organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thia­zol-2-yl)-6-eth­­oxy­phenol

aDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, bDepartment of Physics, Ranipettai Engineering College, Thenkadapathangal, Walaja 632 513, India, cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and dDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 29 July 2011; accepted 2 August 2011; online 6 August 2011)

In the title compound, C15H13NO2S, the benzothia­zole unit is essentially planar [maximum deviation = −0.0099 (5) Å for the S atom] and is oriented at a dihedral angle of 4.8 (5)° with respect to the benzene ring. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For background to the applications of benzothia­zoles in the chemical industry, see: Bradshaw et al. (2002[Bradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). BJC, 86, 1348-1354.]); Delmas et al. (2002[Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588-2594.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]). For the pharmacological activity of benzothia­zole derivatives, see: Repiĉ et al. (2001[Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process. Res. Dev. 5, 519-527.]); Schwartz et al. (1992[Schwartz, A., Madan, P. B., Mohacsi, E., O'Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851-856.]). For related structures, see: Baryala et al. (2010[Baryala, Y., Zerzouf, A., Salem, M., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o857.]); Zhang et al. (2008[Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2S

  • Mr = 271.32

  • Monoclinic, P 21 /n

  • a = 9.8739 (5) Å

  • b = 9.6222 (4) Å

  • c = 13.3644 (6) Å

  • β = 95.269 (2)°

  • V = 1264.37 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.941, Tmax = 0.960

  • 19076 measured reflections

  • 5191 independent reflections

  • 3449 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.01

  • 5191 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.626 (1) 147
C14—H14ACg1i 0.97 2.91 3.779 (1) 149
C14—H14BCg2ii 0.97 2.65 3.506 (1) 148
Symmetry codes: (i) -x-1, -y, -z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazole are remarkable heterocyclic ring systems. They possess therapeutic value, are synthetic intermediates in the preparation of medicinal compounds and find numerous applications in chemical industry (Bradshaw et al., 2002, Hutchinson et al., 2002, Delmas et al., 2002). Benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety (S1/N1/C1-C7) is essentially planar[maximum deviation = -0.0099 (5) Å for the S atom] and lies at an angle 4.8 (5)° with respect to the benzene ring. The geometric parameters of the title molecule agrees well with those reported for similar structures (Baryala et al., 2010, Zhang et al., 2008).

In addition to the van der Waals interaction, the crystal packing is stabilized by O-H···N and C-H···π hydrogen bonds. The intramolecular O1-H1···N1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing (Fig. 2) is stabilized by intermolecular C-H···π interactions, the first one between ethoxy group of atom H14A and the benene ring (C8-C13) (Table 1; C14-H14A···Cg1i, Cg1 is the centroid of the C8-C13 ring, symmetry code as in Fig. 2), and the second one between ethoxy group of atom H14B and the benzene ring (C2-C7) (Table 1; C14-H14B..Cg2ii, Cg2 is the centroid of the C2-C7 ring, symmetry code as in Fig. 2).

Related literature top

For background to the applications of benzothiazoles in the chemical industry, see: Bradshaw et al. (2002); Delmas et al. (2002); Hutchinson et al. (2002). For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For related structures, see: Baryala et al. (2010); Zhang et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-ethoxy-2-hydroxybenzaldehyde (0.1g, 0.6 mmol) and 2-aminobenzenethiol (0.075g, 0.6 mmol) was placed in a round bottom flask and melted at 180 0C for 1h. After completion of the reaction as indicated by TLC, the crude product was washed with 5 mL of ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product 2-(benzo[d]thiazol-2-yl)-6-ethoxyphenol as colorless solid (91%). The pure compound was crystallized from ethylacetate-hexane 2:10. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement top

All the H atoms were positioned geometrically, with O-H = 0.82 Å and and C-H = 0.93 - 0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl and hydroxyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. A view of the C-H···π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroid of the C8-C13 benzene ring and C2-C7 benzene ring, respectively. [Symmetry code: (i) -1-x, -y, -z; (ii) -x, -y, -z.]
2-(1,3-Benzothiazol-2-yl)-6-ethoxyphenol top
Crystal data top
C15H13NO2SF(000) = 568
Mr = 271.32Dx = 1.425 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5191 reflections
a = 9.8739 (5) Åθ = 2.5–34.1°
b = 9.6222 (4) ŵ = 0.25 mm1
c = 13.3644 (6) ÅT = 293 K
β = 95.269 (2)°Block, yellow
V = 1264.37 (10) Å30.24 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5191 independent reflections
Radiation source: fine-focus sealed tube3449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 34.1°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 159
Tmin = 0.941, Tmax = 0.960l = 2119
19076 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
5191 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H13NO2SV = 1264.37 (10) Å3
Mr = 271.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8739 (5) ŵ = 0.25 mm1
b = 9.6222 (4) ÅT = 293 K
c = 13.3644 (6) Å0.24 × 0.22 × 0.16 mm
β = 95.269 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5191 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3449 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.960Rint = 0.023
19076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
5191 reflectionsΔρmin = 0.21 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05727 (3)0.30307 (3)0.19431 (2)0.03712 (10)
N10.02751 (10)0.27133 (10)0.00112 (7)0.0326 (2)
C80.12040 (11)0.11723 (12)0.08584 (8)0.0313 (2)
C130.18273 (11)0.06427 (12)0.00477 (8)0.0312 (2)
O20.33618 (10)0.08310 (10)0.09512 (6)0.0439 (2)
O10.15176 (10)0.10695 (10)0.09587 (6)0.0424 (2)
H10.09230.16660.08910.064*
C10.01672 (11)0.22478 (12)0.08401 (8)0.0309 (2)
C120.28288 (12)0.03998 (12)0.00288 (8)0.0332 (2)
C110.31818 (13)0.09032 (13)0.08807 (9)0.0377 (3)
H110.38410.15910.08930.045*
C20.12562 (11)0.37329 (12)0.02054 (8)0.0312 (2)
C70.15529 (12)0.40571 (12)0.12266 (8)0.0328 (2)
C90.15855 (13)0.06359 (13)0.17719 (9)0.0393 (3)
H90.11770.09770.23770.047*
C140.43972 (13)0.18786 (12)0.09985 (10)0.0378 (3)
H14A0.51860.15500.06860.045*
H14B0.40600.27140.06540.045*
C100.25549 (14)0.03849 (14)0.17758 (9)0.0408 (3)
H100.27940.07330.23840.049*
C30.19474 (13)0.44135 (13)0.05155 (9)0.0389 (3)
H30.17660.42050.11940.047*
C60.25186 (13)0.50573 (13)0.15417 (9)0.0400 (3)
H60.27090.52710.22190.048*
C40.29027 (14)0.53996 (14)0.02046 (10)0.0444 (3)
H40.33700.58600.06790.053*
C150.47613 (16)0.21685 (16)0.20937 (11)0.0508 (3)
H15A0.50930.13330.24240.076*
H15B0.54540.28710.21660.076*
H15C0.39700.24870.23920.076*
C50.31827 (14)0.57200 (14)0.08114 (11)0.0451 (3)
H50.38310.63950.10010.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04228 (17)0.04402 (18)0.02515 (13)0.00088 (12)0.00359 (11)0.00212 (11)
N10.0336 (5)0.0369 (5)0.0273 (4)0.0006 (4)0.0023 (4)0.0005 (4)
C80.0331 (5)0.0336 (5)0.0274 (5)0.0030 (4)0.0044 (4)0.0008 (4)
C130.0348 (5)0.0321 (5)0.0274 (5)0.0033 (4)0.0060 (4)0.0013 (4)
O20.0518 (5)0.0482 (5)0.0319 (4)0.0162 (4)0.0042 (4)0.0041 (4)
O10.0528 (5)0.0484 (5)0.0264 (4)0.0143 (4)0.0059 (3)0.0005 (3)
C10.0326 (5)0.0340 (5)0.0262 (5)0.0046 (4)0.0026 (4)0.0001 (4)
C120.0358 (6)0.0331 (5)0.0311 (5)0.0016 (4)0.0056 (4)0.0016 (4)
C110.0400 (6)0.0372 (6)0.0371 (6)0.0022 (5)0.0107 (5)0.0011 (5)
C20.0326 (5)0.0317 (5)0.0289 (5)0.0027 (4)0.0001 (4)0.0002 (4)
C70.0349 (6)0.0343 (5)0.0288 (5)0.0048 (4)0.0013 (4)0.0011 (4)
C90.0448 (7)0.0467 (7)0.0267 (5)0.0009 (5)0.0054 (5)0.0013 (5)
C140.0345 (6)0.0357 (6)0.0435 (6)0.0020 (5)0.0041 (5)0.0015 (5)
C100.0466 (7)0.0464 (7)0.0308 (5)0.0012 (6)0.0107 (5)0.0056 (5)
C30.0439 (6)0.0430 (6)0.0295 (5)0.0038 (5)0.0015 (5)0.0042 (5)
C60.0429 (7)0.0407 (6)0.0354 (6)0.0005 (5)0.0017 (5)0.0073 (5)
C40.0486 (7)0.0446 (7)0.0398 (6)0.0084 (6)0.0028 (5)0.0065 (5)
C150.0511 (8)0.0542 (8)0.0453 (7)0.0084 (6)0.0059 (6)0.0035 (6)
C50.0467 (7)0.0403 (6)0.0473 (7)0.0074 (6)0.0016 (6)0.0038 (5)
Geometric parameters (Å, º) top
S1—C71.7318 (12)C7—C61.3925 (17)
S1—C11.7539 (11)C9—C101.3718 (18)
N1—C11.3067 (14)C9—H90.9300
N1—C21.3864 (15)C14—C151.5010 (18)
C8—C131.4028 (15)C14—H14A0.9700
C8—C91.4082 (15)C14—H14B0.9700
C8—C11.4575 (16)C10—H100.9300
C13—O11.3464 (13)C3—C41.3750 (18)
C13—C121.4105 (16)C3—H30.9300
O2—C121.3600 (14)C6—C51.3809 (19)
O2—C141.4330 (14)C6—H60.9300
O1—H10.8200C4—C51.3950 (19)
C12—C111.3825 (16)C4—H40.9300
C11—C101.3881 (18)C15—H15A0.9600
C11—H110.9300C15—H15B0.9600
C2—C31.3941 (16)C15—H15C0.9600
C2—C71.4044 (15)C5—H50.9300
C7—S1—C189.48 (5)O2—C14—C15106.25 (10)
C1—N1—C2111.47 (9)O2—C14—H14A110.5
C13—C8—C9118.96 (11)C15—C14—H14A110.5
C13—C8—C1119.77 (10)O2—C14—H14B110.5
C9—C8—C1121.26 (10)C15—C14—H14B110.5
O1—C13—C8123.48 (10)H14A—C14—H14B108.7
O1—C13—C12116.80 (10)C9—C10—C11120.67 (11)
C8—C13—C12119.71 (10)C9—C10—H10119.7
C12—O2—C14118.02 (9)C11—C10—H10119.7
C13—O1—H1109.5C4—C3—C2118.76 (11)
N1—C1—C8123.20 (10)C4—C3—H3120.6
N1—C1—S1114.80 (9)C2—C3—H3120.6
C8—C1—S1122.00 (8)C5—C6—C7117.51 (11)
O2—C12—C11125.61 (11)C5—C6—H6121.2
O2—C12—C13114.48 (10)C7—C6—H6121.2
C11—C12—C13119.91 (11)C3—C4—C5121.05 (12)
C12—C11—C10120.22 (11)C3—C4—H4119.5
C12—C11—H11119.9C5—C4—H4119.5
C10—C11—H11119.9C14—C15—H15A109.5
N1—C2—C3125.53 (10)C14—C15—H15B109.5
N1—C2—C7114.76 (10)H15A—C15—H15B109.5
C3—C2—C7119.71 (11)C14—C15—H15C109.5
C6—C7—C2121.56 (11)H15A—C15—H15C109.5
C6—C7—S1128.96 (9)H15B—C15—H15C109.5
C2—C7—S1109.48 (8)C6—C5—C4121.42 (12)
C10—C9—C8120.53 (11)C6—C5—H5119.3
C10—C9—H9119.7C4—C5—H5119.3
C8—C9—H9119.7
C9—C8—C13—O1178.87 (11)C1—N1—C2—C3178.53 (11)
C1—C8—C13—O10.34 (17)C1—N1—C2—C70.66 (14)
C9—C8—C13—C120.68 (17)N1—C2—C7—C6179.82 (10)
C1—C8—C13—C12179.89 (10)C3—C2—C7—C60.58 (17)
C2—N1—C1—C8179.89 (10)N1—C2—C7—S10.53 (12)
C2—N1—C1—S10.49 (13)C3—C2—C7—S1178.70 (9)
C13—C8—C1—N13.48 (17)C1—S1—C7—C6179.43 (12)
C9—C8—C1—N1175.71 (11)C1—S1—C7—C20.21 (8)
C13—C8—C1—S1175.88 (8)C13—C8—C9—C100.23 (18)
C9—C8—C1—S14.93 (16)C1—C8—C9—C10179.43 (11)
C7—S1—C1—N10.16 (9)C12—O2—C14—C15178.61 (11)
C7—S1—C1—C8179.57 (10)C8—C9—C10—C110.3 (2)
C14—O2—C12—C111.21 (18)C12—C11—C10—C90.4 (2)
C14—O2—C12—C13179.35 (10)N1—C2—C3—C4179.61 (11)
O1—C13—C12—O20.50 (15)C7—C2—C3—C40.46 (18)
C8—C13—C12—O2179.92 (10)C2—C7—C6—C50.25 (18)
O1—C13—C12—C11178.97 (11)S1—C7—C6—C5178.88 (10)
C8—C13—C12—C110.61 (17)C2—C3—C4—C50.0 (2)
O2—C12—C11—C10179.49 (12)C7—C6—C5—C40.2 (2)
C13—C12—C11—C100.08 (18)C3—C4—C5—C60.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.626 (1)147
C14—H14A···Cg1i0.972.913.779 (1)149
C14—H14B···Cg2ii0.972.653.506 (1)148
Symmetry codes: (i) x1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H13NO2S
Mr271.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8739 (5), 9.6222 (4), 13.3644 (6)
β (°) 95.269 (2)
V3)1264.37 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.941, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
19076, 5191, 3449
Rint0.023
(sin θ/λ)max1)0.790
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.01
No. of reflections5191
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.626 (1)147
C14—H14A···Cg1i0.972.913.779 (1)149
C14—H14B···Cg2ii0.972.653.506 (1)148
Symmetry codes: (i) x1, y, z; (ii) x, y, z.
 

Acknowledgements

SM thanks Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBaryala, Y., Zerzouf, A., Salem, M., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o857.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). BJC, 86, 1348–1354.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588–2594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRepiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process. Res. Dev. 5, 519–527.  Google Scholar
First citationSchwartz, A., Madan, P. B., Mohacsi, E., O'Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds