organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–3-(thio­phen-3-yl)acrylic acid (1/2)

aDepartment of Chemistry, University of Delhi, North Campus, Delhi, India
*Correspondence e-mail: fhussain@chemistry.du.ac.in, msathi@chemistry.du.ac.in

(Received 22 July 2011; accepted 2 September 2011; online 14 September 2011)

In the title 1/2 adduct, C10H8N2·2C7H6O2S, the dihedral angle between the pyridine rings is 18.41 (11)°. In the thio­phene­acrylic acid mol­ecules, the dihedral angles between the respective thio­phene and acrylic acid units are 5.52 (17)° and 23.92 (9)°. In the crystal, the components are linked via O—H⋯N hydrogen-bonding inter­actions, forming units of two 3-thio­phene­acrylic acid mol­ecules and one 4,4′-bipyridine mol­ecule.

Related literature

For the synthesis and in vitro anti­bacterial activity of oxazolidines, see: Srivastava et al. (2008[Srivastava, B. K., Jain, M. R., Solanki, M., Soni, R., Valani, D., Gupta, S., Mishra, B., Takale, V., Kapadnis, P., Patel, H., Pandya, P., Patel, J. Z. & Patel, P. R. (2008). Eur. J. Med. Chem. pp. 683-693.]). For crystal engineering co-crystal and polymorph architectures, see: Friščić & MacGillivray (2009[Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773-775.]); Eccles et al. (2010[Eccles, K. S., Elcoate, C. J., Stokes, S. P., Maguire, A. R. & Lawrence, S. E. (2010). Cryst. Growth Des. 10, 4243-4245.]). For the supra­molecular construction of mol­ecular ladders, see: Gao et al. (2004[Gao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]); MacGillivray et al. (2008[MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D. K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280-291.]); Friščić & MacGillivray (2005[Friščić, T. & MacGillivray, L. R. (2005). Supramol. Chem. 17, 47-51.]). For C—H⋯O hydrogen bonds in supra­molecular design, see: Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]) and for C—H⋯π inter­actions in crystal engineering, see: Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C7H6O2S

  • Mr = 464.54

  • Triclinic, [P \overline 1]

  • a = 7.3454 (5) Å

  • b = 10.7319 (8) Å

  • c = 15.0196 (11) Å

  • α = 102.518 (6)°

  • β = 103.648 (6)°

  • γ = 94.892 (6)°

  • V = 1111.54 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.46 mm−1

  • T = 293 K

  • 0.37 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.692, Tmax = 1.000

  • 9038 measured reflections

  • 4344 independent reflections

  • 3498 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.05

  • 4344 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 1.86 2.668 (2) 168
O4—H4A⋯N2ii 0.82 1.87 2.684 (2) 174
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction 2009)[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]; cell refinement: CrysAlis RED (Oxford Diffraction, 2009)[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]; data reduction: CrysAlis RED[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecular synthons that are based upon hydrogen bonds represent a prototypal tool for crystal engineering (Desiraju, 1996; 2002). Supramolecular heterosynthons formed from pyridine/amide and carboxylic acids have previously been exploited for liquid crystalline materials, two-dimensional beta networks, two-dimensional corrugated sheets and ternary supramolecules (MacGillivray et al., 2008; Gao et al., 2004; Friščić & MacGillivray, 2005; 2009). Recently, pharmaceutical molecules such as aspirin, rac-ibuprofen, and rac-flurbiprofen form heterosynthons with ditopic pyridine donors. Herein, we report co-crystal 1 synthesized and characterized by FT—IR, UV-Vis, 1H-NMR spectroscopy, EA, DSC, and TGA.

The co-crystal 1 of the 2:1 adduct of 3-thiopheneacrylic acid with 4,4'-bipyridine was obtained by layering methanolic solution of 4,4'-bipyridyl to the methanolic solution of 3-thiopheneacrylic acid at room temperature. Each 3-thiopheneacrylic acid molecule forms a moderate intermolecular O—H···N bond with pyridine (Table 1). The 4,4'-bipyridine molecule in the adduct is non-planar with the two pyridine rings forming a dihedral angle of 18.41 (11)°. The two thiophene and the bipyridine are not coplanar and the dihedral angles between the S1 thiophene/N1 pyridine and S2 thiophene/ N2 pyridine are 30.14 (11)° and 47.64 (7)°, respectively. The heterosynthon extends to one-dimensional latterane like sheets held together by moderate π-π stacking interactions (Fig. 2). The Cg1–Cg2ii distance (between the N1,C8-C12 and N2,C13-C17 4,4'-bipyridine moieties) and the dihedral angle between pyridine planes α are 4.1411 (13)Å and 18.4 (1)°, respectively. [Symmetry code ii: (-1+x,y,z).

Related literature top

For the synthesis and in vitro antibacterial activity of oxazolidines, see: Srivastava et al. (2008). For the crystal engineering co-crystal and polymorph architectures, see: Friščić & MacGillivray (2009); Eccles et al. (2010). For the supramolecular construction of molecular ladders, see: Gao et al. (2004); MacGillivray et al. (2008); Friščić & MacGillivray (2005). For C—H···O hydrogen bonds in supramolecular design, see: Desiraju (1996) and for C—H···π interactions in crystal engineering, see: Desiraju (2002).

Experimental top

All starting materials and products were found to be stable towards moisture and air. Starting materials such as 4,4'-bipyridyl (bpy) and 3-thiopheneacrylic acid (taa) were procured from commercial sources and used as received. Commercial grade solvents e.g. methanol was used as received further purification. The mixture of 1:2 ratio of 4,4'-bipyridyl (100.1 mg, 0.6409 mmol) and 3-thiopheneacrylic acid (197.8 mg, 1.2828 mmol) in methanol was stirred for 3 h at room temperature. The clear solution was obtained by filtration and that solution was kept at room temperature for several days. The white colored crystals were obtained. Yield: 83% (248.3 mg, 0.5344 mmol). Anal. Calcd for C24H20N2O4S2: C, 62.05; H, 4.34; N, 6.03; S, 13.8. Found: C, 60.93; H, 4.13; N, 5.87; S, 12.93. 1H NMR (CDCl3,): 8.72 (dd, J = 4.7 Hz, 4H, Hα, bpy), 7.71 (d, J = 1.54 Hz, 2H, H4, taa), 7.53 (dd, J = 4.7 Hz, 4H, Hβ, bpy), 7.47 (dd, J = 1.32 Hz, 2H, H1, taa), 7.29 (m, 4H, H2,3, taa), 6.20 (d, J = 15.44 Hz, 2H, H5, taa).

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Supramolecular synthons that are based upon hydrogen bonds represent a prototypal tool for crystal engineering (Desiraju, 1996; 2002). Supramolecular heterosynthons formed from pyridine/amide and carboxylic acids have previously been exploited for liquid crystalline materials, two-dimensional beta networks, two-dimensional corrugated sheets and ternary supramolecules (MacGillivray et al., 2008; Gao et al., 2004; Friščić & MacGillivray, 2005; 2009). Recently, pharmaceutical molecules such as aspirin, rac-ibuprofen, and rac-flurbiprofen form heterosynthons with ditopic pyridine donors. Herein, we report co-crystal 1 synthesized and characterized by FT—IR, UV-Vis, 1H-NMR spectroscopy, EA, DSC, and TGA.

The co-crystal 1 of the 2:1 adduct of 3-thiopheneacrylic acid with 4,4'-bipyridine was obtained by layering methanolic solution of 4,4'-bipyridyl to the methanolic solution of 3-thiopheneacrylic acid at room temperature. Each 3-thiopheneacrylic acid molecule forms a moderate intermolecular O—H···N bond with pyridine (Table 1). The 4,4'-bipyridine molecule in the adduct is non-planar with the two pyridine rings forming a dihedral angle of 18.41 (11)°. The two thiophene and the bipyridine are not coplanar and the dihedral angles between the S1 thiophene/N1 pyridine and S2 thiophene/ N2 pyridine are 30.14 (11)° and 47.64 (7)°, respectively. The heterosynthon extends to one-dimensional latterane like sheets held together by moderate π-π stacking interactions (Fig. 2). The Cg1–Cg2ii distance (between the N1,C8-C12 and N2,C13-C17 4,4'-bipyridine moieties) and the dihedral angle between pyridine planes α are 4.1411 (13)Å and 18.4 (1)°, respectively. [Symmetry code ii: (-1+x,y,z).

For the synthesis and in vitro antibacterial activity of oxazolidines, see: Srivastava et al. (2008). For the crystal engineering co-crystal and polymorph architectures, see: Friščić & MacGillivray (2009); Eccles et al. (2010). For the supramolecular construction of molecular ladders, see: Gao et al. (2004); MacGillivray et al. (2008); Friščić & MacGillivray (2005). For C—H···O hydrogen bonds in supramolecular design, see: Desiraju (1996) and for C—H···π interactions in crystal engineering, see: Desiraju (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with thermal ellipsoids drawn at 50% probability level Color code: White: C; red: O; blue: N; grey: H; yellow:S;
[Figure 2] Fig. 2. One-dimensional latterane like sheet formed though π-π stacking interactions between the two neighboring heterosynthons.
[Figure 3] Fig. 3. Synthesis of co-crystal of 4,4'-bipyridine and di(3-thiopheneacrylic acid)
4,4'-bipyridine–3-(thiophen-3-yl)acrylic acid (1/2) top
Crystal data top
C10H8N2·2C7H6O2SZ = 2
Mr = 464.54F(000) = 484
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.3454 (5) ÅCell parameters from 3251 reflections
b = 10.7319 (8) Åθ = 3.1–72.9°
c = 15.0196 (11) ŵ = 2.46 mm1
α = 102.518 (6)°T = 293 K
β = 103.648 (6)°Plate, white
γ = 94.892 (6)°0.37 × 0.15 × 0.10 mm
V = 1111.54 (14) Å3
Data collection top
Xcalibur, Sapphire3
diffractometer
4344 independent reflections
Radiation source: fine-focus sealed tube3498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 15.9853 pixels mm-1θmax = 72.1°, θmin = 3.1°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1312
Tmin = 0.692, Tmax = 1.000l = 1813
9038 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2003P]
where P = (Fo2 + 2Fc2)/3
4344 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H8N2·2C7H6O2Sγ = 94.892 (6)°
Mr = 464.54V = 1111.54 (14) Å3
Triclinic, P1Z = 2
a = 7.3454 (5) ÅCu Kα radiation
b = 10.7319 (8) ŵ = 2.46 mm1
c = 15.0196 (11) ÅT = 293 K
α = 102.518 (6)°0.37 × 0.15 × 0.10 mm
β = 103.648 (6)°
Data collection top
Xcalibur, Sapphire3
diffractometer
4344 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3498 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 1.000Rint = 0.027
9038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
4344 reflectionsΔρmin = 0.32 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0548 (3)0.0002 (2)0.17354 (15)0.0547 (5)
H10.06890.05280.13160.066*
C20.1988 (3)0.08388 (19)0.17968 (13)0.0439 (4)
C30.1338 (3)0.1521 (2)0.25031 (15)0.0542 (5)
H30.21200.21360.26450.065*
C40.0525 (3)0.1183 (2)0.29432 (16)0.0611 (6)
H40.11720.15310.34200.073*
C50.3899 (3)0.09887 (19)0.12014 (13)0.0447 (4)
H50.40970.05040.07530.054*
C60.5392 (3)0.1746 (2)0.12320 (14)0.0479 (4)
H60.52620.22300.16810.058*
C70.7262 (3)0.18356 (19)0.05652 (14)0.0467 (4)
C80.2956 (3)0.2219 (2)0.08555 (15)0.0559 (5)
H80.23250.13940.07620.067*
C90.4852 (3)0.2485 (2)0.13424 (15)0.0508 (5)
H90.54590.18500.15740.061*
C100.5840 (3)0.36980 (18)0.14838 (13)0.0429 (4)
C110.4821 (3)0.4604 (2)0.11311 (16)0.0571 (5)
H110.54120.54370.12130.069*
C120.2929 (3)0.4253 (2)0.06605 (17)0.0610 (6)
H120.22730.48720.04320.073*
C130.7889 (3)0.40367 (18)0.19703 (13)0.0430 (4)
C140.8822 (3)0.3308 (2)0.25474 (15)0.0537 (5)
H140.81630.25930.26460.064*
C151.0737 (3)0.3656 (2)0.29725 (16)0.0575 (5)
H151.13400.31490.33470.069*
C161.0874 (3)0.5381 (2)0.23340 (17)0.0595 (6)
H161.15650.61040.22630.071*
C170.8972 (3)0.5096 (2)0.18718 (16)0.0556 (5)
H170.84170.56140.14940.067*
C181.2549 (3)0.6734 (2)0.52895 (16)0.0584 (5)
H181.24720.58560.50260.070*
C191.1052 (3)0.7401 (2)0.51574 (13)0.0475 (4)
C201.1585 (3)0.8722 (2)0.56515 (17)0.0614 (6)
H201.07460.93240.56520.074*
C211.3461 (3)0.9011 (2)0.61250 (18)0.0660 (6)
H211.40530.98300.64770.079*
C220.9150 (3)0.6807 (2)0.46025 (13)0.0490 (5)
H220.89560.59180.43620.059*
C230.7683 (3)0.7418 (2)0.44109 (15)0.0548 (5)
H230.78570.83030.46680.066*
C240.5778 (3)0.6803 (2)0.38173 (15)0.0549 (5)
O10.7640 (2)0.11251 (16)0.00462 (11)0.0637 (4)
O20.8489 (2)0.27837 (16)0.05983 (12)0.0645 (4)
H20.95100.27940.02270.097*
O30.4670 (2)0.74129 (19)0.34314 (14)0.0809 (6)
O40.5423 (2)0.55602 (16)0.37539 (13)0.0650 (4)
H4A0.43250.52890.34500.098*
S10.15372 (8)0.00362 (7)0.25123 (4)0.0671 (2)
S21.45740 (8)0.76787 (7)0.59882 (5)0.0697 (2)
N10.1992 (2)0.30804 (19)0.05151 (13)0.0568 (5)
N21.1767 (2)0.46765 (18)0.28753 (13)0.0552 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (10)0.0657 (13)0.0557 (12)0.0000 (9)0.0023 (8)0.0207 (10)
C20.0382 (10)0.0472 (10)0.0429 (9)0.0050 (8)0.0058 (7)0.0098 (8)
C30.0474 (11)0.0583 (12)0.0553 (12)0.0055 (9)0.0045 (9)0.0213 (10)
C40.0512 (12)0.0715 (14)0.0548 (12)0.0142 (11)0.0025 (9)0.0193 (11)
C50.0378 (10)0.0497 (10)0.0448 (10)0.0062 (8)0.0048 (8)0.0147 (8)
C60.0390 (10)0.0518 (11)0.0511 (11)0.0052 (8)0.0018 (8)0.0200 (9)
C70.0358 (9)0.0512 (11)0.0511 (10)0.0048 (8)0.0049 (8)0.0163 (9)
C80.0430 (11)0.0567 (12)0.0597 (12)0.0069 (9)0.0073 (9)0.0086 (10)
C90.0421 (10)0.0491 (11)0.0569 (11)0.0014 (8)0.0065 (9)0.0130 (9)
C100.0351 (9)0.0489 (10)0.0400 (9)0.0028 (8)0.0049 (7)0.0074 (8)
C110.0437 (11)0.0502 (11)0.0701 (13)0.0020 (9)0.0004 (10)0.0178 (10)
C120.0426 (11)0.0653 (14)0.0701 (14)0.0101 (10)0.0000 (10)0.0208 (11)
C130.0338 (9)0.0472 (10)0.0422 (9)0.0030 (7)0.0039 (7)0.0065 (8)
C140.0396 (10)0.0610 (12)0.0590 (12)0.0026 (9)0.0047 (9)0.0224 (10)
C150.0415 (11)0.0663 (14)0.0609 (13)0.0078 (10)0.0005 (9)0.0220 (11)
C160.0406 (11)0.0591 (13)0.0695 (14)0.0079 (9)0.0010 (10)0.0165 (11)
C170.0422 (11)0.0544 (12)0.0629 (13)0.0014 (9)0.0013 (9)0.0186 (10)
C180.0406 (11)0.0641 (13)0.0612 (13)0.0030 (9)0.0058 (9)0.0059 (10)
C190.0372 (10)0.0588 (12)0.0421 (9)0.0004 (8)0.0040 (7)0.0121 (9)
C200.0439 (12)0.0593 (13)0.0700 (14)0.0058 (10)0.0008 (10)0.0101 (11)
C210.0461 (12)0.0624 (14)0.0716 (15)0.0046 (10)0.0014 (10)0.0021 (11)
C220.0390 (10)0.0576 (12)0.0453 (10)0.0037 (9)0.0036 (8)0.0140 (9)
C230.0406 (11)0.0612 (13)0.0559 (12)0.0025 (9)0.0000 (9)0.0182 (10)
C240.0371 (10)0.0682 (14)0.0571 (12)0.0024 (9)0.0027 (9)0.0248 (10)
O10.0460 (8)0.0779 (11)0.0686 (10)0.0059 (7)0.0012 (7)0.0399 (9)
O20.0389 (8)0.0669 (10)0.0806 (11)0.0046 (7)0.0068 (7)0.0324 (8)
O30.0477 (9)0.0871 (12)0.0997 (13)0.0059 (9)0.0160 (9)0.0502 (11)
O40.0359 (8)0.0668 (10)0.0792 (11)0.0008 (7)0.0064 (7)0.0169 (8)
S10.0359 (3)0.0853 (4)0.0685 (4)0.0024 (3)0.0014 (2)0.0156 (3)
S20.0343 (3)0.0880 (5)0.0729 (4)0.0059 (3)0.0003 (2)0.0073 (3)
N10.0350 (9)0.0705 (12)0.0563 (10)0.0002 (8)0.0024 (7)0.0110 (9)
N20.0359 (9)0.0640 (11)0.0558 (10)0.0012 (8)0.0006 (7)0.0089 (8)
Geometric parameters (Å, º) top
C1—C21.361 (3)C13—C141.392 (3)
C1—S11.701 (2)C14—C151.382 (3)
C1—H10.9300C14—H140.9300
C2—C31.430 (3)C15—N21.332 (3)
C2—C51.451 (3)C15—H150.9300
C3—C41.351 (3)C16—N21.328 (3)
C3—H30.9300C16—C171.380 (3)
C4—S11.703 (3)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.324 (3)C18—C191.362 (3)
C5—H50.9300C18—S21.699 (2)
C6—C71.478 (3)C18—H180.9300
C6—H60.9300C19—C201.423 (3)
C7—O11.207 (2)C19—C221.456 (3)
C7—O21.318 (2)C20—C211.367 (3)
C8—N11.328 (3)C20—H200.9300
C8—C91.385 (3)C21—S21.705 (3)
C8—H80.9300C21—H210.9300
C9—C101.383 (3)C22—C231.315 (3)
C9—H90.9300C22—H220.9300
C10—C111.395 (3)C23—C241.479 (3)
C10—C131.485 (2)C23—H230.9300
C11—C121.380 (3)C24—O31.208 (3)
C11—H110.9300C24—O41.315 (3)
C12—N11.330 (3)O2—H20.8200
C12—H120.9300O4—H4A0.8200
C13—C171.386 (3)
C2—C1—S1112.31 (16)C15—C14—C13119.4 (2)
C2—C1—H1123.8C15—C14—H14120.3
S1—C1—H1123.8C13—C14—H14120.3
C1—C2—C3110.97 (18)N2—C15—C14123.6 (2)
C1—C2—C5122.51 (18)N2—C15—H15118.2
C3—C2—C5126.52 (18)C14—C15—H15118.2
C4—C3—C2113.3 (2)N2—C16—C17123.3 (2)
C4—C3—H3123.4N2—C16—H16118.3
C2—C3—H3123.4C17—C16—H16118.3
C3—C4—S1111.33 (17)C16—C17—C13120.1 (2)
C3—C4—H4124.3C16—C17—H17120.0
S1—C4—H4124.3C13—C17—H17120.0
C6—C5—C2126.60 (18)C19—C18—S2112.62 (18)
C6—C5—H5116.7C19—C18—H18123.7
C2—C5—H5116.7S2—C18—H18123.7
C5—C6—C7121.21 (18)C18—C19—C20111.27 (19)
C5—C6—H6119.4C18—C19—C22123.4 (2)
C7—C6—H6119.4C20—C19—C22125.35 (19)
O1—C7—O2123.23 (18)C21—C20—C19112.8 (2)
O1—C7—C6124.35 (18)C21—C20—H20123.6
O2—C7—C6112.42 (17)C19—C20—H20123.6
N1—C8—C9123.5 (2)C20—C21—S2111.29 (18)
N1—C8—H8118.3C20—C21—H21124.4
C9—C8—H8118.3S2—C21—H21124.4
C10—C9—C8119.7 (2)C23—C22—C19125.7 (2)
C10—C9—H9120.1C23—C22—H22117.1
C8—C9—H9120.1C19—C22—H22117.1
C9—C10—C11116.67 (18)C22—C23—C24124.9 (2)
C9—C10—C13122.63 (18)C22—C23—H23117.6
C11—C10—C13120.69 (18)C24—C23—H23117.6
C12—C11—C10119.5 (2)O3—C24—O4124.2 (2)
C12—C11—H11120.3O3—C24—C23121.6 (2)
C10—C11—H11120.2O4—C24—C23114.25 (18)
N1—C12—C11123.6 (2)C7—O2—H2109.5
N1—C12—H12118.2C24—O4—H4A109.5
C11—C12—H12118.2C1—S1—C492.12 (11)
C17—C13—C14116.54 (18)C18—S2—C2191.96 (11)
C17—C13—C10121.64 (18)C8—N1—C12117.01 (18)
C14—C13—C10121.82 (18)C16—N2—C15117.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.862.668 (2)168
O4—H4A···N2ii0.821.872.684 (2)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C7H6O2S
Mr464.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3454 (5), 10.7319 (8), 15.0196 (11)
α, β, γ (°)102.518 (6), 103.648 (6), 94.892 (6)
V3)1111.54 (14)
Z2
Radiation typeCu Kα
µ (mm1)2.46
Crystal size (mm)0.37 × 0.15 × 0.10
Data collection
DiffractometerXcalibur, Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.692, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9038, 4344, 3498
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.05
No. of reflections4344
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.862.668 (2)168.4
O4—H4A···N2ii0.821.872.684 (2)174.1
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful to the University Sophisticated Instrument Center (USIC), University of Delhi, Delhi, India, for providing the single-crystal X-ray diffractometer facility. They also thank the Department of Science & Technology for financial support.

References

First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEccles, K. S., Elcoate, C. J., Stokes, S. P., Maguire, A. R. & Lawrence, S. E. (2010). Cryst. Growth Des. 10, 4243–4245.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriščić, T. & MacGillivray, L. R. (2005). Supramol. Chem. 17, 47–51.  Google Scholar
First citationFriščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775.  Google Scholar
First citationGao, X., Friščić, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D. K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, B. K., Jain, M. R., Solanki, M., Soni, R., Valani, D., Gupta, S., Mishra, B., Takale, V., Kapadnis, P., Patel, H., Pandya, P., Patel, J. Z. & Patel, P. R. (2008). Eur. J. Med. Chem. pp. 683–693.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds