metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1201-m1202

catena-Poly[[bis­­[[bis­­(3-amino­prop­yl)amine-κ3N,N′,N′′](thio­cyanato-κN)cadmium]-μ4-sulfato-κ4O,O:O′,O′] methanol hemisolvate]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24098 Kiel, Germany
*Correspondence e-mail: jboeckmann@ac.uni-kiel.de

(Received 29 July 2011; accepted 2 August 2011; online 6 August 2011)

The asymmetric unit of the title compound, {[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH3OH}n, consists of two Cd2+ cations, two thio­cyanate and one sulfate anion, two bis­(3-amino­prop­yl)amine co-ligands and one methanol molecule with half-occupancy. Each Cd2+ cation is coordinated by four N atoms of one terminal N-bonded thio­cyanate anion and one bis­(3-amino­prop­yl)amine co-ligand, and by two O atoms of two symmetry-related sulfate anions, defining a slightly distorted octa­hedral coordination polyhedron. Each two Cd2+ cations are connected into dimers, which are located on centres of inversion and which are further μ-1,1:3,3-bridged via the sulfate anions into polymeric zigzag chains along the a axis.

Related literature

For background information about thermal decomposition reactions and the resulting inter­mediates, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton. Trans. 39, 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Boeckmann et al. (2011[Boeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940-946.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.]); Wriedt et al. (2009a[Wriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton. Trans. pp. 7975-7984.],b[Wriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896-6903.]); Wriedt & Näther (2010[Wriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707-4709.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4O

  • Mr = 715.49

  • Triclinic, [P \overline 1]

  • a = 10.6648 (9) Å

  • b = 12.4441 (12) Å

  • c = 12.9240 (12) Å

  • α = 61.359 (10)°

  • β = 69.064 (10)°

  • γ = 68.772 (10)°

  • V = 1367.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 200 K

  • 0.18 × 0.13 × 0.09 mm

Data collection
  • STOE IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.746, Tmax = 0.841

  • 12730 measured reflections

  • 5736 independent reflections

  • 4365 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.113

  • S = 1.07

  • 5736 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N11 2.248 (4)
Cd1—N13 2.250 (5)
Cd1—N1 2.347 (5)
Cd1—N12 2.351 (5)
Cd1—O1i 2.388 (3)
Cd1—O1 2.619 (3)
Cd2—N23 2.247 (5)
Cd2—N21 2.250 (5)
Cd2—N2 2.283 (6)
Cd2—N22 2.374 (4)
Cd2—O3 2.386 (3)
Cd2—O3ii 2.676 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we reported about the thermal decomposition reaction as a tool for the selective synthesis of one-dimensional and two-dimensional coordination compounds [Boeckmann & Näther (2010); Boeckmann & Näther (2011); Boeckmann et al. (2011); Wöhlert et al. (2011); Wriedt et al. (2009a,b); Wriedt & Näther (2010)]. In this approach precursors based on paramagnetic transition metal thio- and selenocyanates and bidentate and monodentate N-donor co-ligands are heated leading to a stepwise loss of the neutral co-ligands and the formation of higher condensed networks with modified magnetic exchange interactions. Unfortunately, structure determination of the ligand-deficient intermediates is very often difficult to achieve because most of them can only prepared by thermal decomposition which leads to powders of very poor crystallinity. This problem can be overcome by preparing similar compounds based on cadmium(II) thio- and selenocyanates, which can easily be crystallized from solution and which are very often isotypic to their paramagnetic counterparts. In this case the structures of the paramagnetic intermediates can simply be determined using the Rietveld method. In this connection, we tried to prepare a ligand-deficient intermediate on the basis of Cd(NCS)2 and the tridentate co-ligand bis(3-aminopropyl)amine. Surprisingly a mixed anionic chain structure was obtained which was characterized by single crystal X-ray diffraction.

In the crystal structure of the title compound the cadmium(II) cations are coordinated by four nitrogen atoms of one terminal N-bonded thiocyanato anion, one tridentate co-ligand bis(3-aminopropyl)amine and two oxygen atoms of two symmetry related sulfate anions within a slightly distorted octahedral coordination geometry (Fig.1 and Tab.1). One of the Cd-O distances to Cd2 of 2.676 (4) Å is slightly elongated. These octahedra are bridged via the sulfur oxygen atoms into dimeric Cd2+ units that are located on centers of inversion. These units are further connected into zigzag chains that elongate in the direction of the crystallographic a axis (Fig.2).

Related literature top

For background information about thermal decomposition reactions and the resulting intermediates, see: Boeckmann & Näther (2010, 2011); Boeckmann et al. (2011a); Wöhlert et al. (2011); Wriedt et al. (2009a,b); Wriedt & Näther (2010).

Experimental top

The title compound was prepared by the reaction of 128.2 mg CdSO4.8/3H2O (0.50 mmol), 153.8 mg Ba(NCS)2.3H2O (0.50 mmol) and 35.2 µL bis(3-aminopropyl)amine (0.25 mmol) in 1.50 ml methanol at RT in a closed 3 ml snap cap vial. After two days colourless blocks of the title compound were obtained.

Refinement top

The position of the methanol molecule seems to be occupied to only 50%. If full occupation is assumed, unusual large anisotropic displacement parameters and higher R values are obtained. If an s.o.f. of 0.5 is used, all reliabilty factors drop down, the anisotropic displacement ellipsoids looks reasonable and no residual electron density indicating disorder is found.

All H atoms were were positioned with idealized geometry (O-H allowed to rotate but not to tip) and were refined using a riding model with Ueq(H) = 1.2 Ueq(C,N) or Ueq(H) = 1.5 Ueq(H) = 1.5 Ueq(O) with C—H = 0.99 Å (CH2), C—H = 0.98 Å (CH3), O—H = 0.84 Å (OH), N—H = 0.93 Å (NH1) and N—H = 0.92 Å (NH2).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound, showing the coordination around the Cd2+ cations with labelling and displacement ellipsoids drawn at the 50% probability level. The H-atoms are omitted for clarity.
[Figure 2] Fig. 2. : Packing diagram of the title compound with view along the crystallographic c axis (aqua = cadmium; yellow = sulfur; red = oxygen; blue = nitrogen; black = carbon; light-grey = hydrogen).
catena-Poly[[bis[[bis(3-aminopropyl)amine- κ3N,N',N''](thiocyanato-κN)cadmium]- µ4-sulfato-κ4O,O:O',O'] methanol hemisolvate] top
Crystal data top
[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4OZ = 2
Mr = 715.49F(000) = 718
Triclinic, P1Dx = 1.738 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6648 (9) ÅCell parameters from 13797 reflections
b = 12.4441 (12) Åθ = 2.5–27.0°
c = 12.9240 (12) ŵ = 1.82 mm1
α = 61.359 (10)°T = 200 K
β = 69.064 (10)°Block, colourless
γ = 68.772 (10)°0.18 × 0.13 × 0.09 mm
V = 1367.3 (2) Å3
Data collection top
STOE IPDS-1
diffractometer
5736 independent reflections
Radiation source: fine-focus sealed tube4365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Phi scansθmax = 27.0°, θmin = 2.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1313
Tmin = 0.746, Tmax = 0.841k = 1515
12730 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0508P)2 + 3.6107P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5736 reflectionsΔρmax = 1.07 e Å3
301 parametersΔρmin = 0.87 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (8)
Crystal data top
[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4Oγ = 68.772 (10)°
Mr = 715.49V = 1367.3 (2) Å3
Triclinic, P1Z = 2
a = 10.6648 (9) ÅMo Kα radiation
b = 12.4441 (12) ŵ = 1.82 mm1
c = 12.9240 (12) ÅT = 200 K
α = 61.359 (10)°0.18 × 0.13 × 0.09 mm
β = 69.064 (10)°
Data collection top
STOE IPDS-1
diffractometer
5736 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4365 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.841Rint = 0.040
12730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 1.07 e Å3
5736 reflectionsΔρmin = 0.87 e Å3
301 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.58718 (4)0.60656 (4)0.33218 (3)0.02703 (13)
Cd20.13789 (4)0.35828 (4)0.45817 (4)0.03022 (14)
N10.7929 (5)0.6709 (5)0.2127 (5)0.0374 (12)
C10.8391 (7)0.7302 (7)0.1166 (7)0.0464 (16)
S10.9043 (3)0.8167 (3)0.0225 (2)0.0857 (8)
N20.3704 (6)0.2779 (6)0.4148 (6)0.0497 (15)
C20.4515 (6)0.2311 (5)0.3503 (6)0.0344 (13)
S20.5669 (2)0.1683 (2)0.2620 (2)0.0638 (6)
S30.23030 (13)0.59733 (11)0.45203 (11)0.0225 (3)
O10.3696 (4)0.5152 (3)0.4693 (3)0.0237 (7)
O20.1952 (4)0.6886 (4)0.5048 (4)0.0341 (9)
O30.1277 (4)0.5182 (3)0.5148 (3)0.0248 (7)
O40.2301 (4)0.6606 (4)0.3235 (3)0.0358 (9)
N110.4780 (5)0.7650 (4)0.3937 (4)0.0314 (10)
H11A0.39030.75500.43650.038*
H11B0.52330.75790.44610.038*
N120.4885 (5)0.7225 (5)0.1623 (4)0.0335 (11)
H120.39880.71160.18970.040*
N130.6435 (5)0.4318 (5)0.2982 (4)0.0328 (11)
H13A0.71450.37560.33530.039*
H13B0.56880.39570.33480.039*
C110.4672 (7)0.8939 (6)0.2973 (6)0.0451 (16)
H11C0.56110.90830.25450.054*
H11D0.41760.95550.33460.054*
C120.3922 (7)0.9159 (6)0.2065 (6)0.0490 (17)
H12A0.30860.88180.25150.059*
H12B0.36121.00790.16200.059*
C130.4749 (7)0.8584 (6)0.1151 (6)0.0457 (16)
H13C0.43040.90110.04550.055*
H13D0.56840.87470.08470.055*
C140.5532 (7)0.6788 (7)0.0627 (5)0.0433 (15)
H14A0.64490.69910.02270.052*
H14B0.49570.72540.00190.052*
C150.5708 (8)0.5377 (7)0.1047 (6)0.0468 (17)
H15A0.48270.51560.15900.056*
H15B0.58650.52100.03300.056*
C160.6857 (8)0.4500 (7)0.1701 (6)0.0454 (16)
H16A0.71040.36760.16520.054*
H16B0.76840.48570.13000.054*
N210.1109 (6)0.4989 (5)0.2712 (4)0.0381 (12)
H21A0.01890.53870.27600.046*
H21B0.15850.55900.24630.046*
N220.0976 (5)0.2022 (5)0.4261 (5)0.0375 (12)
H220.00220.21480.44440.045*
N230.0807 (5)0.2394 (4)0.6569 (4)0.0324 (10)
H23A0.10970.26610.69780.039*
H23B0.01400.25440.68040.039*
C210.1564 (8)0.4493 (7)0.1779 (6)0.0502 (17)
H21C0.25760.41550.16470.060*
H21D0.13590.51910.10100.060*
C220.0864 (9)0.3446 (8)0.2112 (6)0.057 (2)
H22A0.01300.37040.24590.068*
H22B0.09380.33780.13580.068*
C230.1440 (7)0.2160 (7)0.2992 (7)0.0475 (17)
H23C0.11640.15210.29260.057*
H23D0.24610.19900.27620.057*
C240.1475 (7)0.0726 (6)0.5072 (7)0.0476 (17)
H24A0.24900.05490.49330.057*
H24B0.12650.01460.48690.057*
C250.0848 (8)0.0459 (6)0.6396 (7)0.0489 (17)
H25A0.10210.04650.68570.059*
H25B0.01640.07890.64990.059*
C260.1370 (8)0.1009 (6)0.6962 (7)0.0488 (17)
H26A0.10940.05950.78550.059*
H26B0.23910.08290.67280.059*
O310.1929 (15)0.7375 (11)0.0583 (11)0.076 (4)0.50
H310.27690.70080.04750.114*0.50
C310.1801 (14)0.8574 (13)0.0413 (12)0.050 (4)0.50
H31A0.17030.85930.11880.075*0.50
H31B0.09830.91250.00870.075*0.50
H31C0.26240.88680.01580.075*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0291 (2)0.0297 (2)0.0207 (2)0.00729 (16)0.00580 (15)0.00850 (15)
Cd20.0294 (3)0.0346 (2)0.0326 (2)0.00777 (17)0.00505 (17)0.01921 (18)
N10.031 (3)0.052 (3)0.033 (3)0.020 (2)0.010 (2)0.010 (2)
C10.044 (4)0.062 (4)0.051 (4)0.018 (3)0.005 (3)0.036 (4)
S10.119 (2)0.107 (2)0.0407 (11)0.0754 (18)0.0075 (12)0.0195 (12)
N20.029 (3)0.070 (4)0.072 (4)0.004 (3)0.010 (3)0.052 (4)
C20.030 (3)0.033 (3)0.047 (3)0.009 (2)0.013 (3)0.016 (3)
S20.0483 (11)0.0642 (12)0.0892 (15)0.0107 (9)0.0066 (10)0.0557 (12)
S30.0163 (6)0.0281 (6)0.0226 (6)0.0081 (5)0.0038 (4)0.0080 (5)
O10.0176 (19)0.0311 (18)0.0237 (17)0.0043 (15)0.0064 (14)0.0117 (15)
O20.023 (2)0.035 (2)0.051 (2)0.0062 (17)0.0077 (17)0.0233 (19)
O30.0214 (19)0.0316 (19)0.0236 (18)0.0142 (15)0.0006 (14)0.0111 (15)
O40.022 (2)0.050 (2)0.0214 (18)0.0120 (18)0.0080 (15)0.0009 (17)
N110.036 (3)0.031 (2)0.033 (2)0.012 (2)0.007 (2)0.015 (2)
N120.030 (3)0.044 (3)0.018 (2)0.017 (2)0.0042 (18)0.0005 (19)
N130.034 (3)0.040 (3)0.031 (2)0.015 (2)0.002 (2)0.018 (2)
C110.046 (4)0.027 (3)0.055 (4)0.014 (3)0.006 (3)0.011 (3)
C120.037 (4)0.034 (3)0.048 (4)0.004 (3)0.008 (3)0.001 (3)
C130.044 (4)0.042 (3)0.033 (3)0.017 (3)0.010 (3)0.004 (3)
C140.041 (4)0.068 (4)0.020 (3)0.027 (3)0.002 (2)0.010 (3)
C150.050 (4)0.076 (5)0.030 (3)0.031 (4)0.002 (3)0.026 (3)
C160.053 (4)0.059 (4)0.035 (3)0.025 (3)0.003 (3)0.028 (3)
N210.038 (3)0.046 (3)0.030 (3)0.011 (2)0.002 (2)0.018 (2)
N220.026 (3)0.045 (3)0.057 (3)0.005 (2)0.007 (2)0.036 (3)
N230.029 (3)0.035 (3)0.034 (3)0.007 (2)0.009 (2)0.013 (2)
C210.044 (4)0.070 (5)0.029 (3)0.009 (3)0.004 (3)0.026 (3)
C220.059 (5)0.089 (6)0.042 (4)0.018 (4)0.010 (3)0.041 (4)
C230.038 (4)0.063 (4)0.064 (4)0.005 (3)0.011 (3)0.048 (4)
C240.043 (4)0.038 (3)0.076 (5)0.008 (3)0.015 (3)0.033 (3)
C250.047 (4)0.030 (3)0.070 (5)0.005 (3)0.017 (3)0.020 (3)
C260.055 (5)0.033 (3)0.052 (4)0.003 (3)0.025 (3)0.008 (3)
O310.101 (11)0.064 (7)0.055 (7)0.020 (7)0.039 (7)0.001 (6)
C310.034 (8)0.058 (9)0.039 (7)0.020 (6)0.027 (6)0.014 (6)
Geometric parameters (Å, º) top
Cd1—N112.248 (4)C14—C151.528 (10)
Cd1—N132.250 (5)C14—H14A0.9900
Cd1—N12.347 (5)C14—H14B0.9900
Cd1—N122.351 (5)C15—C161.515 (11)
Cd1—O1i2.388 (3)C15—H15A0.9900
Cd1—O12.619 (3)C15—H15B0.9900
Cd2—N232.247 (5)C16—H16A0.9900
Cd2—N212.250 (5)C16—H16B0.9900
Cd2—N22.283 (6)N21—C211.466 (8)
Cd2—N222.374 (4)N21—H21A0.9200
Cd2—O32.386 (3)N21—H21B0.9200
Cd2—O3ii2.676 (4)N22—C241.463 (9)
N1—C11.130 (8)N22—C231.475 (8)
C1—S11.633 (8)N22—H220.9300
N2—C21.169 (8)N23—C261.489 (8)
C2—S21.607 (6)N23—H23A0.9200
S3—O41.458 (4)N23—H23B0.9200
S3—O21.465 (4)C21—C221.542 (11)
S3—O31.485 (3)C21—H21C0.9900
S3—O11.490 (4)C21—H21D0.9900
O1—Cd1i2.388 (3)C22—C231.508 (11)
N11—C111.480 (7)C22—H22A0.9900
N11—H11A0.9200C22—H22B0.9900
N11—H11B0.9200C23—H23C0.9900
N12—C131.466 (8)C23—H23D0.9900
N12—C141.480 (8)C24—C251.510 (10)
N12—H120.9300C24—H24A0.9900
N13—C161.476 (7)C24—H24B0.9900
N13—H13A0.9200C25—C261.537 (10)
N13—H13B0.9200C25—H25A0.9900
C11—C121.515 (10)C25—H25B0.9900
C11—H11C0.9900C26—H26A0.9900
C11—H11D0.9900C26—H26B0.9900
C12—C131.515 (10)O31—C311.362 (18)
C12—H12A0.9900O31—H310.8400
C12—H12B0.9900C31—H31A0.9800
C13—H13C0.9900C31—H31B0.9800
C13—H13D0.9900C31—H31C0.9800
N11—Cd1—N13164.76 (17)C15—C14—H14A108.9
N11—Cd1—N199.40 (18)N12—C14—H14B108.9
N13—Cd1—N195.82 (18)C15—C14—H14B108.9
N11—Cd1—N1289.43 (18)H14A—C14—H14B107.7
N13—Cd1—N1289.82 (18)C16—C15—C14117.0 (5)
N1—Cd1—N1289.72 (17)C16—C15—H15A108.0
N11—Cd1—O1i85.80 (15)C14—C15—H15A108.0
N13—Cd1—O1i91.31 (15)C16—C15—H15B108.0
N1—Cd1—O1i104.15 (15)C14—C15—H15B108.0
N12—Cd1—O1i165.89 (14)H15A—C15—H15B107.3
N11—Cd1—O184.77 (14)N13—C16—C15111.0 (5)
N13—Cd1—O180.07 (14)N13—C16—H16A109.4
N1—Cd1—O1175.20 (16)C15—C16—H16A109.4
N12—Cd1—O192.73 (14)N13—C16—H16B109.4
O1i—Cd1—O173.63 (13)C15—C16—H16B109.4
N23—Cd2—N21159.07 (19)H16A—C16—H16B108.0
N23—Cd2—N2101.4 (2)C21—N21—Cd2116.5 (4)
N21—Cd2—N299.3 (2)C21—N21—H21A108.2
N23—Cd2—N2286.47 (18)Cd2—N21—H21A108.2
N21—Cd2—N2290.32 (19)C21—N21—H21B108.2
N2—Cd2—N2290.40 (18)Cd2—N21—H21B108.2
N23—Cd2—O386.86 (14)H21A—N21—H21B107.3
N21—Cd2—O392.16 (15)C24—N22—C23110.7 (5)
N2—Cd2—O3101.23 (16)C24—N22—Cd2114.7 (4)
N22—Cd2—O3167.55 (15)C23—N22—Cd2114.1 (4)
C1—N1—Cd1140.6 (5)C24—N22—H22105.4
N1—C1—S1179.4 (9)C23—N22—H22105.4
C2—N2—Cd2138.6 (5)Cd2—N22—H22105.4
N2—C2—S2178.1 (6)C26—N23—Cd2116.8 (4)
O4—S3—O2111.1 (3)C26—N23—H23A108.1
O4—S3—O3108.7 (2)Cd2—N23—H23A108.1
O2—S3—O3109.5 (2)C26—N23—H23B108.1
O4—S3—O1109.9 (2)Cd2—N23—H23B108.1
O2—S3—O1108.6 (2)H23A—N23—H23B107.3
O3—S3—O1109.1 (2)N21—C21—C22113.1 (5)
S3—O1—Cd1i120.41 (19)N21—C21—H21C109.0
S3—O1—Cd1118.74 (19)C22—C21—H21C109.0
Cd1i—O1—Cd1106.37 (13)N21—C21—H21D109.0
S3—O3—Cd2122.13 (19)C22—C21—H21D109.0
C11—N11—Cd1116.2 (4)H21C—C21—H21D107.8
C11—N11—H11A108.2C23—C22—C21115.7 (6)
Cd1—N11—H11A108.2C23—C22—H22A108.4
C11—N11—H11B108.2C21—C22—H22A108.4
Cd1—N11—H11B108.2C23—C22—H22B108.4
H11A—N11—H11B107.4C21—C22—H22B108.4
C13—N12—C14110.3 (5)H22A—C22—H22B107.4
C13—N12—Cd1113.1 (4)N22—C23—C22113.7 (5)
C14—N12—Cd1115.7 (4)N22—C23—H23C108.8
C13—N12—H12105.6C22—C23—H23C108.8
C14—N12—H12105.6N22—C23—H23D108.8
Cd1—N12—H12105.6C22—C23—H23D108.8
C16—N13—Cd1115.9 (4)H23C—C23—H23D107.7
C16—N13—H13A108.3N22—C24—C25113.7 (5)
Cd1—N13—H13A108.3N22—C24—H24A108.8
C16—N13—H13B108.3C25—C24—H24A108.8
Cd1—N13—H13B108.3N22—C24—H24B108.8
H13A—N13—H13B107.4C25—C24—H24B108.8
N11—C11—C12112.4 (5)H24A—C24—H24B107.7
N11—C11—H11C109.1C24—C25—C26116.3 (6)
C12—C11—H11C109.1C24—C25—H25A108.2
N11—C11—H11D109.1C26—C25—H25A108.2
C12—C11—H11D109.1C24—C25—H25B108.2
H11C—C11—H11D107.8C26—C25—H25B108.2
C13—C12—C11115.7 (6)H25A—C25—H25B107.4
C13—C12—H12A108.4N23—C26—C25111.9 (6)
C11—C12—H12A108.4N23—C26—H26A109.2
C13—C12—H12B108.4C25—C26—H26A109.2
C11—C12—H12B108.4N23—C26—H26B109.2
H12A—C12—H12B107.4C25—C26—H26B109.2
N12—C13—C12114.5 (5)H26A—C26—H26B107.9
N12—C13—H13C108.6C31—O31—H31109.5
C12—C13—H13C108.6O31—C31—H31A109.5
N12—C13—H13D108.6O31—C31—H31B109.5
C12—C13—H13D108.6H31A—C31—H31B109.5
H13C—C13—H13D107.6O31—C31—H31C109.5
N12—C14—C15113.4 (5)H31A—C31—H31C109.5
N12—C14—H14A108.9H31B—C31—H31C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(NCS)2(SO4)(C6H17N3)2]·0.5CH4O
Mr715.49
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)10.6648 (9), 12.4441 (12), 12.9240 (12)
α, β, γ (°)61.359 (10), 69.064 (10), 68.772 (10)
V3)1367.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.18 × 0.13 × 0.09
Data collection
DiffractometerSTOE IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.746, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
12730, 5736, 4365
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.07
No. of reflections5736
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.87

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011).

Selected bond lengths (Å) top
Cd1—N112.248 (4)Cd2—N232.247 (5)
Cd1—N132.250 (5)Cd2—N212.250 (5)
Cd1—N12.347 (5)Cd2—N22.283 (6)
Cd1—N122.351 (5)Cd2—N222.374 (4)
Cd1—O1i2.388 (3)Cd2—O32.386 (3)
Cd1—O12.619 (3)Cd2—O3ii2.676 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. Special thanks go to Inke Jess for her support of the single-crystal measurements.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton. Trans. 39, 11019–11026.  CSD CrossRef CAS Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Reinert, T. & Näther, C. (2011). Z. Anorg. Allg. Chem. 637, 940–946.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920–6923.  Google Scholar
First citationWriedt, M. & Näther, C. (2010). Chem. Commun. 46, 4707–4709.  Web of Science CSD CrossRef CAS Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009a). Dalton. Trans. pp. 7975–7984.  CSD CrossRef Google Scholar
First citationWriedt, M., Sellmer, S. & Näther, C. (2009b). Inorg. Chem. 48, 6896–6903.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1201-m1202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds