metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ-chlorido-μ4-oxido-tetra­kis­({1-[(pyridin-2-yl)meth­yl]-1H-benzimidazole-κN3}copper(II))

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: lihuiwff@163.com

(Received 22 August 2011; accepted 29 August 2011; online 14 September 2011)

The title tetra­nuclear complex, [Cu4Cl6O(C13H11N3)4], features a tetra­hedral arrangement of copper(II) ions bonded to the central O atom (site symmetry [\overline{4}]). Each of the six edges of the Cu4 tetra­hedron is bridged by a chloride ion (one of which has site symmetry 2), so that each copper ion is linked to the other three metal ions through the central O atom and through three separate chloride-ion bridges. The fifth coord­ination position, located on the central Cu—O axis on the outside of the cluster, is occupied by an N atom of the mono­dentate 1-(pyridin-2-ylmeth­yl)-1H-benzimidazole ligand. The resulting coordination geometry of the metal ion is a distorted trigonal bipyramid with the O and N atoms in the axial positions. The dihedral angle between the benzimidazole ring system and the pendant pyridine ring is 61.0 (2)°.

Related literature

For background to polynuclear copper halides, see: Willett (1991[Willett, R. D. (1991). Coord. Chem. Rev. 109, 181-205.]); Chivers et al. (2005[Chivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339-2341.]); Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Cl6O(C13H11N3)4]

  • Mr = 1319.85

  • Tetragonal, [I \overline 4]

  • a = 13.8532 (12) Å

  • c = 14.507 (3) Å

  • V = 2784.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 294 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.637, Tmax = 0.691

  • 7149 measured reflections

  • 2467 independent reflections

  • 2178 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.062

  • S = 1.06

  • 2467 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1172 Friedel pairs

  • Flack parameter: 0.005 (15)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9199 (4)
Cu1—N3 1.974 (3)
Cu1—Cl1i 2.3961 (10)
Cu1—Cl1 2.4192 (10)
Cu1—Cl2 2.4263 (10)
Symmetry code: (i) -y+1, x, -z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) halide framework materials have attracted much attention for their interesting magnetic properties and structural richness (Willett et al., 1991). The most commonly employed technique to modulate the inorganic network involves the direct addition of an organic ligand as a templating reagent (Chivers et al., 2005). benzimidazole has been well used in crystal engineering, and a large number of benzimidazole ligands have been extensively studied (Li et al., 2009). The reaction of CuCl2 with the benzimidazole-pyridine ligand (L) affords a tetranuclear molecule [(Cu4O)Cl6(L)4], (I). The crystal structure was elucidated by X-ray diffraction analysis.

Related literature top

For background to polynuclear copper halides, see: Willett (1991); Chivers et al.(2005); Li et al. (2009).

Experimental top

To a solution of L (0.12 mmol, 25 mg) dissolved in CH3CN (9 ml), a solution of CuCl2.6H2O (0.12 mmol, 28.9 mg) in H2O (9 ml) was added under stirring in a few minutes. The solution was left to stand at room temperature. Brown blocks of (I) were obtained after several days with solvent evaporation. Yield: ~20% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Structure description top

Copper(II) halide framework materials have attracted much attention for their interesting magnetic properties and structural richness (Willett et al., 1991). The most commonly employed technique to modulate the inorganic network involves the direct addition of an organic ligand as a templating reagent (Chivers et al., 2005). benzimidazole has been well used in crystal engineering, and a large number of benzimidazole ligands have been extensively studied (Li et al., 2009). The reaction of CuCl2 with the benzimidazole-pyridine ligand (L) affords a tetranuclear molecule [(Cu4O)Cl6(L)4], (I). The crystal structure was elucidated by X-ray diffraction analysis.

For background to polynuclear copper halides, see: Willett (1991); Chivers et al.(2005); Li et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are removed for clarity. [symmetry code: (A) -y + 1, x, -z; (B) y, -x + 1, -z; (C) -x + 1, -y + 1, z].
[Figure 2] Fig. 2. The crystal packing for (I) viewed along the c axis.
Hexa-µ-chlorido-µ4-oxido-tetrakis({1-[(pyridin-2-yl)methyl]- 1H-benzimidazole-κN3}copper(II)) top
Crystal data top
[Cu4Cl6O(C13H11N3)4]Dx = 1.574 Mg m3
Mr = 1319.85Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 3492 reflections
a = 13.8532 (12) Åθ = 2.8–25.3°
c = 14.507 (3) ŵ = 1.85 mm1
V = 2784.1 (6) Å3T = 294 K
Z = 2Block, brown
F(000) = 13320.25 × 0.23 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2467 independent reflections
Radiation source: fine-focus sealed tube2178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1416
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1614
Tmin = 0.637, Tmax = 0.691l = 1717
7149 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2467 reflectionsΔρmax = 0.34 e Å3
170 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1172 Friedel pairs
0 constraintsAbsolute structure parameter: 0.005 (15)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu4Cl6O(C13H11N3)4]Z = 2
Mr = 1319.85Mo Kα radiation
Tetragonal, I4µ = 1.85 mm1
a = 13.8532 (12) ÅT = 294 K
c = 14.507 (3) Å0.25 × 0.23 × 0.20 mm
V = 2784.1 (6) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2467 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2178 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.691Rint = 0.033
7149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.34 e Å3
S = 1.06Δρmin = 0.17 e Å3
2467 reflectionsAbsolute structure: Flack (1983), 1172 Friedel pairs
170 parametersAbsolute structure parameter: 0.005 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.42929 (3)0.41004 (3)0.07467 (3)0.03400 (12)
Cl10.28847 (6)0.47255 (6)0.00384 (7)0.0473 (2)
Cl20.50000.50000.20129 (8)0.0637 (4)
N30.3550 (2)0.3189 (2)0.1515 (2)0.0412 (7)
C10.3592 (3)0.2243 (3)0.1520 (3)0.0498 (10)
H10.39920.18870.11330.060*
C20.2867 (3)0.3436 (3)0.2180 (2)0.0485 (10)
C70.2518 (3)0.2588 (3)0.2595 (3)0.0533 (10)
N20.2998 (3)0.1839 (2)0.2144 (2)0.0548 (9)
C60.1844 (3)0.2627 (4)0.3322 (3)0.0736 (15)
H60.16360.20680.36160.088*
C30.2513 (3)0.4325 (3)0.2461 (3)0.0663 (13)
H30.27260.48920.21840.080*
C40.1837 (4)0.4350 (4)0.3161 (4)0.0844 (16)
H40.15930.49400.33590.101*
C50.1515 (4)0.3495 (5)0.3574 (4)0.0899 (18)
H50.10560.35320.40400.108*
C80.2900 (4)0.0806 (3)0.2368 (3)0.0755 (15)
H8A0.23430.07210.27640.091*
H8B0.34650.06010.27110.091*
O10.50000.50000.00000.0292 (9)
C90.2789 (3)0.0170 (3)0.1543 (3)0.0563 (10)
C100.1944 (4)0.0195 (4)0.1286 (4)0.0846 (16)
H100.13800.00380.16000.102*
N10.3632 (4)0.0017 (4)0.1100 (4)0.1075 (18)
C120.2815 (9)0.1018 (5)0.0115 (5)0.128 (3)
H120.28630.14490.03740.154*
C110.1926 (7)0.0858 (5)0.0487 (5)0.116 (2)
H110.13640.11380.02610.139*
C130.3600 (8)0.0601 (5)0.0405 (6)0.140 (4)
H130.41720.07300.00930.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0374 (2)0.0322 (2)0.03237 (19)0.00702 (17)0.0024 (2)0.00311 (19)
Cl10.0319 (5)0.0549 (5)0.0552 (5)0.0045 (4)0.0026 (4)0.0094 (5)
Cl20.0911 (11)0.0707 (10)0.0294 (6)0.0472 (9)0.0000.000
N30.0419 (18)0.0393 (18)0.0425 (16)0.0130 (14)0.0009 (14)0.0065 (14)
C10.061 (3)0.045 (2)0.043 (2)0.0162 (19)0.006 (2)0.0044 (19)
C20.045 (2)0.058 (3)0.042 (2)0.0166 (19)0.0002 (18)0.007 (2)
C70.054 (2)0.060 (3)0.045 (2)0.021 (2)0.001 (2)0.010 (2)
N20.068 (2)0.048 (2)0.048 (2)0.0231 (17)0.0028 (18)0.0152 (17)
C60.064 (3)0.096 (4)0.061 (3)0.035 (3)0.005 (2)0.030 (3)
C30.073 (3)0.060 (3)0.066 (3)0.015 (2)0.021 (3)0.003 (2)
C40.083 (4)0.080 (4)0.091 (4)0.003 (3)0.037 (3)0.002 (3)
C50.084 (4)0.102 (5)0.084 (4)0.016 (3)0.040 (3)0.002 (3)
C80.108 (4)0.054 (3)0.065 (3)0.030 (3)0.008 (3)0.021 (2)
O10.0293 (14)0.0293 (14)0.029 (2)0.0000.0000.000
C90.064 (3)0.042 (2)0.064 (3)0.002 (2)0.010 (2)0.020 (2)
C100.093 (4)0.081 (4)0.081 (4)0.020 (3)0.010 (3)0.001 (3)
N10.107 (4)0.085 (3)0.130 (5)0.035 (3)0.033 (3)0.025 (3)
C120.229 (11)0.066 (4)0.090 (5)0.007 (6)0.033 (7)0.000 (4)
C110.158 (7)0.092 (5)0.097 (5)0.030 (5)0.005 (5)0.008 (4)
C130.202 (10)0.064 (5)0.154 (8)0.052 (5)0.079 (7)0.012 (5)
Geometric parameters (Å, º) top
Cu1—O11.9199 (4)C4—C51.400 (7)
Cu1—N31.974 (3)C4—H40.9300
Cu1—Cl1i2.3961 (10)C5—H50.9300
Cu1—Cl12.4192 (10)C8—C91.494 (7)
Cu1—Cl22.4263 (10)C8—H8A0.9700
Cl1—Cu1ii2.3961 (9)C8—H8B0.9700
Cl2—Cu1iii2.4263 (10)O1—Cu1iii1.9199 (4)
N3—C11.313 (4)O1—Cu1i1.9199 (4)
N3—C21.394 (5)O1—Cu1ii1.9199 (4)
C1—N21.345 (5)C9—C101.328 (6)
C1—H10.9300C9—N11.358 (6)
C2—C31.386 (6)C10—C111.480 (8)
C2—C71.407 (5)C10—H100.9300
C7—N21.395 (6)N1—C131.293 (9)
C7—C61.409 (6)C12—C131.301 (12)
N2—C81.474 (5)C12—C111.362 (10)
C6—C51.337 (8)C12—H120.9300
C6—H60.9300C11—H110.9300
C3—C41.382 (6)C13—H130.9300
C3—H30.9300
O1—Cu1—N3179.14 (9)C3—C4—H4119.7
O1—Cu1—Cl1i85.68 (3)C5—C4—H4119.7
N3—Cu1—Cl1i95.10 (9)C6—C5—C4122.3 (5)
O1—Cu1—Cl185.03 (3)C6—C5—H5118.8
N3—Cu1—Cl194.25 (9)C4—C5—H5118.8
Cl1i—Cu1—Cl1120.483 (17)N2—C8—C9113.9 (4)
O1—Cu1—Cl283.56 (2)N2—C8—H8A108.8
N3—Cu1—Cl296.40 (9)C9—C8—H8A108.8
Cl1i—Cu1—Cl2117.17 (3)N2—C8—H8B108.8
Cl1—Cu1—Cl2119.88 (3)C9—C8—H8B108.8
Cu1ii—Cl1—Cu180.69 (3)H8A—C8—H8B107.7
Cu1—Cl2—Cu1iii81.58 (4)Cu1iii—O1—Cu1i108.564 (12)
C1—N3—C2105.8 (3)Cu1iii—O1—Cu1111.30 (2)
C1—N3—Cu1128.2 (3)Cu1i—O1—Cu1108.564 (12)
C2—N3—Cu1126.0 (2)Cu1iii—O1—Cu1ii108.564 (12)
N3—C1—N2113.1 (4)Cu1i—O1—Cu1ii111.30 (2)
N3—C1—H1123.5Cu1—O1—Cu1ii108.564 (12)
N2—C1—H1123.5C10—C9—N1123.5 (5)
C3—C2—N3131.4 (3)C10—C9—C8122.7 (5)
C3—C2—C7119.6 (4)N1—C9—C8113.8 (5)
N3—C2—C7108.9 (4)C9—C10—C11118.1 (6)
N2—C7—C2104.9 (4)C9—C10—H10121.0
N2—C7—C6134.1 (4)C11—C10—H10121.0
C2—C7—C6121.0 (5)C13—N1—C9117.3 (7)
C1—N2—C7107.4 (3)C13—C12—C11123.7 (8)
C1—N2—C8127.5 (4)C13—C12—H12118.1
C7—N2—C8125.1 (4)C11—C12—H12118.1
C5—C6—C7117.8 (4)C12—C11—C10113.3 (7)
C5—C6—H6121.1C12—C11—H11123.3
C7—C6—H6121.1C10—C11—H11123.3
C4—C3—C2118.6 (4)N1—C13—C12123.9 (8)
C4—C3—H3120.7N1—C13—H13118.0
C2—C3—H3120.7C12—C13—H13118.0
C3—C4—C5120.6 (5)
O1—Cu1—Cl1—Cu1ii1.10 (2)N2—C7—C6—C5178.9 (5)
N3—Cu1—Cl1—Cu1ii178.42 (9)C2—C7—C6—C53.0 (7)
Cl1i—Cu1—Cl1—Cu1ii83.12 (4)N3—C2—C3—C4178.9 (4)
Cl2—Cu1—Cl1—Cu1ii78.54 (4)C7—C2—C3—C41.4 (7)
O1—Cu1—Cl2—Cu1iii0.0C2—C3—C4—C50.2 (8)
N3—Cu1—Cl2—Cu1iii179.13 (9)C7—C6—C5—C41.8 (9)
Cl1i—Cu1—Cl2—Cu1iii81.77 (3)C3—C4—C5—C60.5 (9)
Cl1—Cu1—Cl2—Cu1iii80.48 (3)C1—N2—C8—C948.8 (6)
O1—Cu1—N3—C1150 (6)C7—N2—C8—C9135.3 (4)
Cl1i—Cu1—N3—C14.5 (3)N3—Cu1—O1—Cu1iii88 (6)
Cl1—Cu1—N3—C1116.6 (3)Cl1i—Cu1—O1—Cu1iii117.99 (3)
Cl2—Cu1—N3—C1122.7 (3)Cl1—Cu1—O1—Cu1iii120.87 (3)
O1—Cu1—N3—C231 (6)Cl2—Cu1—O1—Cu1iii0.0
Cl1i—Cu1—N3—C2174.8 (3)N3—Cu1—O1—Cu1i153 (6)
Cl1—Cu1—N3—C264.1 (3)Cl1i—Cu1—O1—Cu1i1.44 (3)
Cl2—Cu1—N3—C256.7 (3)Cl1—Cu1—O1—Cu1i119.70 (3)
C2—N3—C1—N20.7 (4)Cl2—Cu1—O1—Cu1i119.434 (8)
Cu1—N3—C1—N2178.8 (2)N3—Cu1—O1—Cu1ii32 (6)
C1—N3—C2—C3178.6 (4)Cl1i—Cu1—O1—Cu1ii122.58 (3)
Cu1—N3—C2—C32.0 (6)Cl1—Cu1—O1—Cu1ii1.43 (3)
C1—N3—C2—C71.2 (4)Cl2—Cu1—O1—Cu1ii119.434 (8)
Cu1—N3—C2—C7178.3 (2)N2—C8—C9—C10102.8 (6)
C3—C2—C7—N2178.6 (4)N2—C8—C9—N178.9 (5)
N3—C2—C7—N21.2 (4)N1—C9—C10—C111.4 (7)
C3—C2—C7—C62.8 (6)C8—C9—C10—C11176.8 (4)
N3—C2—C7—C6177.4 (4)C10—C9—N1—C131.6 (7)
N3—C1—N2—C70.1 (4)C8—C9—N1—C13176.8 (5)
N3—C1—N2—C8176.6 (4)C13—C12—C11—C102.7 (10)
C2—C7—N2—C10.8 (4)C9—C10—C11—C120.6 (8)
C6—C7—N2—C1177.6 (5)C9—N1—C13—C120.5 (10)
C2—C7—N2—C8177.4 (4)C11—C12—C13—N12.8 (13)
C6—C7—N2—C81.0 (8)
Symmetry codes: (i) y+1, x, z; (ii) y, x+1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu4Cl6O(C13H11N3)4]
Mr1319.85
Crystal system, space groupTetragonal, I4
Temperature (K)294
a, c (Å)13.8532 (12), 14.507 (3)
V3)2784.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.637, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
7149, 2467, 2178
Rint0.033
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.062, 1.06
No. of reflections2467
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.17
Absolute structureFlack (1983), 1172 Friedel pairs
Absolute structure parameter0.005 (15)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.9199 (4)Cu1—Cl12.4192 (10)
Cu1—N31.974 (3)Cu1—Cl22.4263 (10)
Cu1—Cl1i2.3961 (10)
Symmetry code: (i) y+1, x, z.
 

Acknowledgements

We thank the College Research Program of Yuncheng University (2008112) for funding.

References

First citationChivers, T., Fu, Z. & Thompson, L. K. (2005). Chem. Commun. pp. 2339–2341.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWillett, R. D. (1991). Coord. Chem. Rev. 109, 181–205.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds