organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2822-o2823

4-(1,3-Di­phenyl-4,5-di­hydro-1H-pyrazol-5-yl)-1,3-di­phenyl-1H-pyrazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Section, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 15 September 2011; accepted 28 September 2011; online 5 October 2011)

The title compound, C30H24N4, contains two pyrazole rings and four phenyl rings. The pyrazole rings are essentially planar, with maximum deviations of 0.003 (1) and 0.066 (1) Å and make a dihedral angle of 73.43 (6)°. The two pyrazole rings make dihedral angles of 40.08 (6), 9.28 (6), 15.78 (8) and 17.25 (7)° with their attached phenyl rings. In the crystal, there are no significant inter­molecular hydrogen-bonding inter­actions. The crystal structure is stabilized by C—H⋯π inter­actions.

Related literature

For the pharmacological activity of substituted 2-pyrazolines, see: Sahu et al. (2008[Sahu, S. K., Banerjee, M., Samantray, A., Behera, C. & Azam, M. A. (2008). Trop. J. Pharm. Res. 7, 961-968.]); Farghaly et al. (1990[Farghaly, A. M., Chaaban, L., Khali, M. A. & Behkit, A. A. (1990). Arch. Pharm. pp. 311-318.]); Adnan et al. (2005[Adnan, A. B., Hayam, M. A. A. & Aida, A. G. (2005). Arch. Pharm. 338, 167-174.]); Budakoti et al. (2008[Budakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749-1757.]); Yar et al. (2007[Yar, M. S., Siddiqui, A. A. & Ali, M. A. (2007). J. Serb. Chem. Soc. 72, 5-11.]); Palaska et al. (1996[Palaska, E., Erol, D. & Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 43-47.]); Jia et al. (2004[Jia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229-1234.]). For the experimental preparation, see: Bratenko et al. (2001[Bratenko, M. K., Chornous, V. A. & Vovk, M. V. (2001). Russ. J. Org. Chem. 37, 556-559.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, o2282-o2283.], 2011[Fun, H.-K., Arshad, S., Malladi, S., Selvam, R. & Isloor, A. M. (2011). Acta Cryst. E67, o1783-o1784.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N4

  • Mr = 440.53

  • Monoclinic, P 21 /c

  • a = 10.7841 (5) Å

  • b = 11.0582 (6) Å

  • c = 21.4820 (9) Å

  • β = 113.359 (2)°

  • V = 2351.82 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.56 × 0.54 × 0.36 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.974

  • 22465 measured reflections

  • 7042 independent reflections

  • 5057 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.01

  • 7042 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8ACg1i 0.97 2.95 3.6999 (15) 135
Symmetry code: (i) -x+1, -y-2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazolines are nitrogen-containing five-membered heterocyclic compounds and have received considerable attention in recent years due to their varied biological and pharmacological activities. Various substituted 2-pyrazolines have been associated with diverse pharmacological activities such as analgesic (Sahu et al., 2008), anti-inflammatory (Farghaly et al., 1990), anti-microbial (Adnan et al., 2005), anti-amoebic (Budakoti et al., 2008), anti-tubercular (Yar et al., 2007), anti-depressant (Palaska et al., 1996) and anti-coagulant (Jia et al., 2004) properties. Based on the above biological activities exhibited by the pyrazolines, we have synthesized the title compound to study its crystal structure.

The molecular structure of the title compound, shown in Fig. 1, contains two pyrazole (N1,N2/C10,C11,C24) and (N3,N4/C7–C9) rings and four phenyl (C1–C6), (C12–C17), (C18–C23) and (C25–C30) rings. The pyrazole rings are essentially planar with maximum deviation of 0.003 (1) Å for atom C10 and 0.066 (1) Å for atom C9. The two pyrazole (N1,N2/C10,C11,C24:N3,N4/C7–C9) rings make dihedral angles of 40.08 (6), 9.28 (6), 15.78 (8) and 17.25 (7)° with their attached phenyl (C12–C17/C18–C23):(C1–C6/C25–C30) rings respectively. The dihedral angle between the two pyrazole, (N1,N2/C10,C11,C24: N3,N4/C7–C9), rings is 73.43 (6)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010; Fun et al., 2011).

There are no significant intermolecular hydrogen bond interactions in the crystal structure. The structure is stabilized by C8—H8A···Cg1 (Table 1) interactions where Cg1 is the centroid of the C1–C6 ring.

Related literature top

For the pharmacological activity of substituted 2-pyrazolines, see: Sahu et al. (2008); Farghaly et al. (1990); Adnan et al. (2005); Budakoti et al. (2008); Yar et al. (2007); Palaska et al. (1996); Jia et al. (2004). For the experimental preparation, see: Bratenko et al. (2001). For related structures, see: Fun et al. (2010, 2011). For reference bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of (2E)-3-(1,3-diphenyl-1H-pyrazol-4-yl)-1-phenylprop- 2-en-1-one (0.35 g, 1.0 mmol) and phenylhydrazine (0.162 g, 1.5 mmol) was refluxed in glacial acetic acid for 4 h. The mixture was then cooled to room temperature and the resulting solid was filtered and dried to get title compound. Yield: 0.22 g, 50%. M. p. 467–469 K (Bratenko et al., 2001).

Refinement top

All H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 30% probability displacement ellipsoids.
4-(1,3-Diphenyl-4,5-dihydro-1H-pyrazol-5-yl)-1,3-diphenyl-1H- pyrazole top
Crystal data top
C30H24N4F(000) = 928
Mr = 440.53Dx = 1.244 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6778 reflections
a = 10.7841 (5) Åθ = 2.9–30.3°
b = 11.0582 (6) ŵ = 0.08 mm1
c = 21.4820 (9) ÅT = 296 K
β = 113.359 (2)°Block, colourless
V = 2351.82 (19) Å30.56 × 0.54 × 0.36 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7042 independent reflections
Radiation source: fine-focus sealed tube5057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1415
Tmin = 0.960, Tmax = 0.974k = 1515
22465 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.329P]
where P = (Fo2 + 2Fc2)/3
7042 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C30H24N4V = 2351.82 (19) Å3
Mr = 440.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7841 (5) ŵ = 0.08 mm1
b = 11.0582 (6) ÅT = 296 K
c = 21.4820 (9) Å0.56 × 0.54 × 0.36 mm
β = 113.359 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7042 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5057 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.974Rint = 0.020
22465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
7042 reflectionsΔρmin = 0.17 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.94191 (8)0.14967 (8)0.85152 (4)0.0419 (2)
N21.01177 (8)0.04544 (8)0.87428 (4)0.0420 (2)
N30.56225 (8)0.05489 (10)0.84967 (4)0.0491 (2)
N40.51695 (9)0.12835 (9)0.88820 (5)0.0455 (2)
C10.49306 (18)0.27780 (16)0.99429 (8)0.0766 (4)
H1A0.45250.30830.95050.092*
C20.4751 (2)0.3365 (2)1.04702 (9)0.0983 (6)
H2A0.42300.40631.03850.118*
C30.53416 (19)0.29191 (19)1.11214 (8)0.0857 (5)
H3A0.52190.33151.14750.103*
C40.61059 (15)0.18962 (16)1.12451 (7)0.0681 (4)
H4A0.65010.15921.16840.082*
C50.62987 (12)0.13063 (13)1.07223 (6)0.0548 (3)
H5A0.68280.06121.08140.066*
C60.57077 (11)0.17416 (12)1.00623 (6)0.0493 (3)
C70.59097 (10)0.10939 (11)0.95147 (5)0.0442 (2)
C80.69495 (11)0.01206 (12)0.96309 (6)0.0495 (3)
H8A0.67310.05960.98280.059*
H8B0.78430.04010.99240.059*
C90.68557 (10)0.01291 (11)0.89089 (5)0.0439 (2)
H9A0.67260.09950.88070.053*
C100.80458 (10)0.03321 (10)0.87806 (5)0.0410 (2)
C110.92896 (10)0.02591 (10)0.89020 (5)0.0396 (2)
C120.97411 (10)0.14903 (10)0.91534 (5)0.0419 (2)
C130.94926 (13)0.19930 (12)0.96866 (6)0.0544 (3)
H13A0.89830.15680.98760.065*
C141.00005 (17)0.31211 (13)0.99366 (7)0.0673 (4)
H14A0.98340.34491.02950.081*
C151.07492 (15)0.37602 (13)0.96598 (7)0.0671 (4)
H15A1.10890.45180.98310.080*
C161.09970 (13)0.32790 (12)0.91289 (7)0.0615 (3)
H16A1.15060.37110.89420.074*
C171.04886 (11)0.21513 (11)0.88733 (6)0.0504 (3)
H17A1.06490.18340.85110.061*
C181.00229 (11)0.24748 (10)0.83059 (5)0.0429 (2)
C191.13800 (13)0.24282 (13)0.84213 (7)0.0610 (3)
H19A1.19010.17620.86360.073*
C201.19517 (14)0.33842 (14)0.82140 (8)0.0667 (4)
H20A1.28620.33540.82900.080*
C211.12019 (15)0.43753 (13)0.78986 (7)0.0619 (3)
H21A1.15980.50110.77610.074*
C220.98606 (16)0.44169 (13)0.77892 (7)0.0657 (4)
H22A0.93460.50880.75780.079*
C230.92646 (13)0.34718 (12)0.79900 (6)0.0561 (3)
H23A0.83530.35080.79120.067*
C240.81716 (10)0.14420 (11)0.85323 (5)0.0447 (2)
H24A0.75230.20500.83990.054*
C250.51983 (12)0.05529 (12)0.74638 (6)0.0519 (3)
H25A0.59940.09870.76780.062*
C260.43826 (13)0.07908 (14)0.67931 (6)0.0601 (3)
H26A0.46220.14000.65640.072*
C270.32226 (13)0.01377 (15)0.64623 (6)0.0661 (4)
H27A0.26830.02980.60100.079*
C280.28672 (12)0.07572 (15)0.68070 (6)0.0634 (4)
H28A0.20870.12060.65830.076*
C290.36529 (11)0.09971 (12)0.74803 (6)0.0511 (3)
H29A0.33960.15990.77080.061*
C300.48330 (10)0.03349 (10)0.78193 (5)0.0417 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0377 (4)0.0422 (5)0.0463 (4)0.0033 (4)0.0172 (3)0.0007 (4)
N20.0369 (4)0.0416 (5)0.0467 (4)0.0037 (4)0.0158 (3)0.0003 (4)
N30.0339 (4)0.0674 (7)0.0420 (4)0.0082 (4)0.0110 (3)0.0068 (4)
N40.0390 (4)0.0527 (6)0.0462 (5)0.0005 (4)0.0186 (4)0.0038 (4)
C10.0935 (11)0.0828 (11)0.0567 (7)0.0240 (9)0.0331 (7)0.0010 (7)
C20.1249 (16)0.1000 (14)0.0798 (11)0.0404 (12)0.0507 (11)0.0055 (10)
C30.0965 (12)0.1080 (14)0.0648 (9)0.0062 (11)0.0450 (9)0.0180 (9)
C40.0662 (8)0.0947 (11)0.0492 (7)0.0118 (8)0.0289 (6)0.0060 (7)
C50.0488 (6)0.0685 (8)0.0501 (6)0.0091 (6)0.0230 (5)0.0019 (6)
C60.0452 (6)0.0596 (7)0.0473 (6)0.0063 (5)0.0230 (5)0.0048 (5)
C70.0372 (5)0.0518 (6)0.0456 (5)0.0070 (4)0.0186 (4)0.0025 (5)
C80.0356 (5)0.0677 (8)0.0440 (5)0.0006 (5)0.0146 (4)0.0007 (5)
C90.0318 (4)0.0536 (6)0.0442 (5)0.0019 (4)0.0129 (4)0.0013 (5)
C100.0337 (4)0.0474 (6)0.0404 (5)0.0011 (4)0.0132 (4)0.0033 (4)
C110.0338 (4)0.0442 (6)0.0388 (5)0.0004 (4)0.0121 (4)0.0027 (4)
C120.0336 (4)0.0435 (6)0.0426 (5)0.0026 (4)0.0086 (4)0.0017 (4)
C130.0614 (7)0.0534 (7)0.0468 (6)0.0032 (6)0.0198 (5)0.0020 (5)
C140.0897 (10)0.0547 (8)0.0492 (6)0.0078 (7)0.0187 (6)0.0067 (6)
C150.0713 (8)0.0439 (7)0.0641 (8)0.0017 (6)0.0036 (6)0.0054 (6)
C160.0517 (7)0.0503 (7)0.0751 (8)0.0077 (6)0.0171 (6)0.0033 (6)
C170.0425 (5)0.0485 (6)0.0598 (7)0.0032 (5)0.0197 (5)0.0025 (5)
C180.0463 (5)0.0430 (6)0.0411 (5)0.0002 (5)0.0191 (4)0.0030 (4)
C190.0487 (6)0.0565 (8)0.0801 (9)0.0042 (6)0.0281 (6)0.0130 (7)
C200.0558 (7)0.0690 (9)0.0812 (9)0.0076 (7)0.0334 (7)0.0055 (7)
C210.0755 (9)0.0559 (8)0.0617 (7)0.0086 (7)0.0350 (7)0.0027 (6)
C220.0761 (9)0.0554 (8)0.0710 (8)0.0095 (7)0.0349 (7)0.0169 (7)
C230.0534 (6)0.0566 (7)0.0602 (7)0.0079 (6)0.0247 (5)0.0097 (6)
C240.0367 (5)0.0479 (6)0.0493 (5)0.0064 (4)0.0168 (4)0.0003 (5)
C250.0448 (6)0.0620 (8)0.0486 (6)0.0007 (5)0.0182 (5)0.0040 (5)
C260.0602 (7)0.0720 (9)0.0511 (6)0.0144 (6)0.0255 (6)0.0142 (6)
C270.0547 (7)0.0906 (11)0.0434 (6)0.0177 (7)0.0093 (5)0.0051 (6)
C280.0436 (6)0.0807 (10)0.0535 (7)0.0010 (6)0.0062 (5)0.0092 (7)
C290.0395 (5)0.0578 (7)0.0522 (6)0.0019 (5)0.0141 (5)0.0022 (5)
C300.0326 (4)0.0514 (6)0.0407 (5)0.0046 (4)0.0141 (4)0.0004 (4)
Geometric parameters (Å, º) top
N1—N21.3576 (12)C13—H13A0.9300
N1—C241.3617 (14)C14—C151.373 (2)
N1—C181.4241 (14)C14—H14A0.9300
N2—C111.3339 (14)C15—C161.377 (2)
N3—N41.3798 (13)C15—H15A0.9300
N3—C301.3843 (13)C16—C171.3851 (18)
N3—C91.4768 (13)C16—H16A0.9300
N4—C71.2917 (14)C17—H17A0.9300
C1—C61.382 (2)C18—C231.3801 (16)
C1—C21.384 (2)C18—C191.3850 (16)
C1—H1A0.9300C19—C201.3834 (19)
C2—C31.378 (3)C19—H19A0.9300
C2—H2A0.9300C20—C211.371 (2)
C3—C41.362 (3)C20—H20A0.9300
C3—H3A0.9300C21—C221.371 (2)
C4—C51.3839 (19)C21—H21A0.9300
C4—H4A0.9300C22—C231.3826 (19)
C5—C61.3899 (17)C22—H22A0.9300
C5—H5A0.9300C23—H23A0.9300
C6—C71.4653 (16)C24—H24A0.9300
C7—C81.5021 (17)C25—C261.3835 (17)
C8—C91.5388 (15)C25—C301.3931 (17)
C8—H8A0.9700C25—H25A0.9300
C8—H8B0.9700C26—C271.373 (2)
C9—C101.5045 (15)C26—H26A0.9300
C9—H9A0.9800C27—C281.378 (2)
C10—C241.3663 (16)C27—H27A0.9300
C10—C111.4202 (14)C28—C291.3814 (17)
C11—C121.4743 (15)C28—H28A0.9300
C12—C171.3895 (16)C29—C301.3968 (15)
C12—C131.3914 (16)C29—H29A0.9300
C13—C141.382 (2)
N2—N1—C24111.45 (9)C12—C13—H13A119.9
N2—N1—C18120.04 (8)C15—C14—C13120.44 (13)
C24—N1—C18128.50 (9)C15—C14—H14A119.8
C11—N2—N1105.20 (8)C13—C14—H14A119.8
N4—N3—C30120.98 (8)C14—C15—C16120.01 (13)
N4—N3—C9112.84 (8)C14—C15—H15A120.0
C30—N3—C9125.15 (9)C16—C15—H15A120.0
C7—N4—N3108.52 (9)C15—C16—C17119.98 (13)
C6—C1—C2120.52 (15)C15—C16—H16A120.0
C6—C1—H1A119.7C17—C16—H16A120.0
C2—C1—H1A119.7C16—C17—C12120.56 (12)
C3—C2—C1120.35 (17)C16—C17—H17A119.7
C3—C2—H2A119.8C12—C17—H17A119.7
C1—C2—H2A119.8C23—C18—C19119.72 (11)
C4—C3—C2119.68 (15)C23—C18—N1120.40 (10)
C4—C3—H3A120.2C19—C18—N1119.88 (10)
C2—C3—H3A120.2C20—C19—C18119.22 (12)
C3—C4—C5120.46 (14)C20—C19—H19A120.4
C3—C4—H4A119.8C18—C19—H19A120.4
C5—C4—H4A119.8C21—C20—C19121.28 (13)
C4—C5—C6120.60 (14)C21—C20—H20A119.4
C4—C5—H5A119.7C19—C20—H20A119.4
C6—C5—H5A119.7C20—C21—C22119.14 (13)
C1—C6—C5118.38 (12)C20—C21—H21A120.4
C1—C6—C7121.90 (11)C22—C21—H21A120.4
C5—C6—C7119.71 (12)C21—C22—C23120.70 (13)
N4—C7—C6122.61 (11)C21—C22—H22A119.7
N4—C7—C8113.59 (10)C23—C22—H22A119.7
C6—C7—C8123.76 (10)C18—C23—C22119.95 (12)
C7—C8—C9102.40 (9)C18—C23—H23A120.0
C7—C8—H8A111.3C22—C23—H23A120.0
C9—C8—H8A111.3N1—C24—C10107.60 (9)
C7—C8—H8B111.3N1—C24—H24A126.2
C9—C8—H8B111.3C10—C24—H24A126.2
H8A—C8—H8B109.2C26—C25—C30120.24 (12)
N3—C9—C10110.42 (9)C26—C25—H25A119.9
N3—C9—C8101.35 (8)C30—C25—H25A119.9
C10—C9—C8113.82 (9)C27—C26—C25120.76 (13)
N3—C9—H9A110.3C27—C26—H26A119.6
C10—C9—H9A110.3C25—C26—H26A119.6
C8—C9—H9A110.3C26—C27—C28119.33 (11)
C24—C10—C11104.63 (9)C26—C27—H27A120.3
C24—C10—C9126.87 (10)C28—C27—H27A120.3
C11—C10—C9128.49 (10)C27—C28—C29120.97 (12)
N2—C11—C10111.11 (10)C27—C28—H28A119.5
N2—C11—C12118.86 (9)C29—C28—H28A119.5
C10—C11—C12130.02 (10)C28—C29—C30119.94 (12)
C17—C12—C13118.71 (11)C28—C29—H29A120.0
C17—C12—C11119.42 (10)C30—C29—H29A120.0
C13—C12—C11121.80 (10)N3—C30—C25120.47 (10)
C14—C13—C12120.29 (13)N3—C30—C29120.79 (10)
C14—C13—H13A119.9C25—C30—C29118.74 (10)
C24—N1—N2—C110.15 (11)N2—C11—C12—C13138.80 (11)
C18—N1—N2—C11179.35 (9)C10—C11—C12—C1342.50 (16)
C30—N3—N4—C7163.87 (10)C17—C12—C13—C140.96 (17)
C9—N3—N4—C75.10 (13)C11—C12—C13—C14176.08 (11)
C6—C1—C2—C30.3 (3)C12—C13—C14—C150.3 (2)
C1—C2—C3—C40.1 (3)C13—C14—C15—C160.1 (2)
C2—C3—C4—C50.3 (3)C14—C15—C16—C170.1 (2)
C3—C4—C5—C60.5 (2)C15—C16—C17—C120.78 (19)
C2—C1—C6—C50.1 (2)C13—C12—C17—C161.18 (17)
C2—C1—C6—C7179.55 (16)C11—C12—C17—C16175.93 (10)
C4—C5—C6—C10.28 (19)N2—N1—C18—C23171.28 (10)
C4—C5—C6—C7179.17 (11)C24—N1—C18—C239.67 (17)
N3—N4—C7—C6179.29 (10)N2—N1—C18—C198.90 (15)
N3—N4—C7—C82.93 (13)C24—N1—C18—C19170.15 (12)
C1—C6—C7—N415.00 (19)C23—C18—C19—C200.3 (2)
C5—C6—C7—N4164.43 (11)N1—C18—C19—C20179.88 (12)
C1—C6—C7—C8167.43 (13)C18—C19—C20—C210.2 (2)
C5—C6—C7—C813.13 (17)C19—C20—C21—C220.2 (2)
N4—C7—C8—C99.08 (13)C20—C21—C22—C230.3 (2)
C6—C7—C8—C9173.16 (10)C19—C18—C23—C220.14 (19)
N4—N3—C9—C10110.71 (10)N1—C18—C23—C22179.96 (12)
C30—N3—C9—C1080.87 (13)C21—C22—C23—C180.2 (2)
N4—N3—C9—C810.24 (12)N2—N1—C24—C100.20 (12)
C30—N3—C9—C8158.19 (11)C18—N1—C24—C10178.92 (10)
C7—C8—C9—N310.62 (11)C11—C10—C24—N10.44 (11)
C7—C8—C9—C10107.91 (10)C9—C10—C24—N1178.21 (10)
N3—C9—C10—C2422.18 (15)C30—C25—C26—C271.7 (2)
C8—C9—C10—C2491.02 (13)C25—C26—C27—C280.5 (2)
N3—C9—C10—C11159.50 (10)C26—C27—C28—C290.6 (2)
C8—C9—C10—C1187.30 (14)C27—C28—C29—C300.6 (2)
N1—N2—C11—C100.43 (11)N4—N3—C30—C25169.65 (11)
N1—N2—C11—C12178.50 (8)C9—N3—C30—C252.11 (17)
C24—C10—C11—N20.55 (12)N4—N3—C30—C299.94 (17)
C9—C10—C11—N2178.06 (10)C9—N3—C30—C29177.48 (11)
C24—C10—C11—C12178.22 (10)C26—C25—C30—N3177.86 (11)
C9—C10—C11—C123.16 (18)C26—C25—C30—C291.74 (18)
N2—C11—C12—C1738.22 (14)C28—C29—C30—N3178.99 (12)
C10—C11—C12—C17140.48 (11)C28—C29—C30—C250.61 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg1i0.972.953.6999 (15)135
Symmetry code: (i) x+1, y2, z.

Experimental details

Crystal data
Chemical formulaC30H24N4
Mr440.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7841 (5), 11.0582 (6), 21.4820 (9)
β (°) 113.359 (2)
V3)2351.82 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.54 × 0.36
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
22465, 7042, 5057
Rint0.020
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.01
No. of reflections7042
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg1i0.972.953.6999 (15)135
Symmetry code: (i) x+1, y2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Structure Determination of kDa Outer Membrane Proteins From S.typhi by X-ray Protein Crystallography grant (No. 1001/PSKBP/8630013). AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India, for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the Young Scientist award.

References

First citationAdnan, A. B., Hayam, M. A. A. & Aida, A. G. (2005). Arch. Pharm. 338, 167–174.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBratenko, M. K., Chornous, V. A. & Vovk, M. V. (2001). Russ. J. Org. Chem. 37, 556–559.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudakoti, A., Bhat, A. R., Athar, F. & Azam, A. (2008). Eur. J. Med. Chem. 43, 1749–1757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarghaly, A. M., Chaaban, L., Khali, M. A. & Behkit, A. A. (1990). Arch. Pharm. pp. 311–318.  CrossRef Web of Science Google Scholar
First citationFun, H.-K., Arshad, S., Malladi, S., Selvam, R. & Isloor, A. M. (2011). Acta Cryst. E67, o1783–o1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, o2282–o2283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, Z. J., Wu, Y., Huang, W., Zhang, P., Song, Y., Scarborough, R. M. & Zhu, B. Y. (2004). Bioorg. Med. Chem. Lett. 14, 1229–1234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalaska, E., Erol, D. & Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 43–47.  CrossRef CAS Web of Science Google Scholar
First citationSahu, S. K., Banerjee, M., Samantray, A., Behera, C. & Azam, M. A. (2008). Trop. J. Pharm. Res. 7, 961–968.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYar, M. S., Siddiqui, A. A. & Ali, M. A. (2007). J. Serb. Chem. Soc. 72, 5–11.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2822-o2823
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds