organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­dr­oxy-3,5-di­iodo­benzyl­­idene]cyclo­hexa­ne-1-carbohydrazide

aDepartment of Chemistry, Velalar College of Engineering and Technology, Erode 638 009, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, cDepartment of Chemistry, Government Arts College for Women (Autonomous), Madurai 625 002, India, dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and eDepartment of Chemistry, Government Arts College, Melur 625 106, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

(Received 5 September 2011; accepted 7 September 2011; online 14 September 2011)

In the title compound, C14H10I2N2O2, the two aromatic rings are inclined at a dihedral angle of 16.72 (33)°. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal, inter­molecular N—H⋯O inter­actions link the mol­ecules into chains running along the c axis. C—H⋯O inter­actions also occur. The crystal used for the structure determination was a non-merohedral twin with a domain ratio of 0.972 (2):0.028 (2).

Related literature

For the biological activity of Schiff base derivatives, see: Daier et al. (2004[Daier, V., Biava, H., Palopoli, C., Shove, S., Tuchagues, J. P. & Signorella, S. (2004). J. Inorg. Biochem. 98, 1806-1817.]); Golcu et al. (2005[Golcu, A., Tumer, M., Demirelli, H. & Wheatley, R. A. (2005). Inorg. Chim. Acta, 358, 1785-1797.]); Liu & Yang (2010[Liu, Y.-C. & Yang, Z.-Y. (2010). J. Biochem. 147, 381-391.]); Zgierski & Grabowska (2000[Zgierski, M. Z. & Grabowska, A. (2000). J. Chem. Phys. 113, 7845-7852.]). For related structures, see: Manvizhi et al. (2011[Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.]); Thirugnanasundar et al. (2011[Thirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10I2N2O2

  • Mr = 492.04

  • Monoclinic, P 21 /c

  • a = 17.7495 (13) Å

  • b = 9.4273 (6) Å

  • c = 9.4684 (7) Å

  • β = 103.052 (3)°

  • V = 1543.42 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.08 mm−1

  • T = 295 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.496, Tmax = 0.686

  • 13146 measured reflections

  • 2708 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.172

  • S = 1.11

  • 2708 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.48 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.85 1.84 2.586 (13) 145
N1—H1⋯O1i 0.86 2.02 2.824 (14) 155
C3—H3⋯O2ii 0.93 2.53 3.365 (19) 150
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base ligands play an important role in the development of coordination chemistry and possess important properties such as biological activity (Golcu et al., 2005; Liu & Yang, 2010), catalytic activity (Daier et al., 2004) and photochromic properties (Zgierski & Grabowska, 2000).

The goemetric parameters of the title compound (Fig. 1) agree well with related structures (Manvizhi et al., 2011; Thirugnanasundar et al., 2011). The two aromatic rings are inclined at an angle of 16.72 (33)°.

The molecular structure is stabilized by an intramolecular O-H···N hydrogen bond. The crystal structure is controlled by intermolecular N-H···O and C—H···O (Fig. 2 & Table 1) interactions.

Related literature top

For the biological activity of Schiff base derivatives, see: Daier et al. (2004); Golcu et al. (2005); Liu & Yang (2010); Zgierski & Grabowska (2000). For related structures, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011).

Experimental top

A methanolic solution (10 ml) of benzoicacid hydrazide (5 mmol) was magnetically stirred in a round bottom flask followed by drop wise addition of methanolic solution of 3,5-diiodosalicylaldehyde (5 mmol). The reaction mixture was then refluxed for three hours and upon cooling to 278 K, a yellow crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl2. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in DMF at room temperature. Melting Point : 485 K.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93Å, O—H = 0.82 Å and N—H = 0.86 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O), 1.2 Ueq(N) and 1.2 Ueq(C). Initial checkCIF/PLATON results indicated possible twinning; introduction of the suggested command TWIN 1 0 0.85 0 -1 0 0 0 -1 2 during refinement gave a very modest decrease in the R-factor, from 0.0743 to 0.0584, with BASF = 0.028 (2).

Structure description top

Schiff base ligands play an important role in the development of coordination chemistry and possess important properties such as biological activity (Golcu et al., 2005; Liu & Yang, 2010), catalytic activity (Daier et al., 2004) and photochromic properties (Zgierski & Grabowska, 2000).

The goemetric parameters of the title compound (Fig. 1) agree well with related structures (Manvizhi et al., 2011; Thirugnanasundar et al., 2011). The two aromatic rings are inclined at an angle of 16.72 (33)°.

The molecular structure is stabilized by an intramolecular O-H···N hydrogen bond. The crystal structure is controlled by intermolecular N-H···O and C—H···O (Fig. 2 & Table 1) interactions.

For the biological activity of Schiff base derivatives, see: Daier et al. (2004); Golcu et al. (2005); Liu & Yang (2010); Zgierski & Grabowska (2000). For related structures, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down b axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
N'-[(E)-2-Hydroxy-3,5-diiodobenzylidene]cyclohexane-1- carbohydrazide top
Crystal data top
C14H10I2N2O2F(000) = 920
Mr = 492.04Dx = 2.118 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13146 reflections
a = 17.7495 (13) Åθ = 2.2–25.0°
b = 9.4273 (6) ŵ = 4.08 mm1
c = 9.4684 (7) ÅT = 295 K
β = 103.052 (3)°Block, yellow
V = 1543.42 (19) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
2708 independent reflections
Radiation source: fine-focus sealed tube2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.496, Tmax = 0.686k = 118
13146 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0412P)2 + 42.3729P]
where P = (Fo2 + 2Fc2)/3
2708 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.48 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
C14H10I2N2O2V = 1543.42 (19) Å3
Mr = 492.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.7495 (13) ŵ = 4.08 mm1
b = 9.4273 (6) ÅT = 295 K
c = 9.4684 (7) Å0.20 × 0.10 × 0.10 mm
β = 103.052 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
2708 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2349 reflections with I > 2σ(I)
Tmin = 0.496, Tmax = 0.686Rint = 0.029
13146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0412P)2 + 42.3729P]
where P = (Fo2 + 2Fc2)/3
2708 reflectionsΔρmax = 1.48 e Å3
182 parametersΔρmin = 1.52 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.89740 (5)0.16968 (10)0.83785 (10)0.0458 (3)
I20.91863 (7)0.18253 (14)1.36905 (13)0.0777 (5)
O10.5247 (5)0.3352 (11)0.8089 (10)0.052 (3)
O20.7346 (5)0.2255 (10)0.9018 (10)0.044 (2)
H2A0.68950.24040.91450.065*
N10.5428 (6)0.2182 (13)1.0250 (11)0.043 (3)
H10.52440.19061.09690.052*
N20.6169 (6)0.1863 (12)1.0158 (11)0.040 (3)
C10.4189 (7)0.3296 (14)0.9272 (12)0.036 (3)
C20.3821 (7)0.4436 (15)0.8509 (13)0.043 (3)
H20.40750.49880.79500.052*
C30.3079 (9)0.4755 (18)0.8577 (16)0.057 (4)
H30.28360.55410.80820.068*
C40.2694 (8)0.3939 (16)0.9356 (15)0.047 (3)
H40.21850.41560.93690.057*
C50.3052 (7)0.2777 (15)1.0138 (13)0.041 (3)
H50.27900.22171.06780.049*
C60.3807 (7)0.2479 (15)1.0092 (14)0.041 (3)
H60.40600.17191.06210.049*
C70.4996 (7)0.2964 (14)0.9137 (11)0.035 (3)
C80.6579 (7)0.1120 (14)1.1159 (12)0.036 (3)
H80.63750.08001.19240.043*
C90.7375 (7)0.0770 (13)1.1107 (13)0.034 (3)
C100.7797 (7)0.0131 (15)1.2142 (14)0.042 (3)
H100.75760.04861.28720.051*
C110.8534 (8)0.0503 (15)1.2102 (14)0.043 (3)
C120.8881 (7)0.0029 (13)1.1027 (14)0.040 (3)
H120.93850.02251.10100.048*
C130.8471 (7)0.0932 (13)0.9997 (13)0.034 (3)
C140.7710 (6)0.1333 (13)1.0022 (12)0.031 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0346 (4)0.0620 (6)0.0442 (5)0.0048 (4)0.0159 (4)0.0154 (4)
I20.0733 (8)0.0933 (9)0.0714 (8)0.0406 (7)0.0266 (6)0.0484 (7)
O10.041 (5)0.074 (7)0.047 (6)0.002 (5)0.021 (4)0.010 (5)
O20.034 (4)0.048 (5)0.051 (5)0.007 (4)0.015 (4)0.015 (4)
N10.032 (5)0.064 (7)0.036 (6)0.015 (5)0.015 (4)0.005 (5)
N20.024 (5)0.058 (7)0.042 (6)0.002 (5)0.017 (4)0.006 (5)
C10.026 (6)0.053 (8)0.025 (6)0.003 (5)0.001 (5)0.006 (5)
C20.041 (7)0.054 (8)0.034 (7)0.006 (6)0.006 (6)0.000 (6)
C30.052 (9)0.066 (10)0.051 (8)0.018 (8)0.010 (7)0.002 (8)
C40.036 (7)0.055 (9)0.054 (8)0.007 (6)0.016 (6)0.002 (7)
C50.035 (6)0.059 (8)0.033 (6)0.003 (6)0.016 (5)0.003 (6)
C60.034 (6)0.046 (8)0.046 (7)0.008 (6)0.013 (6)0.010 (6)
C70.031 (6)0.057 (8)0.017 (5)0.001 (5)0.007 (4)0.001 (5)
C80.034 (6)0.052 (8)0.023 (6)0.005 (6)0.011 (5)0.005 (5)
C90.034 (6)0.039 (7)0.031 (6)0.003 (5)0.010 (5)0.002 (5)
C100.042 (7)0.053 (8)0.036 (7)0.007 (6)0.016 (6)0.006 (6)
C110.046 (7)0.048 (8)0.034 (6)0.007 (6)0.008 (6)0.006 (6)
C120.042 (7)0.037 (7)0.044 (7)0.011 (6)0.016 (6)0.004 (5)
C130.033 (6)0.037 (7)0.032 (6)0.003 (5)0.008 (5)0.002 (5)
C140.031 (6)0.033 (6)0.028 (6)0.006 (5)0.006 (5)0.003 (5)
Geometric parameters (Å, º) top
I1—C132.070 (12)C4—C51.393 (19)
I2—C112.090 (13)C4—H40.9300
O1—C71.231 (14)C5—C61.379 (17)
O2—C141.342 (14)C5—H50.9300
O2—H2A0.8480C6—H60.9300
N1—C71.370 (15)C8—C91.463 (16)
N1—N21.370 (13)C8—H80.9300
N1—H10.8600C9—C101.382 (17)
N2—C81.268 (16)C9—C141.402 (16)
C1—C21.375 (18)C10—C111.363 (18)
C1—C61.376 (18)C10—H100.9300
C1—C71.500 (16)C11—C121.397 (18)
C2—C31.366 (19)C12—C131.373 (17)
C2—H20.9300C12—H120.9300
C3—C41.35 (2)C13—C141.409 (16)
C3—H30.9300
C14—O2—H2A108.9O1—C7—C1122.2 (11)
C7—N1—N2116.6 (10)N1—C7—C1115.2 (10)
C7—N1—H1121.7N2—C8—C9119.7 (11)
N2—N1—H1121.7N2—C8—H8120.1
C8—N2—N1118.1 (10)C9—C8—H8120.1
C2—C1—C6119.8 (11)C10—C9—C14120.1 (11)
C2—C1—C7117.9 (12)C10—C9—C8119.2 (11)
C6—C1—C7122.2 (11)C14—C9—C8120.8 (11)
C3—C2—C1119.8 (14)C11—C10—C9120.5 (12)
C3—C2—H2120.1C11—C10—H10119.7
C1—C2—H2120.1C9—C10—H10119.7
C4—C3—C2120.7 (14)C10—C11—C12120.8 (12)
C4—C3—H3119.6C10—C11—I2120.9 (10)
C2—C3—H3119.6C12—C11—I2118.3 (9)
C3—C4—C5120.7 (13)C13—C12—C11119.4 (11)
C3—C4—H4119.6C13—C12—H12120.3
C5—C4—H4119.6C11—C12—H12120.3
C6—C5—C4118.3 (12)C12—C13—C14120.7 (11)
C6—C5—H5120.9C12—C13—I1119.6 (9)
C4—C5—H5120.9C14—C13—I1119.7 (9)
C1—C6—C5120.7 (12)O2—C14—C9123.3 (10)
C1—C6—H6119.7O2—C14—C13118.1 (10)
C5—C6—H6119.7C9—C14—C13118.5 (11)
O1—C7—N1122.6 (11)
C7—N1—N2—C8178.8 (12)N2—C8—C9—C144.9 (19)
C6—C1—C2—C30 (2)C14—C9—C10—C111 (2)
C7—C1—C2—C3178.5 (12)C8—C9—C10—C11178.5 (13)
C1—C2—C3—C42 (2)C9—C10—C11—C121 (2)
C2—C3—C4—C52 (2)C9—C10—C11—I2178.5 (10)
C3—C4—C5—C60 (2)C10—C11—C12—C130 (2)
C2—C1—C6—C51 (2)I2—C11—C12—C13178.1 (10)
C7—C1—C6—C5177.0 (12)C11—C12—C13—C140.5 (19)
C4—C5—C6—C11 (2)C11—C12—C13—I1178.9 (10)
N2—N1—C7—O11.0 (19)C10—C9—C14—O2177.3 (12)
N2—N1—C7—C1179.9 (11)C8—C9—C14—O22.8 (18)
C2—C1—C7—O122.7 (18)C10—C9—C14—C131.5 (18)
C6—C1—C7—O1155.4 (13)C8—C9—C14—C13178.4 (11)
C2—C1—C7—N1158.2 (12)C12—C13—C14—O2177.8 (11)
C6—C1—C7—N123.7 (18)I1—C13—C14—O22.8 (15)
N1—N2—C8—C9179.4 (11)C12—C13—C14—C91.1 (18)
N2—C8—C9—C10175.0 (13)I1—C13—C14—C9178.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.851.842.586 (13)145
N1—H1···O1i0.862.022.824 (14)155
C3—H3···O2ii0.932.533.365 (19)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10I2N2O2
Mr492.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)17.7495 (13), 9.4273 (6), 9.4684 (7)
β (°) 103.052 (3)
V3)1543.42 (19)
Z4
Radiation typeMo Kα
µ (mm1)4.08
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.496, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
13146, 2708, 2349
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.172, 1.11
No. of reflections2708
No. of parameters182
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0412P)2 + 42.3729P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.48, 1.52

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.851.842.586 (13)145
N1—H1···O1i0.862.022.824 (14)155
C3—H3···O2ii0.932.533.365 (19)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaier, V., Biava, H., Palopoli, C., Shove, S., Tuchagues, J. P. & Signorella, S. (2004). J. Inorg. Biochem. 98, 1806–1817.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGolcu, A., Tumer, M., Demirelli, H. & Wheatley, R. A. (2005). Inorg. Chim. Acta, 358, 1785–1797.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y.-C. & Yang, Z.-Y. (2010). J. Biochem. 147, 381–391.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationManvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZgierski, M. Z. & Grabowska, A. (2000). J. Chem. Phys. 113, 7845–7852.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds