organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl­imidazolium hemi(benzene-1,3-di­carboxyl­ate) monohydrate

aChina–Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
*Correspondence e-mail: dujianshijl@yahoo.cn

(Received 4 July 2011; accepted 5 July 2011; online 16 July 2011)

The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4·H2O, contains one 2-phenyl­imidazolium cation, half a benzene-1,3-dicarboxyl­ate anion and one water mol­ecule. In the crystal, components are connected by N—H⋯O and O—H⋯O hydrogen-bonding inter­actions into a three-dimensional network.

Related literature

For related 2-phenyl­imidazolium structures, see: Xia et al. (2009[Xia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.]); Zhang et al. (2007[Zhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438-o2439.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·0.5C8H4O4·H2O

  • Mr = 245.25

  • Monoclinic, C 2/c

  • a = 17.092 (5) Å

  • b = 7.152 (4) Å

  • c = 20.322 (5) Å

  • β = 108.449 (3)°

  • V = 2356.5 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.57, Tmax = 0.74

  • 4898 measured reflections

  • 2400 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.194

  • S = 1.10

  • 2400 reflections

  • 172 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W 0.86 1.88 2.725 (3) 169
N2—H2⋯O2i 0.86 1.89 2.731 (3) 167
O1W—HW11⋯O1 0.85 (1) 1.92 (1) 2.718 (3) 156 (3)
O1W—HW12⋯O2ii 0.85 (1) 2.01 (1) 2.858 (2) 176 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2-phenylimidazole easily forms supramolecular structures with anions. The 2-phenylimidazolium nitrate structure has been reported as a hydrate (Xia et al., 2009) and a hemihydrate (Zhang et al., 2007). In this work, we report the synthesis and structure of the hemi-benzene-1,3-dicarboxylate hydrate, namely C9H9N2+.0.5(C8O4H4)-.H2O.

The asymmetric unit of the title compound consists of one 2-phenylimidazolium cation and half a benzene-1,3-dicarboxylate, and one water molecule (Fig. 1). In the structure, there exist N—H···O and O—H···O hydrogen-bonding interactions (Table I).

Related literature top

For related 2-phenylimidazolium structures, see: Xia et al. (2009); Zhang et al. (2007).

Experimental top

A mixture of 2-phenylimidazole (0.5 mmol), benzene-1,3-dicarboxylic acid (0.5 mmol) and H2O (5 ml) was mixed. After seven days, colorless crystals were obtained at room temperature.

Refinement top

All H atoms on C and N atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). H atoms of the water molecules were located in a difference Fourier map and refined as riding with the O—H and H···H distance restraints of 0.85±0.01 and 1.35±0.01 Å, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) -x, y, 0.5 - z.
2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate) monohydrate top
Crystal data top
C9H9N2+·0.5C8H4O4·H2OF(000) = 1032
Mr = 245.25Dx = 1.383 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2400 reflections
a = 17.092 (5) Åθ = 2.1–26.4°
b = 7.152 (4) ŵ = 0.10 mm1
c = 20.322 (5) ÅT = 293 K
β = 108.449 (3)°Block, colorless
V = 2356.5 (16) Å30.23 × 0.19 × 0.18 mm
Z = 8
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.1°
ω scansh = 2021
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 78
Tmin = 0.57, Tmax = 0.74l = 2518
4898 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.3011P]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.42 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H9N2+·0.5C8H4O4·H2OV = 2356.5 (16) Å3
Mr = 245.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.092 (5) ŵ = 0.10 mm1
b = 7.152 (4) ÅT = 293 K
c = 20.322 (5) Å0.23 × 0.19 × 0.18 mm
β = 108.449 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1762 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.74Rint = 0.052
4898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0673 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.42 e Å3
2400 reflectionsΔρmin = 0.38 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24852 (14)0.4967 (3)0.50929 (13)0.0382 (5)
C20.20650 (15)0.4816 (4)0.60149 (13)0.0467 (6)
H2A0.17340.46290.62940.056*
C30.28571 (15)0.5424 (4)0.62248 (13)0.0486 (7)
H30.31730.57260.66760.058*
C40.24990 (14)0.4906 (3)0.43856 (12)0.0382 (6)
C50.17948 (15)0.4488 (4)0.38343 (13)0.0492 (7)
H50.13050.41930.39190.059*
C60.18210 (17)0.4509 (4)0.31638 (14)0.0604 (8)
H60.13480.42380.27970.072*
C70.2544 (2)0.4929 (5)0.30332 (16)0.0674 (9)
H70.25610.49490.25800.081*
C80.32373 (19)0.5315 (5)0.35745 (16)0.0677 (9)
H80.37260.55890.34850.081*
C90.32284 (16)0.5307 (4)0.42428 (14)0.0538 (7)
H90.37080.55690.46040.065*
C100.00001.1129 (5)0.25000.0448 (8)
H100.00001.24290.25000.054*
C110.00630 (13)1.0179 (3)0.31049 (12)0.0408 (6)
H110.01221.08380.35120.049*
C120.00388 (12)0.8237 (3)0.31058 (11)0.0363 (5)
C130.00000.7293 (4)0.25000.0368 (7)
H130.00000.59930.25000.044*
C140.00529 (13)0.7151 (4)0.37391 (12)0.0421 (6)
N10.18476 (11)0.4532 (3)0.53205 (10)0.0417 (5)
H10.13740.41350.50640.050*
N20.31015 (12)0.5509 (3)0.56483 (10)0.0427 (5)
H20.35810.58590.56430.051*
O10.03238 (11)0.5623 (2)0.36545 (9)0.0539 (5)
O20.04493 (10)0.7828 (3)0.43224 (8)0.0541 (5)
O1W0.03320 (10)0.3051 (3)0.46633 (9)0.0501 (5)
HW110.0013 (19)0.383 (4)0.4395 (15)0.114 (15)*
HW120.0109 (18)0.273 (4)0.4965 (12)0.079 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (11)0.0425 (12)0.0480 (13)0.0003 (9)0.0114 (10)0.0017 (10)
C20.0323 (13)0.0656 (16)0.0466 (14)0.0023 (11)0.0187 (11)0.0042 (12)
C30.0337 (13)0.0716 (18)0.0409 (13)0.0074 (11)0.0125 (11)0.0009 (12)
C40.0233 (11)0.0438 (12)0.0472 (13)0.0031 (9)0.0109 (10)0.0003 (10)
C50.0250 (12)0.0703 (17)0.0496 (14)0.0002 (11)0.0082 (10)0.0061 (12)
C60.0316 (14)0.093 (2)0.0512 (15)0.0030 (13)0.0050 (12)0.0105 (14)
C70.0512 (18)0.104 (2)0.0505 (16)0.0047 (16)0.0209 (14)0.0061 (15)
C80.0388 (15)0.111 (2)0.0629 (18)0.0018 (15)0.0302 (15)0.0041 (16)
C90.0282 (13)0.0802 (19)0.0537 (15)0.0025 (12)0.0140 (12)0.0036 (13)
C100.0234 (15)0.0411 (17)0.066 (2)0.0000.0092 (15)0.000
C110.0221 (11)0.0498 (14)0.0488 (14)0.0019 (9)0.0086 (10)0.0085 (10)
C120.0191 (10)0.0475 (13)0.0419 (13)0.0031 (9)0.0090 (9)0.0037 (10)
C130.0241 (15)0.0393 (17)0.0448 (17)0.0000.0076 (13)0.000
C140.0221 (10)0.0626 (15)0.0414 (13)0.0059 (10)0.0097 (9)0.0002 (11)
N10.0225 (10)0.0525 (12)0.0501 (12)0.0045 (8)0.0117 (9)0.0002 (9)
N20.0270 (10)0.0589 (13)0.0417 (11)0.0072 (9)0.0101 (9)0.0014 (9)
O10.0406 (10)0.0668 (12)0.0494 (10)0.0176 (9)0.0074 (8)0.0070 (8)
O20.0379 (10)0.0851 (13)0.0381 (10)0.0188 (9)0.0105 (8)0.0028 (8)
O1W0.0341 (9)0.0674 (13)0.0502 (11)0.0059 (9)0.0152 (9)0.0019 (9)
Geometric parameters (Å, º) top
C1—N21.335 (3)C8—H80.9300
C1—N11.348 (3)C9—H90.9300
C1—C41.446 (3)C10—C11i1.378 (3)
C2—N11.356 (3)C10—C111.378 (3)
C2—C31.356 (3)C10—H100.9300
C2—H2A0.9300C11—C121.389 (3)
C3—N21.364 (3)C11—H110.9300
C3—H30.9300C12—C131.387 (3)
C4—C51.393 (3)C12—C141.497 (3)
C4—C91.396 (3)C13—C12i1.387 (3)
C5—C61.378 (4)C13—H130.9300
C5—H50.9300C14—O11.252 (3)
C6—C71.377 (4)C14—O21.261 (3)
C6—H60.9300N1—H10.8600
C7—C81.365 (4)N2—H20.8600
C7—H70.9300O1W—HW110.848 (10)
C8—C91.363 (4)O1W—HW120.848 (10)
N2—C1—N1106.5 (2)C8—C9—H9120.0
N2—C1—C4126.35 (19)C4—C9—H9120.0
N1—C1—C4127.1 (2)C11i—C10—C11121.0 (3)
N1—C2—C3107.0 (2)C11i—C10—H10119.5
N1—C2—H2A126.5C11—C10—H10119.5
C3—C2—H2A126.5C10—C11—C12120.0 (2)
C2—C3—N2106.9 (2)C10—C11—H11120.0
C2—C3—H3126.5C12—C11—H11120.0
N2—C3—H3126.5C13—C12—C11118.6 (2)
C5—C4—C9118.6 (2)C13—C12—C14119.6 (2)
C5—C4—C1121.6 (2)C11—C12—C14121.9 (2)
C9—C4—C1119.8 (2)C12—C13—C12i121.7 (3)
C6—C5—C4120.2 (2)C12—C13—H13119.1
C6—C5—H5119.9C12i—C13—H13119.1
C4—C5—H5119.9O1—C14—O2124.4 (2)
C7—C6—C5120.3 (3)O1—C14—C12117.9 (2)
C7—C6—H6119.8O2—C14—C12117.8 (2)
C5—C6—H6119.8C1—N1—C2109.7 (2)
C8—C7—C6119.4 (3)C1—N1—H1125.1
C8—C7—H7120.3C2—N1—H1125.1
C6—C7—H7120.3C1—N2—C3109.82 (19)
C9—C8—C7121.4 (3)C1—N2—H2125.1
C9—C8—H8119.3C3—N2—H2125.1
C7—C8—H8119.3HW11—O1W—HW12107.3 (16)
C8—C9—C4120.0 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.882.725 (3)169
N2—H2···O2ii0.861.892.731 (3)167
O1W—HW11···O10.85 (1)1.92 (1)2.718 (3)156 (3)
O1W—HW12···O2iii0.85 (1)2.01 (1)2.858 (2)176 (3)
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H9N2+·0.5C8H4O4·H2O
Mr245.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.092 (5), 7.152 (4), 20.322 (5)
β (°) 108.449 (3)
V3)2356.5 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.19 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.57, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
4898, 2400, 1762
Rint0.052
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.194, 1.10
No. of reflections2400
No. of parameters172
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.861.882.725 (3)169
N2—H2···O2i0.861.892.731 (3)167
O1W—HW11···O10.848 (10)1.920 (14)2.718 (3)156 (3)
O1W—HW12···O2ii0.848 (10)2.012 (11)2.858 (2)176 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

We thank the China–Japan Union Hospital for support.

References

First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, D.-C., Li, W.-C. & Han, S. (2009). Acta Cryst. E65, o3283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L.-P., Ma, J.-F. & Ping, G.-J. (2007). Acta Cryst. E63, o2438–o2439.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds