  • a = 9.1854 (1) Å

  • b = 16.7389 (2) Å

  • c = 13.7379 (2) Å

  • β = 98.283 (1)°

  • V = 2090.22 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 100 K

  • 0.47 × 0.42 × 0.41 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.452, Tmax = 0.494

  • 28847 measured reflections

  • 7482 independent reflections

  • 5514 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 1.03

  • 7482 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯N4i 0.92 (3) 1.99 (3) 2.910 (2) 175 (3)
O1W—H1W1⋯N1ii 0.81 (3) 2.16 (3) 2.891 (2) 151 (2)
C17—H17B⋯O1Wiii 0.99 2.41 3.236 (2) 141
C19—H19B⋯O1Wiii 0.99 2.56 3.327 (2) 135
C20—H20A⋯O2iv 0.95 2.58 3.301 (2) 133
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole derivatives are of wide interest because of their diverse biological activities and various clinical applications. Benzimidazoles are a class of bioactive heterocyclic compounds which exhibit a wide range of activities such as anti-proliferative (Garuti et al., 2000), anti-HIV (Rao et al., 2002), anti-inflammatory and anthelmintic (Thakurdesai et al., 2007) properties. As part of our on-going structural studies of benzimidazole derivatives (Yoon et al., 2011), we now report the structure of the title compound.

In the title compound (Fig. 1), the two pyrazole (N1,N2/C7,C8/C13 and N3,N4/C20–C22) rings are essentially planar, with a maximum deviation of 0.002 (1) Å for atom C8 and 0.002 (1) Å for atom N3. The dihedral angle between the two pyrazole (N1,N2/C7,C8/C13 : N3,N4/C20–C22) rings is 73.46 (9)° and between the two benzene (C8–C13 : C1–C6) rings is 29.33 (7)°.

In the crystal structure, molecules are connected via intermolecular C—H···O and O—H···N (Table 1) hydrogen bonds, forming layers in the ab plane.

Related literature top

For applications of benzimidazole derivatives, see: Garuti et al. (2000); Rao et al. (2002); Thakurdesai et al. (2007); Yoon et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl-4-(3-(1H-imidazol-1-yl-propylamino)-3-aminobenzoate (0.84 mmol) and sodium metabisulfite adduct of bromobenzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was refluxed at 130°C for 2 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and then evaporated in vacuo to yield the product. The product was recrystallised from its ethyl acetate solution.

Refinement top

Atoms H2W1 and H1W1 were located from a difference Fourier maps and refined freely [O—H = 0.80 (3)–0.92 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
Ethyl 2-(4-bromophenyl)-1-[3-(1H-imidazol-1-yl)propyl]- 1H-benzimidazole-5-carboxylate monohydrate top
Crystal data top
C22H21BrN4O2·H2OF(000) = 968
Mr = 471.35Dx = 1.498 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9939 reflections
a = 9.1854 (1) Åθ = 2.5–31.3°
b = 16.7389 (2) ŵ = 2.00 mm1
c = 13.7379 (2) ÅT = 100 K
β = 98.283 (1)°Block, yellow
V = 2090.22 (5) Å30.47 × 0.42 × 0.41 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7482 independent reflections
Radiation source: fine-focus sealed tube5514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 32.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.452, Tmax = 0.494k = 2517
28847 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.518P]
where P = (Fo2 + 2Fc2)/3
7482 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H21BrN4O2·H2OV = 2090.22 (5) Å3
Mr = 471.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1854 (1) ŵ = 2.00 mm1
b = 16.7389 (2) ÅT = 100 K
c = 13.7379 (2) Å0.47 × 0.42 × 0.41 mm
β = 98.283 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5514 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.494Rint = 0.032
28847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.63 e Å3
7482 reflectionsΔρmin = 0.34 e Å3
280 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.123446 (18)0.050021 (9)0.931417 (13)0.02720 (6)
O10.40323 (12)0.80153 (6)0.87745 (9)0.0247 (2)
O20.17930 (13)0.76409 (7)0.90802 (9)0.0260 (2)
N10.23105 (14)0.45313 (7)0.89922 (10)0.0199 (3)
N20.46106 (14)0.42561 (7)0.87069 (9)0.0174 (2)
N30.71289 (14)0.23427 (8)0.76584 (10)0.0216 (3)
N40.61875 (16)0.11193 (8)0.75103 (11)0.0265 (3)
C10.18138 (17)0.29413 (9)0.95735 (11)0.0207 (3)
H1A0.14110.33630.99130.025*
C20.13384 (17)0.21676 (9)0.96832 (12)0.0209 (3)
H2A0.06220.20561.00990.025*
C30.19242 (17)0.15558 (9)0.91768 (11)0.0197 (3)
C40.29838 (17)0.17037 (9)0.85769 (12)0.0212 (3)
H4A0.33850.12790.82420.025*
C50.34509 (17)0.24861 (9)0.84737 (11)0.0201 (3)
H5A0.41700.25950.80590.024*
C60.28788 (16)0.31134 (8)0.89703 (11)0.0174 (3)
C70.32652 (16)0.39632 (9)0.88789 (11)0.0181 (3)
C80.44933 (16)0.50829 (8)0.87200 (11)0.0175 (3)
C90.54989 (17)0.56882 (9)0.86054 (12)0.0207 (3)
H9A0.64730.55740.84900.025*
C100.50014 (17)0.64649 (9)0.86687 (11)0.0204 (3)
H10A0.56480.68950.85890.025*
C110.35573 (17)0.66335 (8)0.88480 (11)0.0188 (3)
C120.25683 (17)0.60237 (9)0.89609 (11)0.0201 (3)
H12A0.15950.61370.90780.024*
C130.30541 (16)0.52409 (9)0.88960 (11)0.0186 (3)
C140.30222 (17)0.74678 (9)0.89169 (11)0.0209 (3)
C150.35706 (19)0.88442 (9)0.88439 (14)0.0271 (4)
H15A0.32010.89360.94770.033*
H15B0.27710.89700.83020.033*
C160.4876 (2)0.93640 (10)0.87762 (16)0.0345 (4)
H16A0.46090.99240.88590.052*
H16B0.51960.92930.81310.052*
H16C0.56790.92150.92940.052*
C170.59623 (16)0.38267 (9)0.85909 (11)0.0186 (3)
H17A0.59340.32900.88910.022*
H17B0.68140.41180.89480.022*
C180.61756 (17)0.37351 (9)0.75149 (12)0.0209 (3)
H18A0.52620.35230.71320.025*
H18B0.63760.42650.72420.025*
C190.74492 (18)0.31714 (9)0.74141 (13)0.0241 (3)
H19A0.76690.31930.67300.029*
H19B0.83350.33540.78540.029*
C200.62362 (17)0.18286 (9)0.70936 (12)0.0223 (3)
H20A0.57060.19620.64690.027*
C210.7101 (2)0.11857 (11)0.83933 (14)0.0318 (4)
H21A0.72970.07690.88640.038*
C220.76797 (19)0.19311 (11)0.84941 (13)0.0310 (4)
H22A0.83380.21300.90370.037*
O1W0.41413 (16)0.03202 (9)0.36883 (13)0.0409 (4)
H2W10.406 (4)0.015 (2)0.334 (2)0.092 (10)*
H1W10.496 (3)0.0391 (14)0.3976 (19)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02447 (9)0.01647 (7)0.04180 (11)0.00321 (6)0.00871 (7)0.00484 (6)
O10.0236 (6)0.0141 (5)0.0369 (7)0.0002 (4)0.0064 (5)0.0000 (4)
O20.0224 (6)0.0207 (5)0.0355 (7)0.0011 (4)0.0059 (5)0.0032 (5)
N10.0168 (6)0.0168 (6)0.0267 (7)0.0011 (5)0.0054 (5)0.0010 (5)
N20.0152 (6)0.0147 (5)0.0232 (6)0.0008 (4)0.0056 (5)0.0004 (5)
N30.0179 (6)0.0207 (6)0.0270 (7)0.0007 (5)0.0065 (5)0.0022 (5)
N40.0254 (7)0.0227 (7)0.0324 (8)0.0012 (5)0.0077 (6)0.0011 (6)
C10.0190 (7)0.0200 (7)0.0239 (8)0.0014 (6)0.0056 (6)0.0009 (6)
C20.0179 (7)0.0215 (7)0.0239 (8)0.0016 (6)0.0054 (6)0.0029 (6)
C30.0187 (7)0.0157 (6)0.0245 (8)0.0022 (5)0.0025 (6)0.0041 (6)
C40.0213 (8)0.0178 (7)0.0250 (8)0.0001 (6)0.0051 (6)0.0002 (6)
C50.0190 (7)0.0193 (7)0.0232 (8)0.0012 (5)0.0070 (6)0.0010 (6)
C60.0158 (7)0.0170 (6)0.0197 (7)0.0021 (5)0.0032 (5)0.0013 (5)
C70.0178 (7)0.0172 (6)0.0198 (7)0.0014 (5)0.0039 (5)0.0003 (5)
C80.0180 (7)0.0149 (6)0.0199 (7)0.0001 (5)0.0039 (5)0.0004 (5)
C90.0176 (7)0.0197 (7)0.0255 (8)0.0019 (5)0.0056 (6)0.0000 (6)
C100.0205 (7)0.0174 (6)0.0237 (8)0.0035 (6)0.0042 (6)0.0011 (6)
C110.0199 (7)0.0164 (6)0.0199 (7)0.0001 (5)0.0023 (6)0.0006 (5)
C120.0169 (7)0.0196 (7)0.0238 (8)0.0003 (5)0.0031 (6)0.0003 (6)
C130.0166 (7)0.0172 (6)0.0221 (7)0.0019 (5)0.0035 (6)0.0008 (5)
C140.0214 (8)0.0186 (7)0.0221 (8)0.0010 (6)0.0007 (6)0.0014 (6)
C150.0292 (9)0.0142 (7)0.0384 (10)0.0025 (6)0.0062 (7)0.0004 (6)
C160.0313 (10)0.0184 (8)0.0557 (12)0.0001 (6)0.0127 (9)0.0008 (7)
C170.0162 (7)0.0175 (6)0.0229 (7)0.0004 (5)0.0055 (6)0.0002 (5)
C180.0208 (7)0.0183 (7)0.0250 (8)0.0012 (6)0.0079 (6)0.0007 (6)
C190.0208 (8)0.0213 (7)0.0325 (9)0.0039 (6)0.0113 (6)0.0039 (6)
C200.0211 (8)0.0215 (7)0.0250 (8)0.0002 (6)0.0063 (6)0.0018 (6)
C210.0301 (9)0.0293 (9)0.0351 (10)0.0053 (7)0.0013 (8)0.0065 (7)
C220.0259 (9)0.0338 (9)0.0313 (9)0.0032 (7)0.0027 (7)0.0001 (7)
O1W0.0218 (7)0.0354 (8)0.0648 (10)0.0047 (6)0.0035 (7)0.0090 (7)
Geometric parameters (Å, º) top
Br1—C31.8957 (14)C9—H9A0.9500
O1—C141.3384 (19)C10—C111.412 (2)
O1—C151.4579 (18)C10—H10A0.9500
O2—C141.2174 (19)C11—C121.390 (2)
N1—C71.3179 (19)C11—C141.488 (2)
N1—C131.3860 (18)C12—C131.391 (2)
N2—C71.3811 (19)C12—H12A0.9500
N2—C81.3884 (18)C15—C161.495 (2)
N2—C171.4630 (19)C15—H15A0.9900
N3—C201.353 (2)C15—H15B0.9900
N3—C221.372 (2)C16—H16A0.9800
N3—C191.4668 (19)C16—H16B0.9800
N4—C201.322 (2)C16—H16C0.9800
N4—C211.376 (2)C17—C181.527 (2)
C1—C21.382 (2)C17—H17A0.9900
C1—C61.400 (2)C17—H17B0.9900
C1—H1A0.9500C18—C191.525 (2)
C2—C31.389 (2)C18—H18A0.9900
C2—H2A0.9500C18—H18B0.9900
C3—C41.385 (2)C19—H19A0.9900
C4—C51.392 (2)C19—H19B0.9900
C4—H4A0.9500C20—H20A0.9500
C5—C61.396 (2)C21—C221.355 (3)
C5—H5A0.9500C21—H21A0.9500
C6—C71.476 (2)C22—H22A0.9500
C8—C91.395 (2)O1W—H2W10.92 (3)
C8—C131.403 (2)O1W—H1W10.80 (3)
C9—C101.385 (2)
C14—O1—C15115.33 (12)N1—C13—C8110.14 (13)
C7—N1—C13105.17 (13)C12—C13—C8120.50 (14)
C7—N2—C8106.18 (12)O2—C14—O1123.01 (14)
C7—N2—C17129.68 (12)O2—C14—C11123.97 (14)
C8—N2—C17124.04 (12)O1—C14—C11113.02 (13)
C20—N3—C22106.29 (14)O1—C15—C16107.83 (14)
C20—N3—C19126.52 (14)O1—C15—H15A110.1
C22—N3—C19127.19 (14)C16—C15—H15A110.1
C20—N4—C21104.76 (14)O1—C15—H15B110.1
C2—C1—C6121.07 (15)C16—C15—H15B110.1
C2—C1—H1A119.5H15A—C15—H15B108.5
C6—C1—H1A119.5C15—C16—H16A109.5
C1—C2—C3119.01 (15)C15—C16—H16B109.5
C1—C2—H2A120.5H16A—C16—H16B109.5
C3—C2—H2A120.5C15—C16—H16C109.5
C4—C3—C2121.48 (14)H16A—C16—H16C109.5
C4—C3—Br1119.95 (12)H16B—C16—H16C109.5
C2—C3—Br1118.56 (12)N2—C17—C18112.59 (12)
C3—C4—C5118.83 (14)N2—C17—H17A109.1
C3—C4—H4A120.6C18—C17—H17A109.1
C5—C4—H4A120.6N2—C17—H17B109.1
C4—C5—C6120.99 (14)C18—C17—H17B109.1
C4—C5—H5A119.5H17A—C17—H17B107.8
C6—C5—H5A119.5C19—C18—C17110.93 (13)
C5—C6—C1118.62 (13)C19—C18—H18A109.5
C5—C6—C7124.85 (14)C17—C18—H18A109.5
C1—C6—C7116.47 (13)C19—C18—H18B109.5
N1—C7—N2113.02 (13)C17—C18—H18B109.5
N1—C7—C6120.87 (13)H18A—C18—H18B108.0
N2—C7—C6126.07 (13)N3—C19—C18112.50 (13)
N2—C8—C9131.96 (14)N3—C19—H19A109.1
N2—C8—C13105.48 (12)C18—C19—H19A109.1
C9—C8—C13122.55 (13)N3—C19—H19B109.1
C10—C9—C8116.42 (14)C18—C19—H19B109.1
C10—C9—H9A121.8H19A—C19—H19B107.8
C8—C9—H9A121.8N4—C20—N3112.23 (15)
C9—C10—C11121.69 (14)N4—C20—H20A123.9
C9—C10—H10A119.2N3—C20—H20A123.9
C11—C10—H10A119.2C22—C21—N4110.16 (15)
C12—C11—C10121.21 (14)C22—C21—H21A124.9
C12—C11—C14117.06 (14)N4—C21—H21A124.9
C10—C11—C14121.73 (13)C21—C22—N3106.55 (15)
C11—C12—C13117.63 (14)C21—C22—H22A126.7
C11—C12—H12A121.2N3—C22—H22A126.7
C13—C12—H12A121.2H2W1—O1W—H1W1113 (3)
N1—C13—C12129.35 (14)
C6—C1—C2—C30.6 (2)C14—C11—C12—C13179.87 (13)
C1—C2—C3—C40.8 (2)C7—N1—C13—C12179.26 (15)
C1—C2—C3—Br1178.80 (11)C7—N1—C13—C80.03 (17)
C2—C3—C4—C50.9 (2)C11—C12—C13—N1179.06 (15)
Br1—C3—C4—C5178.77 (11)C11—C12—C13—C80.2 (2)
C3—C4—C5—C60.6 (2)N2—C8—C13—N10.23 (16)
C4—C5—C6—C10.4 (2)C9—C8—C13—N1179.16 (14)
C4—C5—C6—C7177.66 (14)N2—C8—C13—C12179.59 (13)
C2—C1—C6—C50.3 (2)C9—C8—C13—C120.2 (2)
C2—C1—C6—C7177.85 (13)C15—O1—C14—O21.0 (2)
C13—N1—C7—N20.29 (17)C15—O1—C14—C11179.41 (13)
C13—N1—C7—C6177.75 (13)C12—C11—C14—O21.2 (2)
C8—N2—C7—N10.43 (17)C10—C11—C14—O2179.21 (15)
C17—N2—C7—N1176.78 (14)C12—C11—C14—O1178.39 (13)
C8—N2—C7—C6177.48 (14)C10—C11—C14—O11.2 (2)
C17—N2—C7—C61.1 (2)C14—O1—C15—C16173.90 (14)
C5—C6—C7—N1150.20 (15)C7—N2—C17—C18100.34 (17)
C1—C6—C7—N127.1 (2)C8—N2—C17—C1883.90 (17)
C5—C6—C7—N232.0 (2)N2—C17—C18—C19170.67 (12)
C1—C6—C7—N2150.63 (15)C20—N3—C19—C1875.0 (2)
C7—N2—C8—C9178.93 (16)C22—N3—C19—C18105.67 (18)
C17—N2—C8—C92.3 (2)C17—C18—C19—N368.15 (17)
C7—N2—C8—C130.38 (15)C21—N4—C20—N30.10 (19)
C17—N2—C8—C13176.99 (13)C22—N3—C20—N40.28 (19)
N2—C8—C9—C10179.58 (15)C19—N3—C20—N4179.12 (14)
C13—C8—C9—C100.4 (2)C20—N4—C21—C220.1 (2)
C8—C9—C10—C110.5 (2)N4—C21—C22—N30.3 (2)
C9—C10—C11—C120.5 (2)C20—N3—C22—C210.35 (19)
C9—C10—C11—C14179.95 (14)C19—N3—C22—C21179.05 (15)
C10—C11—C12—C130.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···N4i0.92 (3)1.99 (3)2.910 (2)175 (3)
O1W—H1W1···N1ii0.81 (3)2.16 (3)2.891 (2)151 (2)
C17—H17B···O1Wiii0.992.413.236 (2)141
C19—H19B···O1Wiii0.992.563.327 (2)135
C20—H20A···O2iv0.952.583.301 (2)133
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H21BrN4O2·H2O
Mr471.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.1854 (1), 16.7389 (2), 13.7379 (2)
β (°) 98.283 (1)
V3)2090.22 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.47 × 0.42 × 0.41
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.452, 0.494
No. of measured, independent and
observed [I > 2σ(I)] reflections
28847, 7482, 5514
Rint0.032
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.03
No. of reflections7482
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···N4i0.92 (3)1.99 (3)2.910 (2)175 (3)
O1W—H1W1···N1ii0.81 (3)2.16 (3)2.891 (2)151 (2)
C17—H17B···O1Wiii0.99002.41003.236 (2)141.00
C19—H19B···O1Wiii0.99002.56003.327 (2)135.00
C20—H20A···O2iv0.95002.58003.301 (2)133.00
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

YKY, MAA and TSC thank the Department of Pharmaco­genetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia, Penang. This work was funded through a Research Grant (No. RUC 1001/PSK/8620012). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160). MH thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacologyonline, 1, 314–329.  Google Scholar
First citationYoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds