organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[4-(Di­methyl­amino)­styr­yl]-1-methyl­pyridinium triiodide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2011; accepted 17 July 2011; online 30 July 2011)

The asymmetric unit of the title compound, C16H19N2+·I3, contains a (E)-2-[4-(dimethyl­amino)­styr­yl)-1-methyl­pyrid­in­ium cation and half each of two triiodide anions. The complete triiodide anions are each generated by inversion symmetry. The planar cation has all of its eighteen non-H atoms situated on a mirror plane. In the crystal, the cations are stacked along the b axis by ππ inter­actions with a centroid–centroid distance of 3.5757 (13) Å. The triiodide anions are located between the cations. The crystal structure is further consolidated by short C⋯C [3.322 (9)–3.3952 (19) Å] contacts.

Related literature

For background to and applications of pyridinium compounds, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Fisicaro et al. (1990[Fisicaro, E., Pelizzetti, E., Barbieri, M., Savarino, P. & Viscardi, G. (1990). Thermochim. Acta, 168, 143-159.]); Pernak et al. (2001[Pernak, J., Kalewska, J., Ksycifiska, H. & Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899-907.]). For related structures, see: Chantrapromma et al. (2010[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975-o1976.]); Zhang et al. (2008[Zhang, X. H., Wang, L. Y., Zhai, G. H., Wen, Z. Y. & Zhang, Z. X. (2008). J. Mol. Struct. 881, 117-122.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N2+·I3

  • Mr = 620.03

  • Monoclinic, C 2/m

  • a = 19.8760 (3) Å

  • b = 6.6126 (1) Å

  • c = 14.4421 (2) Å

  • β = 95.107 (1)°

  • V = 1890.62 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.96 mm−1

  • T = 100 K

  • 0.45 × 0.15 × 0.04 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.212, Tmax = 0.838

  • 16143 measured reflections

  • 2484 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.04

  • 2484 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridinium halide salts, generally possess surface active and interesting antimicrobial properties. They contain reactive functional groups covalently bound to the long hydrophobic chain and can exhibit biological activity (Fisicaro et al., 1990; Chanawanno et al., 2010). It has been proven that one of the factors which control their antimicrobial activity is the presence of anions in the compounds. In the work done by Pernak and coworkers, it was shown that the various anion types can exhibit different antimicrobial activities (Pernak et al., 2001). As our ongoing research is aimed at enhancing the antimicrobial activity of pyridinium salts, we have synthesized pyridinium salts with various anions in order to investigate the relationship between the types of anion and their antimicrobial properties. In the course of this work, the title compound (I) was synthesized and its crystal structure is reported here.

Fig. 1 shows the molecular structure of the title compound (I); the asymmetric unit consists of a C16H19N2+ cation and two half-I3- anions. The complete molecule of one triiodide anion (I2A) is generated by a crystallographic symmetry centre 1 - x, y, -z whereas the other (I4A) is by 1 - x, y, 1 - z. The cation is 100% planar as all its eighteen non-hydrogen atoms lie on a mirror plane, x, 0, z. One H atom of each of its three methyl groups at C14, C15 and C16 also lies in the mirror plane. The cation exists in an E configuration with respect to the C6C7 double bond [1.327 (8) Å] and the torsion angles C5–C6–C7–C8 = 180.000 (3)°. The bond lengths (Allen et al., 1987) and angles in (I) are in normal ranges and comparable to those found in related structures (Chantrapromma et al., 2010; Zhang et al., 2008).

In the crystal packing (Fig. 2) the cations are stacked along the b axis by π···π interactions with the distances Cg1···Cg2 = 3.5757 (13) Å (symmetry codes: 1/2 - x, -1/2 + y, 2 - z; 1/2 - x, 1/2 + y, 2 - z; 1/2 - x, -1/2 - y, 2 - z and 1/2 - x, 1/2 - y, 2 - z); Cg1 and Cg2 are the centroids of the C1–C5/N1 and C8–C13, respectively. Triiodide anions are located in the interstitials of the cations. The crystal structure is further consolidated by these π···π interactions and short C···C [3.322 (9)–3.3952 (19)Å] contacts.

Related literature top

For background to and applications of pyridinium compounds, see: Chanawanno et al. (2010); Fisicaro et al. (1990); Pernak et al. (2001). For related structures, see: Chantrapromma et al. (2010); Zhang et al. (2008). For standard bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by mixing a solution of (E)-2-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (Zhang et al., 2008) (0.20 g, 0.55 mmol) in hot methanol (50 ml) and a solution of CuI2 (0.17 g, 0.55 mmol) in hot methanol (30 ml). The mixture was stirred for half an hour and then left at room temperature. The title compound was formed as a red solid after 2 days. Orange needle-shaped single crystals suitable for x-ray structure determination were obtained by recrystallization from ethanol by slow evaporation of the solvent at ambient temperature over several days, M.p. >573 K.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.95 Å, Uiso=1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso = 1.2Ueq(C) for CH3 atoms. The highest residual electron density peak is located at 0.92 Å from I3 and the deepest hole is located at 0.66 Å from C16.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms I2A and I4A were generated by symmetry codes 1 - x, y, -z and 1 - x, y, 1 - z, respectively whereas one of the three H atoms on each of the three methyl groups are generated by symmetry code x, -y, z.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis.
(E)-2-[4-(Dimethylamino)styryl]-1-methylpyridinium triiodide top
Crystal data top
C16H19N2+·I3F(000) = 1152
Mr = 620.03Dx = 2.178 Mg m3
Monoclinic, C2/mMelting point > 537 K
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 19.8760 (3) ÅCell parameters from 2484 reflections
b = 6.6126 (1) Åθ = 1.4–28.0°
c = 14.4421 (2) ŵ = 4.96 mm1
β = 95.107 (1)°T = 100 K
V = 1890.62 (5) Å3Needle, orange
Z = 40.45 × 0.15 × 0.04 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2484 independent reflections
Radiation source: sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.212, Tmax = 0.838k = 88
16143 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P]
where P = (Fo2 + 2Fc2)/3
2484 reflections(Δ/σ)max = 0.001
129 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C16H19N2+·I3V = 1890.62 (5) Å3
Mr = 620.03Z = 4
Monoclinic, C2/mMo Kα radiation
a = 19.8760 (3) ŵ = 4.96 mm1
b = 6.6126 (1) ÅT = 100 K
c = 14.4421 (2) Å0.45 × 0.15 × 0.04 mm
β = 95.107 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2263 reflections with I > 2σ(I)
Tmin = 0.212, Tmax = 0.838Rint = 0.030
16143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P]
where P = (Fo2 + 2Fc2)/3
2484 reflectionsΔρmax = 1.74 e Å3
129 parametersΔρmin = 0.60 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.50000.50000.00000.02351 (12)
I20.424696 (18)0.50000.16345 (3)0.03339 (11)
I30.50000.50000.50000.03354 (14)
I40.35817 (2)0.50000.42352 (3)0.03813 (12)
N10.2700 (3)0.00001.2529 (3)0.0300 (10)
N20.4157 (3)0.00000.6794 (4)0.0393 (12)
C10.2277 (3)0.00001.3233 (4)0.0338 (13)
H1A0.24720.00001.38580.041*
C20.1609 (3)0.00001.3078 (4)0.0356 (13)
H2A0.13310.00001.35800.043*
C30.1319 (3)0.00001.2140 (4)0.0329 (12)
H3A0.08420.00001.20070.039*
C40.1724 (3)0.00001.1446 (4)0.0319 (12)
H4A0.15300.00001.08200.038*
C50.2453 (3)0.00001.1631 (4)0.0288 (11)
C60.2883 (3)0.00001.0881 (4)0.0255 (10)
H6A0.33550.00001.10520.031*
C70.2692 (3)0.00000.9977 (4)0.0275 (11)
H7A0.22180.00000.98170.033*
C80.3107 (3)0.00000.9192 (4)0.0290 (11)
C90.2775 (3)0.00000.8304 (4)0.0289 (11)
H9A0.22950.00000.82400.035*
C100.3105 (3)0.00000.7535 (4)0.0272 (11)
H10A0.28520.00000.69450.033*
C110.3815 (3)0.00000.7579 (4)0.0232 (10)
C120.4171 (3)0.00000.8475 (4)0.0272 (11)
H12A0.46510.00000.85360.033*
C130.3818 (3)0.00000.9268 (4)0.0336 (12)
H13A0.40590.00000.98660.040*
C140.3424 (3)0.00001.2755 (5)0.0361 (13)
H14A0.35990.11661.24610.043*
H14B0.35460.00001.34140.043*
C150.3804 (4)0.00000.5885 (4)0.0391 (14)
H15A0.35160.11660.58440.047*
H15B0.41100.00000.54070.047*
C160.4903 (3)0.00000.6862 (5)0.0460 (16)
H16A0.50520.11660.72190.055*
H16B0.50730.00000.62610.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0208 (2)0.0210 (2)0.0277 (2)0.0000.00351 (16)0.000
I20.03043 (19)0.0368 (2)0.0338 (2)0.0000.00747 (14)0.000
I30.0526 (3)0.0261 (3)0.0232 (2)0.0000.0100 (2)0.000
I40.0541 (3)0.0367 (2)0.02383 (19)0.0000.00475 (16)0.000
N10.038 (2)0.023 (2)0.028 (2)0.0000.0003 (19)0.000
N20.047 (3)0.044 (3)0.028 (2)0.0000.011 (2)0.000
C10.059 (4)0.018 (2)0.026 (3)0.0000.014 (2)0.000
C20.054 (4)0.023 (3)0.031 (3)0.0000.010 (3)0.000
C30.038 (3)0.023 (3)0.037 (3)0.0000.002 (2)0.000
C40.052 (3)0.020 (2)0.022 (2)0.0000.005 (2)0.000
C50.050 (3)0.015 (2)0.023 (2)0.0000.011 (2)0.000
C60.036 (3)0.017 (2)0.024 (2)0.0000.004 (2)0.000
C70.033 (3)0.022 (2)0.027 (3)0.0000.002 (2)0.000
C80.039 (3)0.017 (2)0.034 (3)0.0000.013 (2)0.000
C90.026 (2)0.017 (2)0.044 (3)0.0000.005 (2)0.000
C100.027 (2)0.017 (2)0.036 (3)0.0000.008 (2)0.000
C110.033 (3)0.017 (2)0.021 (2)0.0000.0046 (19)0.000
C120.025 (2)0.025 (3)0.030 (3)0.0000.003 (2)0.000
C130.052 (3)0.025 (3)0.022 (3)0.0000.008 (2)0.000
C140.040 (3)0.030 (3)0.038 (3)0.0000.005 (2)0.000
C150.052 (4)0.037 (3)0.028 (3)0.0000.004 (3)0.000
C160.040 (3)0.056 (4)0.044 (4)0.0000.015 (3)0.000
Geometric parameters (Å, º) top
I1—I2i2.9054 (4)C6—H6A0.9500
I1—I22.9054 (4)C7—C81.459 (8)
I3—I42.9347 (4)C7—H7A0.9500
I3—I4ii2.9347 (4)C8—C91.389 (8)
N1—C51.346 (7)C8—C131.407 (9)
N1—C11.375 (7)C9—C101.339 (8)
N1—C141.448 (8)C9—H9A0.9500
N2—C111.373 (7)C10—C111.407 (7)
N2—C151.433 (8)C10—H10A0.9500
N2—C161.476 (9)C11—C121.420 (7)
C1—C21.327 (9)C12—C131.396 (8)
C1—H1A0.9500C12—H12A0.9500
C2—C31.425 (9)C13—H13A0.9500
C2—H2A0.9500C14—H14A0.9601
C3—C41.341 (9)C14—H14B0.9600
C3—H3A0.9500C15—H15A0.9600
C4—C51.449 (9)C15—H15B0.9598
C4—H4A0.9500C16—H16A0.9600
C5—C61.438 (7)C16—H16B0.9600
C6—C71.327 (8)
I2i—I1—I2180.000 (12)C8—C7—H7A115.4
I4—I3—I4ii180.0C9—C8—C13117.6 (5)
C5—N1—C1121.2 (5)C9—C8—C7117.5 (5)
C5—N1—C14119.2 (5)C13—C8—C7124.9 (5)
C1—N1—C14119.6 (5)C10—C9—C8122.6 (5)
C11—N2—C15121.2 (5)C10—C9—H9A118.7
C11—N2—C16120.9 (5)C8—C9—H9A118.7
C15—N2—C16117.9 (5)C9—C10—C11121.7 (5)
C2—C1—N1122.9 (6)C9—C10—H10A119.2
C2—C1—H1A118.6C11—C10—H10A119.2
N1—C1—H1A118.6N2—C11—C10122.2 (5)
C1—C2—C3118.4 (6)N2—C11—C12120.6 (5)
C1—C2—H2A120.8C10—C11—C12117.3 (5)
C3—C2—H2A120.8C13—C12—C11120.1 (5)
C4—C3—C2119.4 (6)C13—C12—H12A120.0
C4—C3—H3A120.3C11—C12—H12A120.0
C2—C3—H3A120.3C12—C13—C8120.8 (5)
C3—C4—C5121.3 (5)C12—C13—H13A119.6
C3—C4—H4A119.4C8—C13—H13A119.6
C5—C4—H4A119.4N1—C14—H14A106.9
N1—C5—C6122.4 (5)N1—C14—H14B112.4
N1—C5—C4116.8 (5)H14A—C14—H14B111.7
C6—C5—C4120.8 (5)N2—C15—H15A107.3
C7—C6—C5127.2 (5)N2—C15—H15B111.7
C7—C6—H6A116.4H15A—C15—H15B111.7
C5—C6—H6A116.4N2—C16—H16A107.2
C6—C7—C8129.3 (5)N2—C16—H16B111.9
C6—C7—H7A115.4H16A—C16—H16B111.7
C5—N1—C1—C20.000 (3)C6—C7—C8—C130.000 (2)
C14—N1—C1—C2180.000 (2)C13—C8—C9—C100.000 (2)
N1—C1—C2—C30.000 (3)C7—C8—C9—C10180.000 (2)
C1—C2—C3—C40.000 (3)C8—C9—C10—C110.000 (2)
C2—C3—C4—C50.000 (3)C15—N2—C11—C100.000 (2)
C1—N1—C5—C6180.000 (2)C16—N2—C11—C10180.000 (1)
C14—N1—C5—C60.000 (3)C15—N2—C11—C12180.000 (1)
C1—N1—C5—C40.000 (3)C16—N2—C11—C120.000 (2)
C14—N1—C5—C4180.000 (2)C9—C10—C11—N2180.000 (1)
C3—C4—C5—N10.000 (2)C9—C10—C11—C120.000 (2)
C3—C4—C5—C6180.000 (2)N2—C11—C12—C13180.000 (2)
N1—C5—C6—C7180.000 (2)C10—C11—C12—C130.000 (2)
C4—C5—C6—C70.000 (3)C11—C12—C13—C80.000 (2)
C5—C6—C7—C8180.000 (2)C9—C8—C13—C120.000 (2)
C6—C7—C8—C9180.000 (2)C7—C8—C13—C12180.000 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H19N2+·I3
Mr620.03
Crystal system, space groupMonoclinic, C2/m
Temperature (K)100
a, b, c (Å)19.8760 (3), 6.6126 (1), 14.4421 (2)
β (°) 95.107 (1)
V3)1890.62 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.96
Crystal size (mm)0.45 × 0.15 × 0.04
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.212, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
16143, 2484, 2263
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections2484
No. of parameters129
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0387P)2 + 13.6577P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.74, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, email: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

Financial support by the Prince of Songkla University is greatfully acknowledged. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. KC thanks the Crystal Materials Research Unit for the Research Assistance fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFisicaro, E., Pelizzetti, E., Barbieri, M., Savarino, P. & Viscardi, G. (1990). Thermochim. Acta, 168, 143–159.  CrossRef CAS Web of Science Google Scholar
First citationPernak, J., Kalewska, J., Ksycifiska, H. & Cybulski, J. (2001). Eur. J. Med. Chem. 36, 899–907.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. H., Wang, L. Y., Zhai, G. H., Wen, Z. Y. & Zhang, Z. X. (2008). J. Mol. Struct. 881, 117–122.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds