metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1092-m1093

Tri­ethyl­ammonium hexa-μ2-acetato-κ12O:O′-di­acetato-κ2O-aqua-μ3-oxido-triferrate(III) toluene monosolvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 12 April 2011; accepted 1 July 2011; online 13 July 2011)

The title compound, (C6H16N)[Fe3(CH3CO2)8O(H2O)]·C7H8, was serendipitously crystallized from a reaction of disilanol with iron(II) acetate. The trinuclear acetatoferrate(III) anion has a triethyl­ammonium cation as the counterion. The three Fe atoms lie on the vertices of a regular triangle and are octa­hedrally coordinated. The complete coordination of the anion includes shared ligands among the three metal ions: a central tribridging O atom and six bidentate bridging acetyl groups. The six-coordinations of two of the metal ions are completed by a monodentate acetate ligand, whereas that of the third metal ion is completed by a water mol­ecule. The uncoordinated triethyl­ammonium cation is involved in N—H⋯O hydrogen bonding to a singly coordinated acetyl group. The coordinated aqua mol­ecule is involved in bifurcated O—H⋯O hydrogen bonding. C—H⋯O inter­actions are also observed. The toluene solvent molecule is disordered over two sets of sites in a 0.609 (11):0.391 (11) ratio.

Related literature

For exchange-coupled structural fragments or exchange clusters in coordination chemistry, see: Cannon & White (1988[Cannon, R. D. & White, R. P. (1988). Prog. Inorg. Chem. 36, 195-297.]). For applications and biological activity of 3d-element carboxyl­ates, see: Cannon & White (1988[Cannon, R. D. & White, R. P. (1988). Prog. Inorg. Chem. 36, 195-297.]); West (1989[West, B. O. (1989). Polyhedron, 8, 219-247.]); Muettertis (1981[Muettertis, E. L. (1981). Catal. Rev. 23, 69-81.]). For poly-iron carboxyl­ates, see: Crichton (1991[Crichton, K. K. (1991). In Inorganic Biochemistry of Iron Metabolism. New York, Harvard.]). For bidentate synsyn bridges, see: Porai-Koshits (1981[Porai-Koshits, M. A. (1981). Itogi Nauk. Tekh. Ser. Kristallokhim. 15, 123-129.]). For related tri­oxy-bridged iron compounds, see: Turte et al. (2002[Turte, K. I., Shova, S. G., Meriacre, V. M., Gdaniec, M., Simonov, Y. A., Lipkowski, J., Bartolome, J., Wagner, F. & Filoti, G. (2002). J. Struct. Chem. 43, 108-117.]). For the synthesis and characterization of iron carboxylate complexes, see: Losada et al. (1997[Losada, G., Mendiola, M. A. & Sevilla, M. T. (1997). Inorg. Chim. Acta, 255, 125-131.]); Rardin et al. (1992[Rardin, R. L., Poganiuch, P., Bino, A., Goldberg, D. P., Tolman, W. B., Liu, S. & &Lippard, S. J. (1992). J. Am. Chem. Soc. 114, 5240-5249.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Fe3(C2H3O2)8O(H2O)]·C7H8

  • Mr = 868.25

  • Monoclinic, C c

  • a = 22.4370 (11) Å

  • b = 11.1060 (5) Å

  • c = 16.5720 (9) Å

  • β = 112.904 (1)°

  • V = 3803.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 K

  • 0.18 × 0.07 × 0.06 mm

Data collection
  • Bruker KappaCCD APEX DUO 4K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 0.931

  • 10304 measured reflections

  • 7041 independent reflections

  • 6362 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.01

  • 7041 reflections

  • 543 parameters

  • 159 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2220 Friedel pairs

  • Flack parameter: 0.341 (17)

Table 1
Selected bond lengths (Å)

Fe1—O1 2.026 (3)
Fe3—O2 2.031 (3)
Fe1—O3 2.030 (3)
Fe3—O4 2.012 (3)
Fe3—O5 2.017 (3)
Fe2—O6 2.021 (3)
Fe2—O7 2.032 (3)
Fe3—O8 2.017 (3)
Fe2—O9 2.028 (3)
Fe1—O10 2.026 (3)
Fe2—O11 2.018 (4)
Fe1—O12 2.029 (3)
Fe2—O13 2.027 (3)
Fe3—O15 1.995 (3)
Fe1—O17 2.045 (3)
Fe1—O18 1.906 (3)
Fe2—O18 1.924 (3)
Fe3—O18 1.945 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O14i 0.93 1.87 2.789 (6) 168
O17—H10⋯O16ii 0.83 (2) 1.81 (2) 2.635 (5) 176 (5)
O17—H11⋯O14iii 0.83 (2) 1.83 (2) 2.665 (4) 178 (5)
C12—H12B⋯O7iv 0.98 2.55 3.526 (6) 174
C14—H14C⋯O6 0.98 2.54 3.166 (7) 122
C15—H15C⋯O8 0.98 2.53 3.188 (6) 125
C19—H19A⋯O16v 0.99 2.37 3.221 (6) 144
C21—H21B⋯O15v 0.99 2.55 3.418 (5) 146
C22—H22A⋯O3vi 0.98 2.55 3.476 (6) 157
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x, -y+2, z-{\script{1\over 2}}]; (v) x-1, y, z; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coordination chemistry has a large interest in exchange-coupled structural fragments or exchange clusters (Cannon and White, 1988). These compounds include complexes with carboxylic acids which are used as bridging anions, as shown in this title compound. Many 3d-element carboxylates have a variety of applications, including: catalysis, materials science and biological activity (Cannon and White, 1988; West, 1989; Muettertis, 1981). Poly-iron carboxylates as explained by Crichton (Crichton, 1991) (ferritin), have been shown to be useful in all these fields.

The title compound, Triethylammonium (µ3-oxo)-hexakis(µ2-acetato-O,O')-aqua-(diacetato-O) -tri-iron(iii) toluene solvate, serendipitously crystallized while trying to synthesize Fe-containing poly-oligomeric silasilsesquioxane material. The three Fe3+ are all inter-connected by bridging ligands, revealing distorted octahedral geometries (Table 1). The three Fe3+ are equally spaced around the central µ3-O18, with angles of: Fe1—O18—Fe2 119.56 (17) °, Fe1—O18—Fe3 119.80 (16) °, Fe2—O18—Fe3 120.64 (17)°. The sum of the three angles around O18 is 360°. The three Fe3+ lie at the vertices of a virtual regular triangle. The Fe1—Fe2 distance is 3.305 Å, Fe2—Fe3 distance is 3.362 Å and Fe1—Fe3 distance is 3.334 Å. This is in accordance with related tri-oxy bridged iron compounds (Turte et al., 2002). Six acetate ions act as bidentate syn-syn-bridges (Porai-Koshits, 1981) linking the iron atoms in pairs into the cluster. The Fe—O distances range from 2.012 (4) – 2.037 (4) Å. The uncoordinated triethylammonium cation is involved in hydrogen bonding via N1—H1···O14 in which it is bonded to a singly coordinated acetyl group (symmetry code: x - 1/2, y - 1/2, z). The coordinated aqua molecule is involved in bifurcated hydrogen bonding, where O17—H10···O16 (symmetry code: x - 1/2, -y + 3/2, z - 1/2) and O17—H11···O14 (symmetry code: x, y - 1, z) are the 2 inter-molecular hydrogen bonds connecting the 2 H atoms from the coordinated aqua molecule to singly coordinated acetyl groups (Table 2).

Related literature top

For exchange-coupled structural fragments or exchange clusters in coordination chemistry, see: Cannon & White (1988). For applications and biological activity of 3d-element carboxylates, see: Cannon & White (1988); West (1989); Muettertis (1981). For poly-iron carboxylates, see: Crichton (1991). For bidentate syn--syn bridges, see: Porai-Koshits (1981). For related trioxy-bridged iron compounds, see: Turte et al. (2002). For related literature [on what subject(s)?], see: Losada et al. (1997); Rardin et al. (1992).

Experimental top

The disilanol, 1,3,5,7,9-octaisobutyltetracyclooctasiloxane-endo-3,7-diol, (0.7 g, 0.785 mmol) was dissolved in toluene and reacted with triethyl amine for 20 minutes at room temperature under nitrogen. Then Fe(OAc)2 (0.273 g, 0.785 mmol) (OAc = acetate) was added to a stirring solution and left to react for 6 days. In a solution a red precipitate was formed which was filtered off and left to form crystals of the title compound in the toluene solvent.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.99 Å for methylene H atoms, 0.98 Å for methyl H atoms, 0.95 Å for aromatic H atoms, and 0.93 Å for N—H. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq. The toluene molecule showed large ellipsoids and thus was treated as a disordered species during the refinement. This resulted in population 0.61:0.39 over the two disordered positions. A slightly high residual electron density of 0.89 e.Å-3 located at 0.48 Å from H28 A. This is in the region of the toluene disorder and probably represents no physical meaning. Initial refinement cycles showed a non-zero Flack parameter. It was decided in subsequent refinement cycles to include racemic twinning of the compound. This refined to a 34.1 : 65.9 racemic twin. The two H atoms in the coordinated aqua molecule (O—H) were placed at constrained distances from a Fourier difference map.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmteric unit of (I) with structure of the 3-iron centre anion showing 30% probability displacement ellipsoids.
Triethylammonium hexa-µ2-acetato-κ12O:O'-diacetato- κ2O-aqua-µ3-oxido-triferrate(III) toluene monosolvate top
Crystal data top
(C6H16N)[Fe3(C2H3O2)8O(H2O)]·C7H8F(000) = 1812
Mr = 868.25Dx = 1.516 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 10304 reflections
a = 22.4370 (11) Åθ = 2.0–28.5°
b = 11.1060 (5) ŵ = 1.20 mm1
c = 16.5720 (9) ÅT = 100 K
β = 112.904 (1)°Block, red
V = 3803.9 (3) Å30.18 × 0.07 × 0.06 mm
Z = 4
Data collection top
Bruker KappaCCD APEX DUO 4K
diffractometer
7041 independent reflections
Radiation source: fine-focus sealed tube6362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3029
Tmin = 0.813, Tmax = 0.931k = 1414
10304 measured reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0492P)2 + 4.8845P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7041 reflectionsΔρmax = 0.89 e Å3
543 parametersΔρmin = 0.40 e Å3
159 restraintsAbsolute structure: Flack (1983), 2220 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.341 (17)
Crystal data top
(C6H16N)[Fe3(C2H3O2)8O(H2O)]·C7H8V = 3803.9 (3) Å3
Mr = 868.25Z = 4
Monoclinic, CcMo Kα radiation
a = 22.4370 (11) ŵ = 1.20 mm1
b = 11.1060 (5) ÅT = 100 K
c = 16.5720 (9) Å0.18 × 0.07 × 0.06 mm
β = 112.904 (1)°
Data collection top
Bruker KappaCCD APEX DUO 4K
diffractometer
7041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6362 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.931Rint = 0.029
10304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.89 e Å3
S = 1.01Δρmin = 0.40 e Å3
7041 reflectionsAbsolute structure: Flack (1983), 2220 Friedel pairs
543 parametersAbsolute structure parameter: 0.341 (17)
159 restraints
Special details top

Experimental. The intensity data was collected on a Bruker APEX Duo 4 K KappaCCD diffractometer using an exposure time of 20 s/frame. A total of 589 frames were collected with a frame width of 0.5° covering up to θ = 28.5° with 99.3% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.99287 (19)0.7027 (4)0.7988 (3)0.0186 (8)
C21.0241 (2)0.6087 (4)0.7635 (4)0.0331 (12)
H2A1.02880.63950.71080.050*
H2B0.99710.53620.74860.050*
H2C1.06690.58900.80790.050*
C30.9372 (2)0.7163 (4)0.9869 (3)0.0231 (9)
C40.9357 (3)0.6701 (6)1.0713 (4)0.0465 (15)
H4A0.96780.60591.09450.070*
H4B0.89250.63821.06060.070*
H4C0.94570.73591.11390.070*
C51.0197 (2)1.1325 (4)0.8475 (3)0.0209 (8)
C61.0602 (2)1.2224 (4)0.8224 (4)0.0315 (11)
H6A1.03451.25600.76450.047*
H6B1.09841.18200.82060.047*
H6C1.07381.28740.86580.047*
C70.96959 (19)1.0670 (4)1.0409 (3)0.0211 (8)
C80.9799 (3)1.0896 (6)1.1351 (4)0.0477 (15)
H8A0.94071.12521.13770.072*
H8B1.01641.14491.16160.072*
H8C0.98941.01321.16720.072*
C90.76697 (19)0.9498 (4)0.8365 (3)0.0203 (8)
C100.7001 (2)0.9533 (4)0.8387 (4)0.0326 (11)
H10A0.66850.97800.78120.049*
H10B0.69981.01110.88320.049*
H10C0.68890.87320.85310.049*
C110.8355 (2)0.9855 (4)0.6650 (3)0.0234 (9)
C120.8142 (3)1.0167 (5)0.5696 (4)0.0397 (12)
H12A0.77190.98020.53660.060*
H12B0.84590.98590.54740.060*
H12C0.81101.10440.56250.060*
C130.8422 (2)1.3520 (4)0.7996 (3)0.0247 (9)
C140.8671 (3)1.3651 (5)0.7282 (4)0.0436 (15)
H14A0.85761.44630.70340.065*
H14B0.84601.30570.68220.065*
H14C0.91401.35190.75240.065*
C151.1213 (2)0.8291 (5)1.1531 (3)0.0304 (10)
H15A1.15780.81541.20890.046*
H15B1.09110.76131.14070.046*
H15C1.09890.90351.15670.046*
C161.1456 (2)0.8400 (4)1.0815 (3)0.0228 (9)
O10.93335 (13)0.6928 (2)0.7810 (2)0.0213 (6)
O21.02872 (13)0.7852 (3)0.8441 (2)0.0206 (6)
O30.88558 (14)0.7114 (3)0.9197 (2)0.0244 (7)
O40.98994 (14)0.7581 (3)0.9902 (2)0.0239 (7)
O51.04519 (13)1.0320 (3)0.8760 (2)0.0205 (6)
O60.96459 (14)1.1651 (3)0.8409 (3)0.0275 (8)
O70.91988 (15)1.1103 (3)0.9815 (2)0.0241 (7)
O81.01182 (13)1.0047 (3)1.0281 (2)0.0227 (6)
O90.80089 (13)1.0436 (2)0.8579 (2)0.0218 (6)
O100.78355 (14)0.8548 (3)0.8106 (3)0.0311 (8)
O110.84602 (16)1.0705 (3)0.7181 (2)0.0248 (7)
O120.84056 (16)0.8751 (3)0.6845 (2)0.0279 (7)
O130.84926 (14)1.2543 (3)0.8403 (2)0.0232 (7)
O140.81293 (16)1.4405 (3)0.8161 (3)0.0304 (8)
O151.10608 (13)0.8655 (3)1.0038 (2)0.0197 (6)
O161.20332 (15)0.8192 (4)1.0977 (3)0.0376 (9)
O170.80861 (14)0.6542 (3)0.7410 (2)0.0234 (7)
Fe10.86677 (3)0.79541 (5)0.80355 (4)0.01476 (12)
Fe20.88626 (2)1.08593 (5)0.84973 (4)0.01472 (12)
Fe31.01309 (2)0.89754 (5)0.93051 (4)0.01390 (12)
H100.7746 (14)0.663 (5)0.698 (2)0.021*
H110.810 (2)0.588 (3)0.765 (3)0.021*
N10.2558 (2)0.8833 (4)0.9336 (3)0.0353 (10)
H10.27640.91310.89870.042*
C170.1556 (3)0.8770 (6)0.8004 (5)0.0519 (16)
H17A0.13220.93500.82170.078*
H17B0.12460.82340.75740.078*
H17C0.18080.92020.77280.078*
C180.2000 (3)0.8046 (5)0.8752 (4)0.0440 (14)
H18A0.21720.73570.85300.053*
H18B0.17610.77240.90960.053*
C190.3046 (3)0.8053 (5)1.0036 (4)0.0401 (13)
H19A0.28550.77771.04510.048*
H19B0.31430.73320.97570.048*
C200.3647 (4)0.8699 (6)1.0519 (5)0.0566 (17)
H20A0.38000.90901.01040.085*
H20B0.39760.81301.08820.085*
H20C0.35700.93101.08940.085*
C210.2340 (2)0.9891 (5)0.9700 (4)0.0398 (13)
H21A0.25870.99171.03410.048*
H21B0.18770.97870.95930.048*
C220.2426 (3)1.1085 (5)0.9306 (4)0.0407 (13)
H22A0.28831.11990.94120.061*
H22B0.22811.17450.95780.061*
H22C0.21681.10810.86740.061*
C23A0.0763 (5)0.3095 (10)0.0354 (9)0.042 (3)0.609 (11)
H23A0.04610.24550.01460.050*0.609 (11)
C24A0.0575 (5)0.4243 (10)0.0090 (7)0.045 (2)0.609 (11)
C25A0.0999 (6)0.5198 (11)0.0431 (10)0.050 (3)0.609 (11)
H25A0.08660.59990.02470.060*0.609 (11)
C26A0.1613 (5)0.4974 (9)0.1039 (9)0.046 (3)0.609 (11)
H26A0.19000.56240.12930.055*0.609 (11)
C27A0.1810 (4)0.3809 (8)0.1278 (7)0.041 (2)0.609 (11)
H27A0.22370.36550.16880.049*0.609 (11)
C28A0.1387 (5)0.2856 (9)0.0922 (8)0.044 (2)0.609 (11)
H28A0.15270.20490.10690.052*0.609 (11)
C29A0.0089 (7)0.4397 (18)0.0584 (12)0.105 (6)0.609 (11)
H29A0.01240.39840.11230.157*0.609 (11)
H29B0.01790.52570.07050.157*0.609 (11)
H29C0.04020.40530.03690.157*0.609 (11)
C23B0.0310 (7)0.3495 (12)0.0090 (11)0.049 (4)0.391 (11)
H23B0.00920.30830.00800.059*0.391 (11)
C24B0.0322 (8)0.4684 (13)0.0103 (12)0.049 (4)0.391 (11)
H24B0.00680.50900.04410.058*0.391 (11)
C25B0.0908 (8)0.5305 (15)0.0196 (16)0.056 (6)0.391 (11)
H25B0.09260.61300.00550.067*0.391 (11)
C26B0.1459 (9)0.4693 (13)0.0702 (14)0.049 (4)0.391 (11)
H26B0.18560.51230.09300.058*0.391 (11)
C27B0.1464 (8)0.3473 (13)0.0897 (12)0.041 (3)0.391 (11)
C28B0.0881 (10)0.2889 (15)0.0531 (19)0.055 (6)0.391 (11)
H28B0.08710.20380.05830.066*0.391 (11)
C29B0.2042 (9)0.2809 (18)0.1403 (12)0.060 (5)0.391 (11)
H29D0.19330.19590.14280.091*0.391 (11)
H29E0.22310.31370.19980.091*0.391 (11)
H29F0.23550.28780.11260.091*0.391 (11)
O180.92188 (12)0.9263 (2)0.86103 (19)0.0146 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0153 (17)0.0218 (19)0.016 (2)0.0051 (15)0.0031 (15)0.0016 (16)
C20.022 (2)0.030 (2)0.049 (3)0.0026 (19)0.016 (2)0.013 (2)
C30.023 (2)0.025 (2)0.021 (2)0.0021 (17)0.0072 (18)0.0010 (18)
C40.037 (3)0.072 (4)0.024 (3)0.023 (3)0.004 (2)0.009 (3)
C50.0202 (19)0.0209 (19)0.024 (2)0.0015 (16)0.0116 (18)0.0011 (17)
C60.024 (2)0.027 (2)0.050 (3)0.0002 (18)0.022 (2)0.012 (2)
C70.0173 (18)0.023 (2)0.021 (2)0.0024 (16)0.0047 (17)0.0039 (17)
C80.040 (3)0.074 (4)0.027 (3)0.014 (3)0.011 (2)0.012 (3)
C90.0116 (17)0.0211 (19)0.025 (2)0.0022 (15)0.0035 (16)0.0006 (18)
C100.018 (2)0.026 (2)0.054 (4)0.0027 (18)0.014 (2)0.006 (2)
C110.022 (2)0.026 (2)0.020 (2)0.0057 (17)0.0064 (17)0.0015 (18)
C120.062 (4)0.032 (3)0.024 (3)0.012 (2)0.015 (3)0.003 (2)
C130.024 (2)0.019 (2)0.032 (3)0.0039 (17)0.012 (2)0.0024 (19)
C140.064 (4)0.033 (3)0.052 (4)0.019 (3)0.043 (3)0.019 (3)
C150.023 (2)0.040 (3)0.021 (2)0.004 (2)0.0001 (19)0.001 (2)
C160.0183 (19)0.0192 (19)0.026 (2)0.0015 (16)0.0029 (17)0.0016 (18)
O10.0160 (13)0.0196 (14)0.0253 (17)0.0002 (11)0.0047 (12)0.0080 (13)
O20.0157 (13)0.0217 (14)0.0226 (16)0.0022 (11)0.0056 (12)0.0054 (13)
O30.0208 (14)0.0266 (16)0.0227 (17)0.0095 (12)0.0052 (13)0.0004 (13)
O40.0148 (13)0.0237 (15)0.0290 (18)0.0010 (12)0.0041 (13)0.0070 (14)
O50.0144 (13)0.0203 (14)0.0305 (18)0.0012 (11)0.0126 (13)0.0046 (13)
O60.0194 (14)0.0187 (14)0.051 (2)0.0008 (12)0.0205 (16)0.0046 (15)
O70.0226 (14)0.0257 (15)0.0216 (17)0.0050 (13)0.0061 (13)0.0046 (13)
O80.0152 (13)0.0310 (16)0.0188 (16)0.0012 (12)0.0033 (12)0.0094 (13)
O90.0152 (13)0.0181 (13)0.0349 (19)0.0014 (11)0.0125 (13)0.0001 (13)
O100.0124 (13)0.0229 (15)0.056 (2)0.0036 (12)0.0110 (15)0.0136 (16)
O110.0317 (16)0.0180 (14)0.0242 (17)0.0077 (13)0.0102 (14)0.0021 (13)
O120.0335 (17)0.0223 (15)0.0192 (17)0.0019 (13)0.0007 (14)0.0001 (13)
O130.0225 (14)0.0140 (13)0.0364 (19)0.0029 (11)0.0152 (14)0.0046 (13)
O140.0321 (17)0.0192 (14)0.048 (2)0.0060 (13)0.0250 (17)0.0068 (15)
O150.0106 (12)0.0292 (15)0.0166 (16)0.0000 (11)0.0023 (12)0.0009 (13)
O160.0158 (15)0.062 (2)0.027 (2)0.0049 (16)0.0002 (14)0.0018 (18)
O170.0169 (14)0.0134 (13)0.0293 (19)0.0001 (12)0.0026 (13)0.0030 (13)
Fe10.0098 (2)0.0123 (2)0.0186 (3)0.0006 (2)0.0016 (2)0.0005 (2)
Fe20.0119 (2)0.0124 (2)0.0203 (3)0.0004 (2)0.0067 (2)0.0002 (2)
Fe30.0091 (2)0.0161 (2)0.0151 (3)0.0001 (2)0.0032 (2)0.0013 (2)
N10.035 (2)0.034 (2)0.039 (3)0.0018 (18)0.016 (2)0.003 (2)
C170.037 (3)0.060 (4)0.058 (5)0.001 (3)0.018 (3)0.013 (3)
C180.047 (3)0.049 (3)0.047 (4)0.001 (3)0.030 (3)0.001 (3)
C190.054 (3)0.036 (3)0.037 (3)0.013 (2)0.024 (3)0.005 (2)
C200.073 (5)0.049 (3)0.036 (4)0.014 (3)0.007 (3)0.001 (3)
C210.026 (2)0.055 (3)0.041 (3)0.000 (2)0.016 (2)0.011 (3)
C220.033 (3)0.043 (3)0.048 (4)0.000 (2)0.017 (3)0.005 (3)
C23A0.023 (4)0.051 (4)0.054 (7)0.018 (4)0.018 (4)0.028 (5)
C24A0.035 (4)0.055 (5)0.040 (6)0.011 (4)0.011 (4)0.013 (4)
C25A0.036 (5)0.043 (5)0.062 (8)0.001 (4)0.011 (4)0.014 (5)
C26A0.032 (4)0.039 (4)0.060 (7)0.007 (4)0.012 (4)0.011 (5)
C27A0.019 (3)0.038 (4)0.058 (6)0.010 (3)0.007 (4)0.009 (4)
C28A0.029 (5)0.047 (4)0.055 (6)0.014 (3)0.017 (4)0.018 (5)
C29A0.049 (6)0.133 (13)0.094 (12)0.013 (6)0.016 (6)0.032 (9)
C23B0.050 (7)0.038 (6)0.060 (9)0.012 (5)0.024 (6)0.018 (6)
C24B0.039 (6)0.042 (6)0.071 (11)0.002 (5)0.028 (7)0.012 (7)
C25B0.049 (8)0.032 (7)0.082 (13)0.006 (5)0.021 (9)0.010 (8)
C26B0.042 (7)0.042 (6)0.063 (11)0.011 (5)0.023 (7)0.007 (7)
C27B0.051 (7)0.035 (6)0.045 (8)0.004 (5)0.026 (6)0.011 (6)
C28B0.060 (8)0.035 (7)0.058 (11)0.012 (5)0.012 (9)0.001 (7)
C29B0.062 (8)0.066 (10)0.038 (9)0.006 (7)0.004 (7)0.010 (8)
O180.0109 (12)0.0149 (12)0.0165 (15)0.0006 (10)0.0037 (11)0.0011 (11)
Geometric parameters (Å, º) top
C1—O11.256 (5)Fe2—O132.027 (3)
C1—O21.256 (5)Fe3—O151.995 (3)
C1—C21.498 (6)Fe1—O172.045 (3)
C2—H2A0.9800O17—H100.825 (16)
C2—H2B0.9800O17—H110.833 (16)
C2—H2C0.9800Fe1—O181.906 (3)
C3—O41.253 (5)Fe2—O181.924 (3)
C3—O31.257 (6)Fe3—O181.945 (3)
C3—C41.503 (7)N1—C211.487 (7)
C4—H4A0.9800N1—C191.519 (7)
C4—H4B0.9800N1—C181.524 (8)
C4—H4C0.9800N1—H10.9300
C5—O61.252 (5)C17—C181.488 (9)
C5—O51.259 (5)C17—H17A0.9800
C5—C61.513 (6)C17—H17B0.9800
C6—H6A0.9800C17—H17C0.9800
C6—H6B0.9800C18—H18A0.9900
C6—H6C0.9800C18—H18B0.9900
C7—O81.256 (5)C19—C201.461 (9)
C7—O71.260 (5)C19—H19A0.9900
C7—C81.508 (7)C19—H19B0.9900
C8—H8A0.9800C20—H20A0.9800
C8—H8B0.9800C20—H20B0.9800
C8—H8C0.9800C20—H20C0.9800
C9—O101.248 (5)C21—C221.524 (8)
C9—O91.257 (5)C21—H21A0.9900
C9—C101.515 (5)C21—H21B0.9900
C10—H10A0.9800C22—H22A0.9800
C10—H10B0.9800C22—H22B0.9800
C10—H10C0.9800C22—H22C0.9800
C11—O111.249 (5)C23A—C24A1.361 (13)
C11—O121.261 (5)C23A—C28A1.374 (16)
C11—C121.504 (7)C23A—H23A0.9500
C12—H12A0.9800C24A—C25A1.390 (12)
C12—H12B0.9800C24A—C29A1.483 (17)
C12—H12C0.9800C25A—C26A1.376 (13)
C13—O131.255 (5)C25A—H25A0.9500
C13—O141.270 (5)C26A—C27A1.375 (12)
C13—C141.498 (7)C26A—H26A0.9500
C14—H14A0.9800C27A—C28A1.392 (11)
C14—H14B0.9800C27A—H27A0.9500
C14—H14C0.9800C28A—H28A0.9500
C15—C161.491 (7)C29A—H29A0.9800
C15—H15A0.9800C29A—H29B0.9800
C15—H15B0.9800C29A—H29C0.9800
C15—H15C0.9800C23B—C24B1.362 (15)
C16—O161.239 (5)C23B—C28B1.38 (2)
C16—O151.280 (6)C23B—H23B0.9500
Fe1—O12.026 (3)C24B—C25B1.393 (14)
Fe3—O22.031 (3)C24B—H24B0.9500
Fe1—O32.030 (3)C25B—C26B1.374 (17)
Fe3—O42.012 (3)C25B—H25B0.9500
Fe3—O52.017 (3)C26B—C27B1.391 (14)
Fe2—O62.021 (3)C26B—H26B0.9500
Fe2—O72.032 (3)C27B—C28B1.372 (16)
Fe3—O82.017 (3)C27B—C29B1.44 (3)
Fe2—O92.028 (3)C28B—H28B0.9500
Fe1—O102.026 (3)C29B—H29D0.9800
Fe2—O112.018 (4)C29B—H29E0.9800
Fe1—O122.029 (3)C29B—H29F0.9800
O1—C1—O2125.4 (4)O11—Fe2—O990.93 (14)
O1—C1—C2117.7 (4)O6—Fe2—O9167.59 (12)
O2—C1—C2116.9 (3)O13—Fe2—O981.36 (11)
C1—C2—H2A109.5O18—Fe2—O792.95 (12)
C1—C2—H2B109.5O11—Fe2—O7174.95 (12)
H2A—C2—H2B109.5O6—Fe2—O792.87 (15)
C1—C2—H2C109.5O13—Fe2—O785.96 (13)
H2A—C2—H2C109.5O9—Fe2—O785.65 (13)
H2B—C2—H2C109.5O18—Fe3—O15178.60 (13)
O4—C3—O3125.7 (4)O18—Fe3—O490.23 (12)
O4—C3—C4116.7 (4)O15—Fe3—O488.43 (12)
O3—C3—C4117.6 (4)O18—Fe3—O595.17 (12)
C3—C4—H4A109.5O15—Fe3—O586.18 (12)
C3—C4—H4B109.5O4—Fe3—O5174.50 (12)
H4A—C4—H4B109.5O18—Fe3—O892.16 (11)
C3—C4—H4C109.5O15—Fe3—O887.44 (12)
H4A—C4—H4C109.5O4—Fe3—O888.47 (14)
H4B—C4—H4C109.5O5—Fe3—O892.36 (13)
O6—C5—O5125.3 (4)O18—Fe3—O296.56 (12)
O6—C5—C6117.6 (4)O15—Fe3—O283.84 (12)
O5—C5—C6117.0 (4)O4—Fe3—O291.27 (13)
C5—C6—H6A109.5O5—Fe3—O287.10 (12)
C5—C6—H6B109.5O8—Fe3—O2171.28 (12)
H6A—C6—H6B109.5C21—N1—C19113.2 (4)
C5—C6—H6C109.5C21—N1—C18113.1 (4)
H6A—C6—H6C109.5C19—N1—C18109.1 (4)
H6B—C6—H6C109.5C21—N1—H1107.0
O8—C7—O7125.1 (4)C19—N1—H1107.0
O8—C7—C8116.3 (4)C18—N1—H1107.0
O7—C7—C8118.6 (4)C18—C17—H17A109.5
C7—C8—H8A109.5C18—C17—H17B109.5
C7—C8—H8B109.5H17A—C17—H17B109.5
H8A—C8—H8B109.5C18—C17—H17C109.5
C7—C8—H8C109.5H17A—C17—H17C109.5
H8A—C8—H8C109.5H17B—C17—H17C109.5
H8B—C8—H8C109.5C17—C18—N1109.7 (5)
O10—C9—O9124.7 (4)C17—C18—H18A109.7
O10—C9—C10117.4 (4)N1—C18—H18A109.7
O9—C9—C10117.9 (4)C17—C18—H18B109.7
C9—C10—H10A109.5N1—C18—H18B109.7
C9—C10—H10B109.5H18A—C18—H18B108.2
H10A—C10—H10B109.5C20—C19—N1112.1 (5)
C9—C10—H10C109.5C20—C19—H19A109.2
H10A—C10—H10C109.5N1—C19—H19A109.2
H10B—C10—H10C109.5C20—C19—H19B109.2
O11—C11—O12125.5 (4)N1—C19—H19B109.2
O11—C11—C12117.5 (4)H19A—C19—H19B107.9
O12—C11—C12117.0 (4)C19—C20—H20A109.5
C11—C12—H12A109.5C19—C20—H20B109.5
C11—C12—H12B109.5H20A—C20—H20B109.5
H12A—C12—H12B109.5C19—C20—H20C109.5
C11—C12—H12C109.5H20A—C20—H20C109.5
H12A—C12—H12C109.5H20B—C20—H20C109.5
H12B—C12—H12C109.5N1—C21—C22113.4 (4)
O13—C13—O14121.3 (4)N1—C21—H21A108.9
O13—C13—C14120.1 (4)C22—C21—H21A108.9
O14—C13—C14118.6 (4)N1—C21—H21B108.9
C13—C14—H14A109.5C22—C21—H21B108.9
C13—C14—H14B109.5H21A—C21—H21B107.7
H14A—C14—H14B109.5C21—C22—H22A109.5
C13—C14—H14C109.5C21—C22—H22B109.5
H14A—C14—H14C109.5H22A—C22—H22B109.5
H14B—C14—H14C109.5C21—C22—H22C109.5
C16—C15—H15A109.5H22A—C22—H22C109.5
C16—C15—H15B109.5H22B—C22—H22C109.5
H15A—C15—H15B109.5C24A—C23A—C28A120.5 (9)
C16—C15—H15C109.5C24A—C23A—H23A119.7
H15A—C15—H15C109.5C28A—C23A—H23A119.7
H15B—C15—H15C109.5C23A—C24A—C25A120.4 (10)
O16—C16—O15121.0 (4)C23A—C24A—C29A116.5 (11)
O16—C16—C15119.3 (4)C25A—C24A—C29A123.1 (13)
O15—C16—C15119.7 (4)C26A—C25A—C24A119.5 (10)
C1—O1—Fe1134.5 (3)C26A—C25A—H25A120.3
C1—O2—Fe3128.5 (3)C24A—C25A—H25A120.3
C3—O3—Fe1126.8 (3)C27A—C26A—C25A119.9 (9)
C3—O4—Fe3133.2 (3)C27A—C26A—H26A120.0
C5—O5—Fe3129.4 (2)C25A—C26A—H26A120.0
C5—O6—Fe2136.5 (3)C26A—C27A—C28A120.3 (9)
C7—O7—Fe2129.3 (3)C26A—C27A—H27A119.9
C7—O8—Fe3135.0 (3)C28A—C27A—H27A119.9
C9—O9—Fe2131.1 (3)C23A—C28A—C27A119.2 (9)
C9—O10—Fe1134.4 (3)C23A—C28A—H28A120.4
C11—O11—Fe2135.1 (3)C27A—C28A—H28A120.4
C11—O12—Fe1129.5 (3)C24B—C23B—C28B119.9 (13)
C13—O13—Fe2143.2 (3)C24B—C23B—H23B120.1
C16—O15—Fe3143.4 (3)C28B—C23B—H23B120.1
Fe1—O17—H10123 (4)C23B—C24B—C25B120.0 (15)
Fe1—O17—H11122 (4)C23B—C24B—H24B120.0
H10—O17—H11112 (5)C25B—C24B—H24B120.0
O18—Fe1—O198.04 (11)C26B—C25B—C24B118.2 (14)
O18—Fe1—O1098.97 (12)C26B—C25B—H25B120.9
O1—Fe1—O10162.95 (12)C24B—C25B—H25B120.9
O18—Fe1—O1292.25 (13)C25B—C26B—C27B123.2 (14)
O1—Fe1—O1291.26 (13)C25B—C26B—H26B118.4
O10—Fe1—O1289.39 (15)C27B—C26B—H26B118.4
O18—Fe1—O391.25 (12)C28B—C27B—C26B116.0 (14)
O1—Fe1—O391.14 (13)C28B—C27B—C29B120.1 (15)
O10—Fe1—O387.19 (14)C26B—C27B—C29B123.8 (16)
O12—Fe1—O3175.45 (13)C27B—C28B—C23B122.2 (14)
O18—Fe1—O17179.11 (13)C27B—C28B—H28B118.9
O1—Fe1—O1781.14 (12)C23B—C28B—H28B118.9
O10—Fe1—O1781.87 (12)C27B—C29B—H29D109.5
O12—Fe1—O1787.44 (14)C27B—C29B—H29E109.5
O3—Fe1—O1789.10 (13)H29D—C29B—H29E109.5
O18—Fe2—O1191.22 (12)C27B—C29B—H29F109.5
O18—Fe2—O693.91 (11)H29D—C29B—H29F109.5
O11—Fe2—O689.68 (15)H29E—C29B—H29F109.5
O18—Fe2—O13178.91 (14)Fe1—O18—Fe2119.34 (14)
O11—Fe2—O1389.86 (13)Fe1—O18—Fe3119.94 (13)
O6—Fe2—O1386.25 (11)Fe2—O18—Fe3120.71 (14)
O18—Fe2—O998.48 (11)
O2—C1—O1—Fe14.9 (7)C16—O15—Fe3—O5137.6 (5)
C2—C1—O1—Fe1175.3 (3)C16—O15—Fe3—O845.1 (5)
O1—C1—O2—Fe319.3 (6)C16—O15—Fe3—O2134.9 (5)
C2—C1—O2—Fe3160.5 (3)C3—O4—Fe3—O185.0 (4)
O4—C3—O3—Fe112.3 (7)C3—O4—Fe3—O15174.6 (4)
C4—C3—O3—Fe1166.7 (4)C3—O4—Fe3—O5174.1 (13)
O3—C3—O4—Fe336.5 (7)C3—O4—Fe3—O887.1 (4)
C4—C3—O4—Fe3142.5 (4)C3—O4—Fe3—O2101.6 (4)
O6—C5—O5—Fe36.5 (7)C5—O5—Fe3—O1833.2 (4)
C6—C5—O5—Fe3171.2 (3)C5—O5—Fe3—O15146.5 (4)
O5—C5—O6—Fe211.0 (8)C5—O5—Fe3—O4157.8 (13)
C6—C5—O6—Fe2171.2 (4)C5—O5—Fe3—O859.2 (4)
O8—C7—O7—Fe25.5 (6)C5—O5—Fe3—O2129.5 (4)
C8—C7—O7—Fe2173.8 (4)C7—O8—Fe3—O180.2 (4)
O7—C7—O8—Fe325.2 (7)C7—O8—Fe3—O15178.9 (4)
C8—C7—O8—Fe3154.1 (4)C7—O8—Fe3—O490.4 (4)
O10—C9—O9—Fe26.5 (7)C7—O8—Fe3—O595.1 (4)
C10—C9—O9—Fe2171.1 (3)C7—O8—Fe3—O2178.7 (7)
O9—C9—O10—Fe18.4 (8)C1—O2—Fe3—O1841.0 (4)
C10—C9—O10—Fe1174.1 (4)C1—O2—Fe3—O15137.7 (4)
O12—C11—O11—Fe211.4 (7)C1—O2—Fe3—O449.4 (4)
C12—C11—O11—Fe2169.5 (3)C1—O2—Fe3—O5135.9 (4)
O11—C11—O12—Fe10.4 (7)C1—O2—Fe3—O8137.5 (8)
C12—C11—O12—Fe1179.5 (3)C21—N1—C18—C1759.5 (6)
O14—C13—O13—Fe2179.2 (3)C19—N1—C18—C17173.6 (4)
C14—C13—O13—Fe20.7 (8)C21—N1—C19—C2063.6 (6)
O16—C16—O15—Fe3175.1 (4)C18—N1—C19—C20169.5 (5)
C15—C16—O15—Fe31.8 (7)C19—N1—C21—C22125.8 (5)
C1—O1—Fe1—O181.8 (4)C18—N1—C21—C22109.5 (5)
C1—O1—Fe1—O10173.7 (5)C28A—C23A—C24A—C25A4.0 (14)
C1—O1—Fe1—O1294.3 (4)C28A—C23A—C24A—C29A174.6 (13)
C1—O1—Fe1—O389.6 (4)C23A—C24A—C25A—C26A0.2 (14)
C1—O1—Fe1—O17178.5 (4)C29A—C24A—C25A—C26A178.3 (15)
C9—O10—Fe1—O185.4 (5)C24A—C25A—C26A—C27A2.5 (19)
C9—O10—Fe1—O1179.1 (4)C25A—C26A—C27A—C28A1.4 (18)
C9—O10—Fe1—O1286.8 (5)C24A—C23A—C28A—C27A5.1 (18)
C9—O10—Fe1—O396.2 (5)C26A—C27A—C28A—C23A2.4 (17)
C9—O10—Fe1—O17174.3 (5)C28B—C23B—C24B—C25B4.2 (18)
C11—O12—Fe1—O1830.8 (4)C23B—C24B—C25B—C26B1.7 (16)
C11—O12—Fe1—O1128.9 (4)C24B—C25B—C26B—C27B3 (3)
C11—O12—Fe1—O1068.2 (4)C25B—C26B—C27B—C28B2 (3)
C11—O12—Fe1—O3109.4 (16)C25B—C26B—C27B—C29B178 (2)
C11—O12—Fe1—O17150.1 (4)C26B—C27B—C28B—C23B8 (4)
C3—O3—Fe1—O1831.3 (4)C29B—C27B—C28B—C23B176 (2)
C3—O3—Fe1—O166.8 (4)C24B—C23B—C28B—C27B9 (3)
C3—O3—Fe1—O10130.2 (4)O1—Fe1—O18—Fe2149.07 (16)
C3—O3—Fe1—O12171.4 (15)O10—Fe1—O18—Fe232.25 (19)
C3—O3—Fe1—O17147.9 (4)O12—Fe1—O18—Fe257.48 (17)
C11—O11—Fe2—O1813.6 (4)O3—Fe1—O18—Fe2119.60 (17)
C11—O11—Fe2—O6107.5 (4)O17—Fe1—O18—Fe2127 (9)
C11—O11—Fe2—O13166.2 (4)O1—Fe1—O18—Fe331.10 (18)
C11—O11—Fe2—O984.9 (4)O10—Fe1—O18—Fe3147.57 (18)
C11—O11—Fe2—O7132.1 (14)O12—Fe1—O18—Fe3122.69 (17)
C5—O6—Fe2—O185.9 (5)O3—Fe1—O18—Fe360.22 (17)
C5—O6—Fe2—O1197.1 (5)O17—Fe1—O18—Fe353 (9)
C5—O6—Fe2—O13173.0 (5)O11—Fe2—O18—Fe151.24 (17)
C5—O6—Fe2—O9170.0 (6)O6—Fe2—O18—Fe1141.00 (18)
C5—O6—Fe2—O787.3 (5)O13—Fe2—O18—Fe1121 (6)
C13—O13—Fe2—O18142 (6)O9—Fe2—O18—Fe139.88 (19)
C13—O13—Fe2—O1145.9 (5)O7—Fe2—O18—Fe1125.92 (17)
C13—O13—Fe2—O643.8 (5)O11—Fe2—O18—Fe3128.94 (17)
C13—O13—Fe2—O9136.9 (5)O6—Fe2—O18—Fe339.17 (19)
C13—O13—Fe2—O7136.9 (5)O13—Fe2—O18—Fe359 (6)
C9—O9—Fe2—O1829.3 (4)O9—Fe2—O18—Fe3139.94 (17)
C9—O9—Fe2—O1162.0 (4)O7—Fe2—O18—Fe353.91 (17)
C9—O9—Fe2—O6154.8 (6)O15—Fe3—O18—Fe163 (6)
C9—O9—Fe2—O13151.8 (4)O4—Fe3—O18—Fe147.54 (18)
C9—O9—Fe2—O7121.7 (4)O5—Fe3—O18—Fe1131.42 (17)
C7—O7—Fe2—O1830.2 (4)O8—Fe3—O18—Fe1136.02 (17)
C7—O7—Fe2—O11175.9 (14)O2—Fe3—O18—Fe143.76 (18)
C7—O7—Fe2—O663.9 (4)O15—Fe3—O18—Fe2117 (5)
C7—O7—Fe2—O13149.9 (4)O4—Fe3—O18—Fe2132.28 (17)
C7—O7—Fe2—O9128.5 (4)O5—Fe3—O18—Fe248.76 (18)
C16—O15—Fe3—O1828 (6)O8—Fe3—O18—Fe243.81 (18)
C16—O15—Fe3—O443.5 (5)O2—Fe3—O18—Fe2136.42 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O14i0.931.872.789 (6)168
O17—H10···O16ii0.83 (2)1.81 (2)2.635 (5)176 (5)
O17—H11···O14iii0.83 (2)1.83 (2)2.665 (4)178 (5)
C12—H12B···O7iv0.982.553.526 (6)174
C14—H14C···O60.982.543.166 (7)122
C15—H15C···O80.982.533.188 (6)125
C19—H19A···O16v0.992.373.221 (6)144
C21—H21B···O15v0.992.553.418 (5)146
C22—H22A···O3vi0.982.553.476 (6)157
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+3/2, z1/2; (iii) x, y1, z; (iv) x, y+2, z1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C6H16N)[Fe3(C2H3O2)8O(H2O)]·C7H8
Mr868.25
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)22.4370 (11), 11.1060 (5), 16.5720 (9)
β (°) 112.904 (1)
V3)3803.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.18 × 0.07 × 0.06
Data collection
DiffractometerBruker KappaCCD APEX DUO 4K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.813, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
10304, 7041, 6362
Rint0.029
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.01
No. of reflections7041
No. of parameters543
No. of restraints159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.40
Absolute structureFlack (1983), 2220 Friedel pairs
Absolute structure parameter0.341 (17)

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Fe1—O12.026 (3)Fe1—O102.026 (3)
Fe3—O22.031 (3)Fe2—O112.018 (4)
Fe1—O32.030 (3)Fe1—O122.029 (3)
Fe3—O42.012 (3)Fe2—O132.027 (3)
Fe3—O52.017 (3)Fe3—O151.995 (3)
Fe2—O62.021 (3)Fe1—O172.045 (3)
Fe2—O72.032 (3)Fe1—O181.906 (3)
Fe3—O82.017 (3)Fe2—O181.924 (3)
Fe2—O92.028 (3)Fe3—O181.945 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O14i0.931.872.789 (6)167.5
O17—H10···O16ii0.825 (16)1.811 (17)2.635 (5)176 (5)
O17—H11···O14iii0.833 (16)1.832 (17)2.665 (4)178 (5)
C12—H12B···O7iv0.982.553.526 (6)174
C14—H14C···O60.982.543.166 (7)122
C15—H15C···O80.982.533.188 (6)125
C19—H19A···O16v0.992.373.221 (6)144
C21—H21B···O15v0.992.553.418 (5)146
C22—H22A···O3vi0.982.553.476 (6)157
Symmetry codes: (i) x1/2, y1/2, z; (ii) x1/2, y+3/2, z1/2; (iii) x, y1, z; (iv) x, y+2, z1/2; (v) x1, y, z; (vi) x1/2, y+1/2, z.
 

Acknowledgements

ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and the University of Johannesburg is also gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, R. D. & White, R. P. (1988). Prog. Inorg. Chem. 36, 195–297.  CrossRef CAS Web of Science Google Scholar
First citationCrichton, K. K. (1991). In Inorganic Biochemistry of Iron Metabolism. New York, Harvard.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLosada, G., Mendiola, M. A. & Sevilla, M. T. (1997). Inorg. Chim. Acta, 255, 125–131.  CrossRef CAS Web of Science Google Scholar
First citationMuettertis, E. L. (1981). Catal. Rev. 23, 69–81.  Google Scholar
First citationPorai-Koshits, M. A. (1981). Itogi Nauk. Tekh. Ser. Kristallokhim. 15, 123–129.  Google Scholar
First citationRardin, R. L., Poganiuch, P., Bino, A., Goldberg, D. P., Tolman, W. B., Liu, S. & &Lippard, S. J. (1992). J. Am. Chem. Soc. 114, 5240–5249.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurte, K. I., Shova, S. G., Meriacre, V. M., Gdaniec, M., Simonov, Y. A., Lipkowski, J., Bartolome, J., Wagner, F. & Filoti, G. (2002). J. Struct. Chem. 43, 108–117.  Web of Science CrossRef CAS Google Scholar
First citationWest, B. O. (1989). Polyhedron, 8, 219–247.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1092-m1093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds