organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2187-o2188

Methyl 2-(3a,8a-di­methyl-4-oxodeca­hydro­azulen-6-yl)acrylate

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité URAC16, Faculté des Sciences Semlalia, BP 2390 Boulevard My Abdellah, 40000 Marrakech, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 15 July 2011; accepted 24 July 2011; online 30 July 2011)

The title compound, C16H24O3, was synthesized from ilicic acid, which was isolated from the aerial part of Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter]. The asymmetric unit contains two independent mol­ecules, in each of which the seven-membered ring shows a chair conformation, whereas the five-membered ring presents disorder. In the two molecules, three C atoms in the five-membered ring are disordered over two positions with site-occupancy factors of 0.53/0.47 and 0.83/0.17. The dihedral angle between the two rings is different in the two mol­ecules [31.7 (3) and 47.7 (7)°]. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For background to the medicinal inter­est in Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Chiappini et al. (1982[Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159-161.]); Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlman et al. (1977[Bohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]); Geissman & Toribio (1967[Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563-1567.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related synthesis, see: Barrero et al. (2009[Barrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24O3

  • Mr = 264.35

  • Monoclinic, P 21

  • a = 6.6954 (3) Å

  • b = 6.9447 (3) Å

  • c = 31.6168 (18) Å

  • β = 90.095 (7)°

  • V = 1470.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.33 × 0.23 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.843, Tmax = 1.000

  • 9032 measured reflections

  • 5575 independent reflections

  • 4990 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.06

  • 5575 reflections

  • 356 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C112—H11B⋯O11i 0.93 2.42 3.325 (7) 165
C212—H21A⋯O21i 0.93 2.45 3.348 (6) 162
C26—H26B⋯O23ii 0.97 2.58 3.427 (6) 146
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.] and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The Inula Viscosa (L) is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlman et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. The literature report one article on the transformation of the ilicic acid (Barrero et al., 2009). In order to prepare products with high added value, that can be used in the pharmacology and cosmetics industry, we have studied the reactivity of this acid. Thus, from the ilicic acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4 a,5,6,7- octahydro-naphthalene -2-yl)-acrylic acid methyl ester. The epoxidation of the latter by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide obtained by Bi(OTf)3 leads to 2- (3a,8a-Dimethyl-4-oxo-decahydro-azulene-6- yl)-acrylic acid methyl ester with a yield of 50% (see figure 3). The structure of this new derivative (I) of ilicic acid was confirmed by its single-crystal X-ray structure. The asymmetric unit contains two crystallographically independent molecules (Fig.1). Each molecule is built up from two fused five and seven-membered rings.The seven membered ring shows a chair conformation as indicated by Cremer & Pople (1975) puckering parameters QT = 0.7918 (48) Å, θ2 = 38.41 (34)°, ϕ2 = -33.23 (58)° and ϕ3 = 171.04 (52)° for the ring (C21, C22···C27)and QT = 0.8658 (51) Å, θ2 = 39.31 (31)°, ϕ2 = -32.67 (53)° and ϕ3 = 173.97 (45)° for the other ring (C11,C12···C17). In the first molecule (C11 to C151), the dihedral angle between the rings is 31.7 (3)°. The corresponding value in the second molecule (C21 to C251) is 47.7 (7)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into a chains along the a axis (Fig.2).

Related literature top

For background to the medicinal interest in Inula viscosa (L) Aiton [or Dittrichia viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Chiappini et al. (1982); Azoulay et al. (1986); Bohlman et al. (1977); Ceccherelli et al. (1988); Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975). For related synthesis, see: Barrero et al. (2009).

Experimental top

To 3 g (12 mmol) of 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro- naphthalen-2-yl)-acrylic acid methyl ester dissolved in 40 ml of dichloromethane was added one equivalent of m-chloroperbenzoic acid at 70%. The reaction mixture was stirred at room temperature for 3 h, then treated three times with a solution of sodium bisulfite at 10%. The organic layer was then washed with distilled water three times until neutralization, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with hexane/ ethyl acetate (98/2) to give quantitatively the corresponding epoxide. 2.5 g (9.4 mmol) of this epoxyde is dissolved with 5% Bi(OTf)3 in 20 ml of dichloromethane. The reaction mixture was left stirring for a period of half an hour and then treated with 10 ml of a solution of sodium bicarbonate to 10%. The organic layer was dried filtered and concentrated under reduced pressure. Chromatography on silica gel, eluting with hexane/ethyl acetate (98/2) of the residue obtained, allowed us to obtain 1.24 g (4.71 mmol) of 2-(3a, 8a-dimethyl-4-oxo-azulene-decahydro-6-yl)-acrylic acid methyl ester. The title compound was recrystallized in dichloromethane.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and 0.93 Å (C=CH2) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined, and thus any references to the Flack parameter were removed.

Carbons C18/C19/C20 and C28/C29/C30 of the five membered rings are disordered over two positions. For both molecules, the site occupancy factor of each conformation were refined while restraining their sum to unity. The occupancy factors were found to be equal to 0.53/0.47 for the first molecule, and 0.83/0.17 for the second molecule. Similarity restraints (SAME) were applied to the chemically equivalent bond lengths and angles involving all disordered atoms, while disordered atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2 as those of neighbouring atoms.

The structure is a pseudo-merohedral twin with twin law (1 0 0 0 -1 0 0 0 -1) and twin parameter 0.503 (3).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z.].
[Figure 3] Fig. 3. : Synthesis of the title compound.
Methyl 2-(3a,8a-dimethyl-4-oxodecahydroazulen-6-yl)acrylate top
Crystal data top
C16H24O3F(000) = 576
Mr = 264.35Dx = 1.194 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ybCell parameters from 3361 reflections
a = 6.6954 (3) Åθ = 3.6–29.2°
b = 6.9447 (3) ŵ = 0.08 mm1
c = 31.6168 (18) ÅT = 180 K
β = 90.095 (7)°Block, colourless
V = 1470.10 (12) Å30.33 × 0.23 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
5575 independent reflections
Radiation source: Enhance (Mo) X-ray Source4990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.843, Tmax = 1.000l = 3639
9032 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 0.0579P]
where P = (Fo2 + 2Fc2)/3
5575 reflections(Δ/σ)max = 0.011
356 parametersΔρmax = 0.14 e Å3
19 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H24O3V = 1470.10 (12) Å3
Mr = 264.35Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.6954 (3) ŵ = 0.08 mm1
b = 6.9447 (3) ÅT = 180 K
c = 31.6168 (18) Å0.33 × 0.23 × 0.15 mm
β = 90.095 (7)°
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
5575 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4990 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 1.000Rint = 0.020
9032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04219 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
5575 reflectionsΔρmin = 0.19 e Å3
356 parameters
Special details top

Experimental. The crystal is twinned by pseudo-merohedry. The unit cell is monoclinic but it emulates an orthorhombic P 21 21 2 cell.

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent,2010)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.3396 (6)0.7937 (7)0.78385 (10)0.0491 (9)
O120.1779 (6)0.7707 (7)0.72197 (8)0.0441 (9)
O130.0462 (8)0.4408 (6)0.90038 (11)0.0603 (11)
C110.0245 (7)0.7490 (7)0.83087 (10)0.0320 (10)
H110.10000.68680.83970.038*
C120.1966 (8)0.6169 (6)0.84329 (11)0.0370 (11)
H12A0.32330.68150.83880.044*
H12B0.19430.50080.82620.044*
C130.1702 (9)0.5650 (7)0.89132 (14)0.0376 (11)
C160.0506 (8)0.9418 (7)0.90041 (11)0.0344 (10)
H16A0.01051.06720.91090.041*
H16B0.04530.84910.91110.041*
C170.0323 (8)0.9457 (7)0.85143 (11)0.0371 (11)
H17A0.08781.01590.84390.045*
H17B0.14531.01580.84000.045*
C140.2954 (9)0.6686 (7)0.92227 (13)0.0375 (11)
C150.2545 (8)0.8936 (7)0.91989 (13)0.0365 (11)
C18A0.2343 (11)0.9472 (10)0.96834 (13)0.068 (2)0.53
H18A0.32331.05320.97500.082*0.53
H18B0.09860.98790.97430.082*0.53
C19A0.2859 (15)0.7758 (13)0.99513 (19)0.0438 (13)0.53
H19A0.20780.77461.02100.053*0.53
H19B0.42670.77561.00240.053*0.53
C20A0.2344 (11)0.6059 (9)0.96745 (13)0.0562 (16)0.53
H20A0.09260.57780.96880.067*0.53
H20B0.30820.49240.97610.067*0.53
C18B0.2343 (11)0.9472 (10)0.96834 (13)0.068 (2)0.47
H18C0.36380.97890.98020.082*0.47
H18D0.14621.05690.97190.082*0.47
C19B0.1550 (14)0.7852 (12)0.9882 (2)0.0438 (13)0.47
H19C0.01050.78740.98610.053*0.47
H19D0.19110.78581.01790.053*0.47
C20B0.2344 (11)0.6059 (9)0.96745 (13)0.0562 (16)0.47
H20C0.13240.50680.96640.067*0.47
H20D0.34880.55650.98280.067*0.47
C1110.0153 (7)0.7762 (8)0.78377 (12)0.0350 (10)
C1120.1773 (8)0.7999 (10)0.75949 (14)0.0527 (14)
H11A0.16320.81880.73050.063*
H11B0.30390.79740.77160.063*
C1130.1814 (7)0.7805 (8)0.76432 (12)0.0340 (10)
C1140.3611 (8)0.7761 (8)0.69985 (12)0.0453 (11)
H11C0.43070.89300.70660.068*
H11D0.44130.66760.70790.068*
H11E0.33590.77150.67000.068*
C1410.5147 (9)0.6146 (9)0.91621 (15)0.0562 (16)
H14A0.55580.64760.88800.084*
H14B0.53110.47860.92050.084*
H14C0.59510.68350.93630.084*
C1510.4187 (10)1.0125 (9)0.90107 (18)0.0537 (15)
H15A0.38091.14590.90150.081*
H15B0.44170.97260.87240.081*
H15C0.53860.99540.91730.081*
O210.3368 (5)0.2891 (7)0.71830 (9)0.0455 (8)
O220.1755 (6)0.3099 (7)0.78059 (8)0.0435 (8)
O230.0557 (8)0.6369 (6)0.60233 (12)0.0710 (13)
C210.0213 (7)0.3281 (7)0.67099 (11)0.0336 (10)
H210.10500.38900.66280.040*
C220.1921 (8)0.4596 (6)0.65588 (14)0.0435 (12)
H22A0.19430.57480.67320.052*
H22B0.31830.39330.65980.052*
C230.1736 (7)0.5141 (6)0.61251 (15)0.0367 (10)
C260.0504 (8)0.1303 (7)0.60083 (14)0.0422 (11)
H26A0.04910.21940.59020.051*
H26B0.01190.00290.59130.051*
C270.0351 (8)0.1312 (7)0.64743 (13)0.0423 (12)
H27A0.15030.06310.65850.051*
H27B0.08200.05650.65510.051*
C240.2925 (8)0.4082 (7)0.57727 (13)0.0343 (10)
C250.2532 (7)0.1810 (6)0.57876 (14)0.0364 (11)
C28A0.2445 (10)0.1255 (7)0.53289 (15)0.0547 (15)0.83
H28A0.34500.02830.52710.066*0.83
H28B0.11460.07070.52660.066*0.83
C29A0.2795 (15)0.2957 (12)0.50553 (16)0.0775 (19)0.83
H29A0.41780.30130.49650.093*0.83
H29B0.19430.29180.48070.093*0.83
C30A0.2296 (11)0.4625 (8)0.53251 (15)0.0566 (17)0.83
H30A0.08740.48880.53140.068*0.83
H30B0.30100.57630.52310.068*0.83
C28B0.2445 (10)0.1255 (7)0.53289 (15)0.0547 (15)0.17
H28C0.37760.10800.52140.066*0.17
H28D0.16930.00730.52910.066*0.17
C29B0.143 (5)0.289 (3)0.5125 (7)0.0775 (19)0.17
H29C0.16740.28910.48220.093*0.17
H29D0.00020.28300.51730.093*0.17
C30B0.2296 (11)0.4625 (8)0.53251 (15)0.0566 (17)0.17
H30C0.13150.56530.53330.068*0.17
H30D0.34430.50670.51650.068*0.17
C2110.0190 (7)0.3028 (7)0.71832 (11)0.0325 (10)
C2120.1757 (7)0.2744 (9)0.74169 (12)0.0445 (12)
H21A0.30160.26850.72930.053*
H21B0.16210.26010.77080.053*
C2130.1856 (7)0.2982 (7)0.73821 (13)0.0333 (9)
C2140.3691 (8)0.2993 (11)0.80196 (13)0.0582 (15)
H21C0.42980.17670.79630.087*
H21D0.45420.40030.79170.087*
H21E0.35030.31380.83190.087*
C2410.5158 (7)0.4632 (8)0.58597 (18)0.0523 (14)
H24A0.55560.41330.61300.078*
H24B0.52950.60080.58600.078*
H24C0.59900.40910.56430.078*
C2510.4216 (10)0.0690 (8)0.6025 (2)0.0612 (16)
H25A0.53980.06580.58540.092*
H25B0.37790.06030.60810.092*
H25C0.45060.13250.62880.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0296 (16)0.068 (2)0.0497 (16)0.0131 (19)0.0007 (16)0.0057 (19)
O120.0329 (16)0.067 (2)0.0324 (11)0.0016 (19)0.0084 (14)0.0003 (16)
O130.069 (3)0.045 (2)0.067 (2)0.020 (2)0.003 (2)0.0090 (18)
C110.026 (2)0.040 (3)0.0300 (17)0.0028 (19)0.0027 (16)0.0067 (17)
C120.046 (3)0.039 (3)0.0263 (16)0.014 (3)0.0010 (19)0.0137 (17)
C130.054 (3)0.0261 (19)0.0330 (18)0.006 (2)0.001 (2)0.0034 (15)
C160.037 (2)0.038 (3)0.0281 (18)0.006 (2)0.0088 (19)0.0104 (17)
C170.043 (3)0.037 (2)0.0315 (18)0.009 (2)0.0012 (19)0.0118 (18)
C140.039 (3)0.038 (3)0.0361 (19)0.001 (3)0.003 (2)0.0045 (18)
C150.043 (3)0.043 (2)0.0235 (16)0.004 (2)0.0041 (18)0.0050 (16)
C18A0.077 (5)0.103 (4)0.0249 (19)0.025 (4)0.011 (2)0.004 (2)
C19A0.049 (3)0.056 (3)0.026 (2)0.000 (4)0.003 (2)0.003 (3)
C20A0.069 (4)0.066 (4)0.034 (2)0.002 (3)0.001 (3)0.000 (2)
C18B0.077 (5)0.103 (4)0.0249 (19)0.025 (4)0.011 (2)0.004 (2)
C19B0.049 (3)0.056 (3)0.026 (2)0.000 (4)0.003 (2)0.003 (3)
C20B0.069 (4)0.066 (4)0.034 (2)0.002 (3)0.001 (3)0.000 (2)
C1110.029 (2)0.034 (2)0.042 (2)0.0037 (19)0.0016 (18)0.007 (2)
C1120.034 (3)0.083 (4)0.0409 (18)0.019 (3)0.008 (2)0.006 (2)
C1130.034 (2)0.035 (2)0.0333 (17)0.002 (2)0.0013 (19)0.0075 (19)
C1140.043 (3)0.040 (2)0.053 (2)0.012 (2)0.014 (2)0.003 (2)
C1410.061 (4)0.060 (4)0.047 (2)0.026 (3)0.003 (3)0.002 (3)
C1510.052 (3)0.052 (3)0.057 (3)0.004 (3)0.004 (3)0.008 (2)
O210.0226 (14)0.067 (2)0.0464 (15)0.0066 (18)0.0044 (14)0.0054 (18)
O220.0311 (15)0.061 (2)0.0383 (12)0.0060 (18)0.0117 (14)0.0011 (16)
O230.096 (3)0.0341 (18)0.083 (2)0.030 (2)0.035 (3)0.0178 (18)
C210.0238 (19)0.031 (2)0.046 (2)0.0050 (18)0.0084 (18)0.0005 (17)
C220.038 (3)0.027 (2)0.065 (3)0.003 (2)0.015 (2)0.006 (2)
C230.030 (2)0.0210 (18)0.059 (2)0.0053 (18)0.014 (2)0.0034 (16)
C260.039 (3)0.024 (2)0.064 (3)0.009 (2)0.008 (2)0.0007 (19)
C270.038 (3)0.031 (2)0.057 (2)0.013 (2)0.014 (2)0.016 (2)
C240.036 (2)0.028 (2)0.038 (2)0.002 (2)0.012 (2)0.0003 (16)
C250.039 (3)0.0191 (18)0.051 (2)0.0026 (19)0.012 (2)0.0040 (16)
C28A0.067 (4)0.033 (2)0.064 (3)0.000 (2)0.005 (3)0.025 (2)
C29A0.106 (5)0.084 (5)0.043 (3)0.007 (5)0.002 (3)0.004 (3)
C30A0.073 (4)0.044 (3)0.052 (2)0.017 (3)0.006 (3)0.018 (2)
C28B0.067 (4)0.033 (2)0.064 (3)0.000 (2)0.005 (3)0.025 (2)
C29B0.106 (5)0.084 (5)0.043 (3)0.007 (5)0.002 (3)0.004 (3)
C30B0.073 (4)0.044 (3)0.052 (2)0.017 (3)0.006 (3)0.018 (2)
C2110.026 (2)0.037 (2)0.0346 (19)0.002 (2)0.0069 (18)0.007 (2)
C2120.026 (2)0.069 (3)0.0380 (17)0.017 (2)0.0119 (19)0.000 (2)
C2130.024 (2)0.029 (2)0.047 (2)0.0027 (19)0.0126 (19)0.0012 (19)
C2140.036 (3)0.091 (4)0.048 (2)0.000 (3)0.027 (2)0.002 (3)
C2410.034 (3)0.045 (3)0.078 (3)0.005 (2)0.018 (3)0.000 (3)
C2510.048 (3)0.032 (3)0.104 (4)0.025 (2)0.006 (3)0.009 (2)
Geometric parameters (Å, º) top
O11—C1131.229 (6)O21—C2131.193 (6)
O12—C1131.341 (4)O22—C2131.344 (4)
O12—C1141.413 (6)O22—C2141.464 (6)
O13—C131.231 (7)O23—C231.206 (7)
C11—C1111.502 (5)C21—C2111.507 (5)
C11—C171.513 (6)C21—C221.540 (6)
C11—C121.524 (6)C21—C271.560 (6)
C11—H110.9800C21—H210.9800
C12—C131.571 (5)C22—C231.428 (6)
C12—H12A0.9700C22—H22A0.9700
C12—H12B0.9700C22—H22B0.9700
C13—C141.475 (7)C23—C241.554 (6)
C16—C151.535 (7)C26—C271.477 (6)
C16—C171.554 (5)C26—C251.567 (7)
C16—H16A0.9700C26—H26A0.9700
C16—H16B0.9700C26—H26B0.9700
C17—H17A0.9700C27—H27A0.9700
C17—H17B0.9700C27—H27B0.9700
C14—C1411.528 (8)C24—C30A1.524 (7)
C14—C20A1.548 (6)C24—C2411.567 (8)
C14—C151.588 (6)C24—C251.600 (6)
C15—C1511.498 (8)C25—C28A1.502 (6)
C15—C18A1.582 (5)C25—C2511.563 (8)
C18A—C19A1.501 (10)C28A—C29A1.484 (9)
C18A—H18A0.9700C28A—H28A0.9700
C18A—H18B0.9700C28A—H28B0.9700
C19A—C20A1.509 (10)C29A—C30A1.477 (9)
C19A—H19A0.9700C29A—H29A0.9700
C19A—H19B0.9700C29A—H29B0.9700
C20A—H20A0.9700C30A—H30A0.9700
C20A—H20B0.9700C30A—H30B0.9700
C19B—H19C0.9700C29B—H29C0.9700
C19B—H19D0.9700C29B—H29D0.9700
C111—C1121.339 (7)C211—C2121.299 (7)
C111—C1131.454 (7)C211—C2131.508 (6)
C112—H11A0.9300C212—H21A0.9300
C112—H11B0.9300C212—H21B0.9300
C114—H11C0.9600C214—H21C0.9600
C114—H11D0.9600C214—H21D0.9600
C114—H11E0.9600C214—H21E0.9600
C141—H14A0.9600C241—H24A0.9600
C141—H14B0.9600C241—H24B0.9600
C141—H14C0.9600C241—H24C0.9600
C151—H15A0.9600C251—H25A0.9600
C151—H15B0.9600C251—H25B0.9600
C151—H15C0.9600C251—H25C0.9600
C113—O12—C114118.6 (4)C213—O22—C214114.3 (4)
C111—C11—C17108.3 (4)C211—C21—C22112.6 (4)
C111—C11—C12111.2 (3)C211—C21—C27111.9 (4)
C17—C11—C12114.0 (4)C22—C21—C27109.1 (3)
C111—C11—H11107.7C211—C21—H21107.7
C17—C11—H11107.7C22—C21—H21107.7
C12—C11—H11107.7C27—C21—H21107.7
C11—C12—C13107.6 (4)C23—C22—C21113.0 (4)
C11—C12—H12A110.2C23—C22—H22A109.0
C13—C12—H12A110.2C21—C22—H22A109.0
C11—C12—H12B110.2C23—C22—H22B109.0
C13—C12—H12B110.2C21—C22—H22B109.0
H12A—C12—H12B108.5H22A—C22—H22B107.8
O13—C13—C14124.8 (4)O23—C23—C22120.0 (4)
O13—C13—C12117.5 (5)O23—C23—C24118.6 (4)
C14—C13—C12117.7 (4)C22—C23—C24121.2 (4)
C15—C16—C17118.3 (4)C27—C26—C25120.2 (4)
C15—C16—H16A107.7C27—C26—H26A107.3
C17—C16—H16A107.7C25—C26—H26A107.3
C15—C16—H16B107.7C27—C26—H26B107.3
C17—C16—H16B107.7C25—C26—H26B107.3
H16A—C16—H16B107.1H26A—C26—H26B106.9
C11—C17—C16114.6 (4)C26—C27—C21119.0 (4)
C11—C17—H17A108.6C26—C27—H27A107.6
C16—C17—H17A108.6C21—C27—H27A107.6
C11—C17—H17B108.6C26—C27—H27B107.6
C16—C17—H17B108.6C21—C27—H27B107.6
H17A—C17—H17B107.6H27A—C27—H27B107.0
C13—C14—C141110.1 (4)C30A—C24—C23114.0 (4)
C13—C14—C20A109.0 (4)C30A—C24—C241111.5 (4)
C141—C14—C20A107.5 (5)C23—C24—C241104.3 (4)
C13—C14—C15110.5 (4)C30A—C24—C25103.1 (4)
C141—C14—C15113.6 (5)C23—C24—C25111.2 (4)
C20A—C14—C15106.0 (4)C241—C24—C25113.0 (4)
C151—C15—C16111.9 (4)C28A—C25—C251111.4 (4)
C151—C15—C18A108.5 (5)C28A—C25—C26109.8 (4)
C16—C15—C18A105.1 (4)C251—C25—C26107.4 (4)
C151—C15—C14115.8 (5)C28A—C25—C24103.4 (4)
C16—C15—C14112.8 (4)C251—C25—C24112.8 (5)
C18A—C15—C14101.6 (4)C26—C25—C24112.2 (4)
C19A—C18A—C15109.9 (5)C29A—C28A—C25110.6 (4)
C19A—C18A—H18A109.7C29A—C28A—H28A109.5
C15—C18A—H18A109.7C25—C28A—H28A109.5
C19A—C18A—H18B109.7C29A—C28A—H28B109.5
C15—C18A—H18B109.7C25—C28A—H28B109.5
H18A—C18A—H18B108.2H28A—C28A—H28B108.1
C18A—C19A—C20A103.9 (5)C30A—C29A—C28A104.6 (4)
C18A—C19A—H19A111.0C30A—C29A—H29A110.8
C20A—C19A—H19A111.0C28A—C29A—H29A110.8
C18A—C19A—H19B111.0C30A—C29A—H29B110.8
C20A—C19A—H19B111.0C28A—C29A—H29B110.8
H19A—C19A—H19B109.0H29A—C29A—H29B108.9
C19A—C20A—C14104.8 (5)C29A—C30A—C24106.2 (5)
C19A—C20A—H20A110.8C29A—C30A—H30A110.5
C14—C20A—H20A110.8C24—C30A—H30A110.5
C19A—C20A—H20B110.8C29A—C30A—H30B110.5
C14—C20A—H20B110.8C24—C30A—H30B110.5
H20A—C20A—H20B108.9H30A—C30A—H30B108.7
H19C—C19B—H19D108.2H29C—C29B—H29D108.8
C112—C111—C113119.3 (4)C212—C211—C21125.1 (4)
C112—C111—C11123.4 (4)C212—C211—C213119.6 (3)
C113—C111—C11117.3 (4)C21—C211—C213115.2 (4)
C111—C112—H11A120.0C211—C212—H21A120.0
C111—C112—H11B120.0C211—C212—H21B120.0
H11A—C112—H11B120.0H21A—C212—H21B120.0
O11—C113—O12121.3 (4)O21—C213—O22124.9 (4)
O11—C113—C111124.7 (3)O21—C213—C211123.5 (3)
O12—C113—C111113.9 (4)O22—C213—C211111.6 (4)
O12—C114—H11C109.5O22—C214—H21C109.5
O12—C114—H11D109.5O22—C214—H21D109.5
H11C—C114—H11D109.5H21C—C214—H21D109.5
O12—C114—H11E109.5O22—C214—H21E109.5
H11C—C114—H11E109.5H21C—C214—H21E109.5
H11D—C114—H11E109.5H21D—C214—H21E109.5
C14—C141—H14A109.5C24—C241—H24A109.5
C14—C141—H14B109.5C24—C241—H24B109.5
H14A—C141—H14B109.5H24A—C241—H24B109.5
C14—C141—H14C109.5C24—C241—H24C109.5
H14A—C141—H14C109.5H24A—C241—H24C109.5
H14B—C141—H14C109.5H24B—C241—H24C109.5
C15—C151—H15A109.5C25—C251—H25A109.5
C15—C151—H15B109.5C25—C251—H25B109.5
H15A—C151—H15B109.5H25A—C251—H25B109.5
C15—C151—H15C109.5C25—C251—H25C109.5
H15A—C151—H15C109.5H25A—C251—H25C109.5
H15B—C151—H15C109.5H25B—C251—H25C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C112—H11B···O11i0.932.423.325 (7)165
C212—H21A···O21i0.932.453.348 (6)162
C26—H26B···O23ii0.972.583.427 (6)146
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H24O3
Mr264.35
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)6.6954 (3), 6.9447 (3), 31.6168 (18)
β (°) 90.095 (7)
V3)1470.10 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.23 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.843, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9032, 5575, 4990
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.06
No. of reflections5575
No. of parameters356
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999 and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C112—H11B···O11i0.932.423.325 (7)165
C212—H21A···O21i0.932.453.348 (6)162
C26—H26B···O23ii0.972.583.427 (6)146
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBarrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589–3594.  Web of Science CrossRef Google Scholar
First citationBohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563–1567.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o2187-o2188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds