metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1044-m1045

Aqua­chloridobis(2-{[3-(morpholin-4-yl)prop­yl]imino­meth­yl}phenolato)manganese(III) monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 29 June 2011; accepted 4 July 2011; online 9 July 2011)

In the title compound, [Mn(C14H19N2O2)2Cl(H2O)]·H2O, the MnIII atom is N,O-chelated by two monoanionic Schiff bases, forming two six-membered chelate rings. One Cl atom and one water mol­ecule in trans positions complete a distorted octa­hedral geometry around the metal atom. In the crystal, the complex mol­ecules and the uncoordinated water mol­ecules are connected via O—H⋯N, O—H⋯O and O—H⋯Cl hydrogen bonds into layers parallel to the ac plane and these are consolidated by C—H⋯π inter­actions. The layers are further linked into a three-dimensional network through C—H⋯O inter­actions.

Related literature

For the structure of a ZnII complex of the same Schiff base, see: Ikmal Hisham et al. (2011[Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m932.]). For the structure of a similar MnIII complex, see: Huang et al. (2004[Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454-1464.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H19N2O2)2Cl(H2O)]·H2O

  • Mr = 621.05

  • Triclinic, [P \overline 1]

  • a = 9.4831 (2) Å

  • b = 12.4169 (3) Å

  • c = 12.9518 (3) Å

  • α = 95.540 (1)°

  • β = 90.306 (2)°

  • γ = 104.229 (1)°

  • V = 1470.72 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 100 K

  • 0.20 × 0.16 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.977

  • 13272 measured reflections

  • 6393 independent reflections

  • 4740 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 0.99

  • 6393 reflections

  • 373 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O6 0.83 (2) 1.88 (2) 2.709 (2) 174 (3)
O5—H5B⋯N2i 0.82 (2) 2.08 (2) 2.886 (2) 170 (2)
O6—H6A⋯Cl1ii 0.84 (2) 2.34 (2) 3.1761 (16) 178 (2)
O6—H6B⋯N4iii 0.86 (2) 1.99 (2) 2.834 (2) 169 (2)
C8—H8B⋯O6 0.99 2.56 3.551 (3) 174
C22—H22B⋯O5 0.99 2.51 3.154 (3) 123
C3—H3⋯O4iv 0.95 2.46 3.171 (3) 132
C9—H9A⋯O6i 0.99 2.58 3.471 (3) 150
C27—H27B⋯O2v 0.99 2.55 3.488 (3) 159
C23—H23BCg1vi 0.99 2.94 3.764 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+2, -z; (v) x, y+1, z-1; (vi) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title MnIII complex was obtained through the reaction of the Schiff base, prepared in situ, and Mn(II) chloride. Under the reaction conditions, MnII ion was oxidized to MnIII and N,O-chelated by two deprotonated Schiff base ligands. Similar to what was observed in a Zn(II) complex of the same Schiff base (Ikmal Hisham et al., 2011), the ligand applies only its phenolate oxygen and imine nitrogen atoms in the coordination, while its morpholine nitrogen atom stays away from coordination. One chlorine atom and one molecule of water complete the distorted octahedral coordination environment. The Mn—N, Mn—O and Mn—Cl interatomic distances are comparable to the values reported for a similar structure (Huang et al., 2004). In the crystal, the MnIII complexes and the hydration water molecules are hydrogen bonded together through O—H···N, O—H···O and O—H···Cl interactions, forming two-dimensional arrays parallel to the ac plane. The structure of the layers is supplemented by C—H···π interactions (Table 1). The layers are further linked into a three-dimensional network via C—H···O interactions.

Related literature top

For the structure of a ZnII complex of the same Schiff base, see: Ikmal Hisham et al. (2011). For the structure of a similar MnIII complex, see: Huang et al. (2004).

Experimental top

A mixture of salicylaldehyde (0.20 g, 1.64 mmol) and N-(3-aminopropyl)morpholine (0.24 g, 1.64 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of manganese(II) chloride (0.21 g, 1.64 mmol) in a minimum amount of water. The resulting solution was stirred for 2 hr at room temperature and then set aside. The crystals of the title complex were obtained after one week

Refinement top

The C-bound hydrogen atoms were placed at calculated positions and refined as riding atoms, with C—H distances of 0.95 (aryl) and 0.99 (methylene) Å. The O-bound hydrogen atoms were located in a difference Fourier map and refined, with a distance restraint of O—H = 0.84 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2 (1.5 for hydroxyl)Ueq(carrier atoms). The most disagreeable reflections with delta(F2)/e.s.d. > 10 were omitted (3 reflections).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50° probability level. The C-bound Hydrogen atoms have been omitted for clarity.
Aquachloridobis(2-{[3-(morpholin-4- yl)propyl]iminomethyl}phenolato)manganese(III) monohydrate top
Crystal data top
[Mn(C14H19N2O2)2Cl(H2O)]·H2OZ = 2
Mr = 621.05F(000) = 656
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4831 (2) ÅCell parameters from 3220 reflections
b = 12.4169 (3) Åθ = 2.2–28.9°
c = 12.9518 (3) ŵ = 0.59 mm1
α = 95.540 (1)°T = 100 K
β = 90.306 (2)°Plate, blue
γ = 104.229 (1)°0.20 × 0.16 × 0.04 mm
V = 1470.72 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6393 independent reflections
Radiation source: fine-focus sealed tube4740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.892, Tmax = 0.977k = 1515
13272 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
6393 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.43 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(C14H19N2O2)2Cl(H2O)]·H2Oγ = 104.229 (1)°
Mr = 621.05V = 1470.72 (6) Å3
Triclinic, P1Z = 2
a = 9.4831 (2) ÅMo Kα radiation
b = 12.4169 (3) ŵ = 0.59 mm1
c = 12.9518 (3) ÅT = 100 K
α = 95.540 (1)°0.20 × 0.16 × 0.04 mm
β = 90.306 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6393 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4740 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.977Rint = 0.034
13272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.43 e Å3
6393 reflectionsΔρmin = 0.32 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.80758 (3)0.51790 (3)0.25109 (2)0.00991 (9)
Cl11.07112 (5)0.49604 (5)0.24934 (4)0.01422 (12)
O10.88326 (15)0.67047 (12)0.29100 (11)0.0120 (3)
O20.37546 (17)0.08392 (13)0.79286 (12)0.0206 (4)
O30.73429 (16)0.36491 (12)0.21182 (11)0.0132 (3)
O40.71302 (17)0.94441 (14)0.31588 (12)0.0229 (4)
O50.58953 (16)0.55756 (13)0.24999 (12)0.0136 (3)
H5A0.511 (2)0.5122 (18)0.2587 (19)0.020*
H5B0.585 (3)0.6146 (16)0.2859 (17)0.020*
N10.77786 (18)0.49029 (14)0.40365 (13)0.0107 (4)
N20.45557 (18)0.24065 (15)0.64027 (13)0.0118 (4)
N30.81100 (18)0.54400 (15)0.09684 (13)0.0118 (4)
N40.71767 (19)0.80497 (15)0.15371 (14)0.0136 (4)
C10.9646 (2)0.71444 (18)0.37568 (16)0.0112 (4)
C21.0615 (2)0.81922 (18)0.37504 (16)0.0139 (5)
H21.07080.85580.31340.017*
C31.1439 (2)0.87054 (19)0.46231 (17)0.0153 (5)
H31.20970.94150.45970.018*
C41.1319 (2)0.81970 (19)0.55433 (17)0.0155 (5)
H41.18880.85550.61420.019*
C51.0359 (2)0.71650 (18)0.55720 (16)0.0134 (4)
H51.02610.68190.61990.016*
C60.9528 (2)0.66207 (18)0.46865 (16)0.0113 (4)
C70.8498 (2)0.55633 (18)0.47924 (16)0.0121 (4)
H70.83410.53400.54720.015*
C80.6650 (2)0.39039 (18)0.42446 (16)0.0130 (4)
H8A0.69320.32420.39060.016*
H8B0.57310.39410.39000.016*
C90.6333 (2)0.37064 (18)0.53695 (16)0.0137 (5)
H9A0.60520.43550.57370.016*
H9B0.72090.36010.57260.016*
C100.5093 (2)0.26629 (18)0.53680 (16)0.0138 (5)
H10A0.42740.27530.49350.017*
H10B0.54250.20180.50390.017*
C110.5658 (2)0.20893 (19)0.70355 (17)0.0155 (5)
H11A0.65210.27280.71630.019*
H11B0.59710.14600.66590.019*
C120.5019 (2)0.1749 (2)0.80625 (17)0.0192 (5)
H12A0.57640.15340.84810.023*
H12B0.47620.23970.84510.023*
C130.2678 (2)0.11214 (19)0.73002 (17)0.0164 (5)
H13A0.23520.17500.76680.020*
H13B0.18240.04740.71870.020*
C140.3271 (2)0.14476 (19)0.62656 (17)0.0152 (5)
H14A0.35440.08050.58790.018*
H14B0.25070.16450.58520.018*
C150.7750 (2)0.30723 (18)0.13036 (16)0.0114 (4)
C160.7705 (2)0.19455 (18)0.13548 (16)0.0133 (5)
H160.74440.16180.19820.016*
C170.8037 (2)0.13013 (19)0.05026 (17)0.0169 (5)
H170.80050.05380.05530.020*
C180.8416 (2)0.17592 (19)0.04295 (17)0.0169 (5)
H180.86380.13110.10130.020*
C190.8466 (2)0.28655 (19)0.04938 (16)0.0149 (5)
H190.87130.31770.11300.018*
C200.8160 (2)0.35454 (18)0.03621 (16)0.0119 (4)
C210.8181 (2)0.46903 (18)0.02342 (16)0.0127 (4)
H210.82550.49050.04520.015*
C220.7958 (2)0.65460 (18)0.07310 (16)0.0146 (5)
H22A0.88130.71150.10430.018*
H22B0.70880.66880.10840.018*
C230.7820 (2)0.67320 (18)0.03982 (16)0.0152 (5)
H23A0.70430.61230.07530.018*
H23B0.87470.67280.07460.018*
C240.7455 (3)0.78488 (19)0.04681 (17)0.0189 (5)
H24A0.65830.78720.00570.023*
H24B0.82730.84550.01590.023*
C250.8518 (2)0.85933 (19)0.20428 (17)0.0179 (5)
H25A0.92150.81150.20560.022*
H25B0.89800.93170.16440.022*
C260.8160 (2)0.8783 (2)0.31383 (18)0.0206 (5)
H26A0.90630.91620.34670.025*
H26B0.77620.80530.35460.025*
C270.5831 (2)0.8915 (2)0.26777 (17)0.0184 (5)
H27A0.53930.81840.30710.022*
H27B0.51220.93820.26930.022*
C280.6134 (2)0.87446 (18)0.15698 (17)0.0149 (5)
H28A0.65360.94770.11670.018*
H28B0.52160.83770.12520.018*
O60.34610 (17)0.39900 (13)0.28380 (12)0.0158 (3)
H6A0.274 (2)0.426 (2)0.2761 (19)0.024*
H6B0.339 (3)0.3387 (16)0.2441 (17)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01027 (17)0.01079 (18)0.00858 (17)0.00230 (13)0.00173 (12)0.00125 (12)
Cl10.0121 (2)0.0199 (3)0.0121 (3)0.0063 (2)0.00197 (19)0.0027 (2)
O10.0125 (7)0.0103 (8)0.0118 (8)0.0000 (6)0.0014 (6)0.0014 (6)
O20.0196 (8)0.0183 (9)0.0260 (9)0.0054 (7)0.0063 (7)0.0107 (7)
O30.0172 (8)0.0118 (8)0.0102 (8)0.0025 (7)0.0046 (6)0.0014 (6)
O40.0211 (9)0.0252 (10)0.0267 (10)0.0090 (8)0.0071 (7)0.0144 (7)
O50.0113 (7)0.0135 (9)0.0149 (8)0.0017 (7)0.0026 (6)0.0005 (6)
N10.0104 (9)0.0103 (9)0.0123 (9)0.0034 (7)0.0025 (7)0.0028 (7)
N20.0099 (9)0.0129 (9)0.0114 (9)0.0004 (7)0.0034 (7)0.0026 (7)
N30.0104 (9)0.0125 (9)0.0130 (9)0.0039 (8)0.0022 (7)0.0015 (7)
N40.0144 (9)0.0146 (10)0.0132 (9)0.0055 (8)0.0018 (7)0.0034 (7)
C10.0093 (10)0.0147 (11)0.0112 (11)0.0065 (9)0.0019 (8)0.0009 (8)
C20.0146 (11)0.0143 (12)0.0127 (11)0.0029 (9)0.0035 (9)0.0038 (9)
C30.0116 (10)0.0130 (11)0.0195 (12)0.0004 (9)0.0017 (9)0.0006 (9)
C40.0154 (11)0.0171 (12)0.0126 (11)0.0030 (10)0.0021 (9)0.0029 (9)
C50.0145 (11)0.0143 (11)0.0114 (11)0.0038 (9)0.0017 (8)0.0018 (9)
C60.0092 (10)0.0144 (11)0.0112 (11)0.0051 (9)0.0026 (8)0.0008 (8)
C70.0122 (10)0.0150 (11)0.0108 (11)0.0060 (9)0.0022 (8)0.0029 (9)
C80.0116 (10)0.0145 (11)0.0120 (11)0.0009 (9)0.0003 (8)0.0028 (9)
C90.0141 (11)0.0149 (12)0.0118 (11)0.0024 (9)0.0033 (8)0.0029 (9)
C100.0140 (11)0.0149 (12)0.0110 (11)0.0004 (9)0.0031 (8)0.0026 (9)
C110.0106 (10)0.0199 (12)0.0165 (12)0.0033 (9)0.0031 (8)0.0062 (9)
C120.0150 (11)0.0259 (13)0.0183 (12)0.0054 (10)0.0016 (9)0.0081 (10)
C130.0141 (11)0.0149 (12)0.0204 (12)0.0038 (9)0.0050 (9)0.0023 (9)
C140.0131 (11)0.0142 (11)0.0161 (12)0.0001 (9)0.0023 (9)0.0013 (9)
C150.0073 (10)0.0134 (11)0.0116 (11)0.0005 (9)0.0015 (8)0.0026 (8)
C160.0119 (10)0.0154 (12)0.0121 (11)0.0017 (9)0.0006 (8)0.0031 (9)
C170.0159 (11)0.0145 (12)0.0198 (12)0.0036 (9)0.0007 (9)0.0005 (9)
C180.0185 (11)0.0166 (12)0.0149 (12)0.0048 (10)0.0021 (9)0.0027 (9)
C190.0156 (11)0.0177 (12)0.0108 (11)0.0034 (10)0.0009 (8)0.0001 (9)
C200.0107 (10)0.0127 (11)0.0117 (11)0.0018 (9)0.0002 (8)0.0014 (8)
C210.0107 (10)0.0164 (12)0.0105 (11)0.0021 (9)0.0018 (8)0.0026 (9)
C220.0178 (11)0.0146 (12)0.0129 (11)0.0061 (10)0.0031 (9)0.0031 (9)
C230.0180 (11)0.0165 (12)0.0117 (11)0.0054 (10)0.0017 (9)0.0007 (9)
C240.0258 (13)0.0193 (13)0.0137 (12)0.0093 (11)0.0006 (9)0.0026 (9)
C250.0153 (11)0.0167 (12)0.0221 (13)0.0049 (10)0.0012 (9)0.0013 (10)
C260.0180 (12)0.0233 (13)0.0230 (13)0.0062 (10)0.0062 (10)0.0106 (10)
C270.0168 (11)0.0202 (13)0.0191 (12)0.0051 (10)0.0010 (9)0.0051 (10)
C280.0131 (11)0.0127 (11)0.0186 (12)0.0031 (9)0.0001 (9)0.0008 (9)
O60.0141 (8)0.0135 (9)0.0199 (9)0.0046 (7)0.0012 (7)0.0014 (7)
Geometric parameters (Å, º) top
Mn1—O11.8735 (15)C10—H10B0.9900
Mn1—O31.8738 (15)C11—C121.519 (3)
Mn1—N12.0471 (17)C11—H11A0.9900
Mn1—N32.0537 (17)C11—H11B0.9900
Mn1—O52.2406 (15)C12—H12A0.9900
Mn1—Cl12.5793 (6)C12—H12B0.9900
O1—C11.328 (2)C13—C141.509 (3)
O2—C121.428 (3)C13—H13A0.9900
O2—C131.431 (3)C13—H13B0.9900
O3—C151.330 (2)C14—H14A0.9900
O4—C261.423 (3)C14—H14B0.9900
O4—C271.424 (3)C15—C161.397 (3)
O5—H5A0.829 (16)C15—C201.419 (3)
O5—H5B0.819 (16)C16—C171.383 (3)
N1—C71.288 (3)C16—H160.9500
N1—C81.474 (3)C17—C181.395 (3)
N2—C101.472 (2)C17—H170.9500
N2—C111.475 (3)C18—C191.373 (3)
N2—C141.476 (3)C18—H180.9500
N3—C211.279 (3)C19—C201.403 (3)
N3—C221.476 (3)C19—H190.9500
N4—C241.464 (3)C20—C211.442 (3)
N4—C281.466 (3)C21—H210.9500
N4—C251.475 (3)C22—C231.512 (3)
C1—C21.397 (3)C22—H22A0.9900
C1—C61.415 (3)C22—H22B0.9900
C2—C31.379 (3)C23—C241.520 (3)
C2—H20.9500C23—H23A0.9900
C3—C41.394 (3)C23—H23B0.9900
C3—H30.9500C24—H24A0.9900
C4—C51.381 (3)C24—H24B0.9900
C4—H40.9500C25—C261.511 (3)
C5—C61.404 (3)C25—H25A0.9900
C5—H50.9500C25—H25B0.9900
C6—C71.450 (3)C26—H26A0.9900
C7—H70.9500C26—H26B0.9900
C8—C91.520 (3)C27—C281.507 (3)
C8—H8A0.9900C27—H27A0.9900
C8—H8B0.9900C27—H27B0.9900
C9—C101.521 (3)C28—H28A0.9900
C9—H9A0.9900C28—H28B0.9900
C9—H9B0.9900O6—H6A0.840 (16)
C10—H10A0.9900O6—H6B0.855 (16)
O1—Mn1—O3179.21 (7)C11—C12—H12A109.1
O1—Mn1—N189.85 (7)O2—C12—H12B109.1
O3—Mn1—N189.94 (7)C11—C12—H12B109.1
O1—Mn1—N391.65 (7)H12A—C12—H12B107.9
O3—Mn1—N388.65 (7)O2—C13—C14111.31 (17)
N1—Mn1—N3173.12 (7)O2—C13—H13A109.4
O1—Mn1—O585.88 (6)C14—C13—H13A109.4
O3—Mn1—O594.87 (6)O2—C13—H13B109.4
N1—Mn1—O587.84 (6)C14—C13—H13B109.4
N3—Mn1—O585.57 (6)H13A—C13—H13B108.0
O1—Mn1—Cl188.07 (5)N2—C14—C13111.01 (18)
O3—Mn1—Cl191.19 (5)N2—C14—H14A109.4
N1—Mn1—Cl194.78 (5)C13—C14—H14A109.4
N3—Mn1—Cl191.99 (5)N2—C14—H14B109.4
O5—Mn1—Cl1173.41 (4)C13—C14—H14B109.4
C1—O1—Mn1126.07 (13)H14A—C14—H14B108.0
C12—O2—C13110.02 (16)O3—C15—C16119.06 (18)
C15—O3—Mn1125.73 (13)O3—C15—C20122.30 (19)
C26—O4—C27109.95 (17)C16—C15—C20118.56 (18)
Mn1—O5—H5A124.5 (17)C17—C16—C15120.7 (2)
Mn1—O5—H5B115.0 (18)C17—C16—H16119.6
H5A—O5—H5B105 (2)C15—C16—H16119.6
C7—N1—C8120.36 (18)C16—C17—C18120.8 (2)
C7—N1—Mn1123.24 (15)C16—C17—H17119.6
C8—N1—Mn1116.38 (13)C18—C17—H17119.6
C10—N2—C11111.46 (16)C19—C18—C17119.2 (2)
C10—N2—C14108.09 (16)C19—C18—H18120.4
C11—N2—C14107.89 (17)C17—C18—H18120.4
C21—N3—C22120.34 (18)C18—C19—C20121.3 (2)
C21—N3—Mn1123.59 (15)C18—C19—H19119.4
C22—N3—Mn1115.98 (13)C20—C19—H19119.4
C24—N4—C28110.73 (16)C19—C20—C15119.3 (2)
C24—N4—C25112.32 (17)C19—C20—C21118.59 (19)
C28—N4—C25108.87 (17)C15—C20—C21121.96 (18)
O1—C1—C2118.93 (19)N3—C21—C20125.36 (19)
O1—C1—C6122.81 (19)N3—C21—H21117.3
C2—C1—C6118.19 (19)C20—C21—H21117.3
C3—C2—C1121.2 (2)N3—C22—C23117.68 (17)
C3—C2—H2119.4N3—C22—H22A107.9
C1—C2—H2119.4C23—C22—H22A107.9
C2—C3—C4120.9 (2)N3—C22—H22B107.9
C2—C3—H3119.6C23—C22—H22B107.9
C4—C3—H3119.6H22A—C22—H22B107.2
C5—C4—C3119.1 (2)C22—C23—C24109.22 (17)
C5—C4—H4120.5C22—C23—H23A109.8
C3—C4—H4120.5C24—C23—H23A109.8
C4—C5—C6120.9 (2)C22—C23—H23B109.8
C4—C5—H5119.5C24—C23—H23B109.8
C6—C5—H5119.5H23A—C23—H23B108.3
C5—C6—C1119.8 (2)N4—C24—C23112.68 (17)
C5—C6—C7117.55 (19)N4—C24—H24A109.1
C1—C6—C7122.54 (19)C23—C24—H24A109.1
N1—C7—C6125.10 (19)N4—C24—H24B109.1
N1—C7—H7117.5C23—C24—H24B109.1
C6—C7—H7117.5H24A—C24—H24B107.8
N1—C8—C9117.99 (18)N4—C25—C26109.81 (18)
N1—C8—H8A107.8N4—C25—H25A109.7
C9—C8—H8A107.8C26—C25—H25A109.7
N1—C8—H8B107.8N4—C25—H25B109.7
C9—C8—H8B107.8C26—C25—H25B109.7
H8A—C8—H8B107.1H25A—C25—H25B108.2
C8—C9—C10107.43 (17)O4—C26—C25111.65 (18)
C8—C9—H9A110.2O4—C26—H26A109.3
C10—C9—H9A110.2C25—C26—H26A109.3
C8—C9—H9B110.2O4—C26—H26B109.3
C10—C9—H9B110.2C25—C26—H26B109.3
H9A—C9—H9B108.5H26A—C26—H26B108.0
N2—C10—C9114.57 (17)O4—C27—C28111.13 (18)
N2—C10—H10A108.6O4—C27—H27A109.4
C9—C10—H10A108.6C28—C27—H27A109.4
N2—C10—H10B108.6O4—C27—H27B109.4
C9—C10—H10B108.6C28—C27—H27B109.4
H10A—C10—H10B107.6H27A—C27—H27B108.0
N2—C11—C12109.64 (17)N4—C28—C27109.93 (17)
N2—C11—H11A109.7N4—C28—H28A109.7
C12—C11—H11A109.7C27—C28—H28A109.7
N2—C11—H11B109.7N4—C28—H28B109.7
C12—C11—H11B109.7C27—C28—H28B109.7
H11A—C11—H11B108.2H28A—C28—H28B108.2
O2—C12—C11112.40 (19)H6A—O6—H6B111 (2)
O2—C12—H12A109.1
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.83 (2)1.88 (2)2.709 (2)174 (3)
O5—H5B···N2i0.82 (2)2.08 (2)2.886 (2)170 (2)
O6—H6A···Cl1ii0.84 (2)2.34 (2)3.1761 (16)178 (2)
O6—H6B···N4iii0.86 (2)1.99 (2)2.834 (2)169 (2)
C8—H8B···O60.992.563.551 (3)174
C22—H22B···O50.992.513.154 (3)123
C3—H3···O4iv0.952.463.171 (3)132
C9—H9A···O6i0.992.583.471 (3)150
C27—H27B···O2v0.992.553.488 (3)159
C23—H23B···Cg1vi0.992.943.764141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+2, z; (v) x, y+1, z1; (vi) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C14H19N2O2)2Cl(H2O)]·H2O
Mr621.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4831 (2), 12.4169 (3), 12.9518 (3)
α, β, γ (°)95.540 (1), 90.306 (2), 104.229 (1)
V3)1470.72 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.20 × 0.16 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
13272, 6393, 4740
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 0.99
No. of reflections6393
No. of parameters373
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5A···O60.829 (16)1.884 (17)2.709 (2)174 (3)
O5—H5B···N2i0.819 (16)2.076 (17)2.886 (2)170 (2)
O6—H6A···Cl1ii0.840 (16)2.337 (17)3.1761 (16)178 (2)
O6—H6B···N4iii0.855 (16)1.990 (17)2.834 (2)169 (2)
C8—H8B···O60.992.563.551 (3)174
C22—H22B···O50.992.513.154 (3)123
C3—H3···O4iv0.952.463.171 (3)132
C9—H9A···O6i0.992.583.471 (3)150
C27—H27B···O2v0.992.553.488 (3)159
C23—H23B···Cg1vi0.992.943.764141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+2, y+2, z; (v) x, y+1, z1; (vi) x+2, y+1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (UMRG grant No. RG024/09BIO).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464.  Web of Science CSD CrossRef Google Scholar
First citationIkmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1044-m1045
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds