organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1924-o1925

1-(Benz­yl­oxy)naphthalene

aSchool of Chemistry, Bharathidasn University, Tiruchirappalli 620 024, Tamilnadu, India, bPG and Research Department of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, Tamilnadu, India, and cPG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli 620 020, Tamilnadu, India
*Correspondence e-mail: ilangovanbdu@yahoo.com

(Received 27 April 2011; accepted 27 June 2011; online 6 July 2011)

In the title compound, C17H14O, the dihedral angle between the naphthyl ring system and the benzyl group is 83.22 (4)°. Both of these moieties are planar, with mean deviations from their least-squares planes, defined by the naphthyl ring C atoms and the O atom, and the phenyl ring C atoms and the benzyl α-C atom, of 0.0176 (1) and 0.0024 (13) Å, respectively. The crystal structure is stabilized by C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.7817 (10) Å].

Related literature

For the synthesis of benzyl-1-naphthyl ether, see: Mohamed & Arunadevi (2010[Mohamed, M. I. F. & Arunadevi, S. (2010). J. Chem. Pharm. Res. 2, 296-300.]); For related structures, see: Hassan et al. (2008a[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008a). Acta Cryst. E64, o1820.],b[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008b). Acta Cryst. E64, o1821.],c[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008c). Acta Cryst. E64, o1822.],d[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008d). Acta Cryst. E64, o1823.], 2009a[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2009a). Acta Cryst. E65, o731.],b[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2009b). Acta Cryst. E65, o732.]); Abdullah & Ng (2008[Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.]). For applications of naphthyl ethers, see: Fernandes et al. (2011[Fernandes, J. P., Carvalho, B. S., Luchez, C. V., Politi, M. J. & Brandt, C. A. (2011). Ultrason. Sonochem. 18, 489-493.]); Scanu et al. (2007[Scanu, D., Yelampieva, N. P. & Deschenau, R. (2007). Macromolecules, 40, 1133-1139.]); He et al. (2008[He, L., Wang, Q., Zhou, G. C., Guo, L. & Yu, X. Q. (2008). ARKIVOC, xii, 103-108.]). For the use of benzyl protecting groups, see: Rao & Senthilkumar (2001[Rao, H. S. P. & Senthilkumar, S. P. (2001). Proc. - Indian Acad. Sci. Chem. Sci. 113, 191-196.]). For the role of benzyl ether inter­mediates in sigmatropic rearrangement reactions, see: Salunkhe et al. (1994[Salunkhe, M. M., Thorat, M. T., Mane, R. B. & Sande, A. R. (1994). Bull. Soc. Chem. Belg. 103, 691-693.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O

  • Mr = 234.28

  • Orthorhombic, P c c n

  • a = 13.0210 (6) Å

  • b = 24.8832 (10) Å

  • c = 7.9478 (3) Å

  • V = 2575.12 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.07 × 0.06 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 22084 measured reflections

  • 2418 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.02

  • 2418 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/C9/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.72 3.6168 (18) 161
C16—H16⋯Cg1ii 0.93 2.85 3.6847 (18) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Benzyl groups are commonly used in organic synthesis as protecting group for alcohol, phenol, naphthol and carboxylic acids, because they are stable to acid, alkali and number of other usual reagents (Rao & Senthilkumar, 2001, He et al., 2008). Benzyl ether intermediates can play an important role in sigmatropic rearrangement reactions such as Claisen and Cope rearrangements (Salunkhe et al., 1994). Similarly, benzyl ethers have been used in the chemical engineering of macromolecules (Scanu et al., 2007). The aromatic ether derivatives of naphthols have been used in the field of pharmaceuticals, agrochemicals and fungicides (Fernandes et al., 2011). In the view of the importance of these compounds, we recently reported a simple method for the preparation of 1- naphthyl ethers (Mohamed & Arunadevi, 2010). In this connection, the crystal structure of the title compound is reported here.

In the crystal structure of the title compound (Fig. 1), both the naphthyl ring and phenyl ring are planar with a mean deviation from the least- squares plane defined by naphthyl ring carbon atoms (C1—C10) and O1 of 0.0176(0.001) Å. Similarly the mean deviation for the phenyl ring carbon atoms (C11—C16) and C17 of the benzyl group is 0.024(0.0013) Å. The dihedral angle between both planes is 83.22(0.04) °.

The angle between three atoms C1—O1—C11 is 117.72 (11) ° is in agreement with the corresponding value other structurally characterized benzyl-1-naphthyl ethers (Hassan et al., 2008a, 2008b, 2008c, 2008d, 2009a, 2009b). However, the C1—O1 bond length is 1.3678 (17) Å, shorter compared to the same. The naphthyl ring and phenyl ring are mutually perpendicular with each other, the torsion angle between C1—O1—C11—C12 is 177.98 (12) °. The crystal structure is stabilized by weak C—H···π interactions, between the C—H(5) and centroid of the ring 1 (C1—C4/C9/C10) with the distance 2.72 Å [symmetry code: x, 3/2 - y, -1/2 + z] and another weak C—H···π interaction could be seen between the C—H(16) and centroid of the ring 1 (C1—C4/C9/C10) with the distance 2.85 Å [symmetry code: 1 - x,-y, 2 - z]. The packing diagram of the titled compound are shown in the Fig.2. The centroid to centroid ππ interactions could be observed between the phenyl ring (C12—C17) with a distance of 3.7817 (10) Å [symmetry code: -x, 1-y, -z].

Related literature top

For the synthesis of benzyl-1-naphthyl ether, see: Mohamed & Arunadevi (2010); For related structures, see: Hassan et al. (2008a,b,c,d, 2009a,b); Abdullah & Ng (2008). For applications of naphthyl ethers, see: Fernandes et al. (2011); Scanu et al. (2007); He et al. (2008). For the use of benzyl protecting groups, see: Rao & Senthilkumar (2001). For the role of benzyl ether intermediates in sigmatropic rearrangement reactions, see: Salunkhe et al. (1994).

Experimental top

A mixture of 1-naphthol (1.44 g, 10 mmol), triethylamine (1.01 g, 10 mmol) and benzyl bromide (1.71 g, 10 m.mol) in a micellar medium (10 ml) were stirred for 30 minutes at 30 °C and kept overnight at room temperature. The solid product obtained was filtered, washed with water and recrystallized from ethanol to get benzyl-1- naphthyl ether (70%, mp 354 K). The product was characterized by spectral data and compared with pervious report (Mohamed & Arunadevi, 2010).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H=0.93Å for naphthyl and phenyl H atom, 0.97Å for methylene H atoms, respectively, Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of packing arrangement of the titled compound along a axis.
[Figure 3] Fig. 3. Enhanced Jmol view of the title compound showing displacement ellipsoids at the 50% probability level.
1-(Benzyloxy)naphthalene top
Crystal data top
C17H14OF(000) = 992
Mr = 234.28Dx = 1.209 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2417 reflections
a = 13.0210 (6) Åθ = 3.1–21.2°
b = 24.8832 (10) ŵ = 0.07 mm1
c = 7.9478 (3) ÅT = 296 K
V = 2575.12 (19) Å3Prism, colourless
Z = 80.07 × 0.06 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1609 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.6°, θmin = 1.6°
ϕ and ω scansh = 1514
22084 measured reflectionsk = 3030
2418 independent reflectionsl = 99
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3925P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max = 0.001
wR(F2) = 0.099Δρmax = 0.13 e Å3
S = 1.02Δρmin = 0.12 e Å3
2418 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
164 parametersExtinction coefficient: 0.0079 (9)
0 restraints
Crystal data top
C17H14OV = 2575.12 (19) Å3
Mr = 234.28Z = 8
Orthorhombic, PccnMo Kα radiation
a = 13.0210 (6) ŵ = 0.07 mm1
b = 24.8832 (10) ÅT = 296 K
c = 7.9478 (3) Å0.07 × 0.06 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1609 reflections with I > 2σ(I)
22084 measured reflectionsRint = 0.059
2418 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2418 reflectionsΔρmin = 0.12 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03144 (8)0.60213 (4)0.09247 (13)0.0529 (3)
C10.02611 (11)0.63577 (5)0.00569 (18)0.0420 (4)
C100.02903 (11)0.65924 (5)0.14237 (18)0.0399 (4)
C90.02477 (12)0.69375 (5)0.25359 (19)0.0464 (4)
C120.05778 (12)0.53982 (6)0.31348 (18)0.0473 (4)
C80.13464 (12)0.65015 (6)0.16880 (19)0.0490 (4)
H80.17030.62730.09720.059*
C50.02988 (15)0.71737 (7)0.3876 (2)0.0621 (5)
H50.00450.73970.46260.075*
C20.12767 (12)0.64702 (6)0.0187 (2)0.0507 (4)
H20.16250.63210.10960.061*
C130.12458 (13)0.56037 (7)0.4314 (2)0.0595 (5)
H130.12190.59670.45810.071*
C110.01908 (12)0.57545 (7)0.2298 (2)0.0577 (5)
H11A0.07630.55430.18840.069*
H11B0.04520.60170.30930.069*
C40.13007 (13)0.70384 (6)0.2253 (2)0.0568 (5)
H40.16580.72640.29810.068*
C30.17964 (13)0.68115 (6)0.0938 (2)0.0569 (5)
H30.24910.68820.07750.068*
C60.13163 (16)0.70813 (7)0.4092 (2)0.0667 (5)
H60.16610.72420.49840.08*
C170.06300 (13)0.48573 (7)0.2763 (2)0.0556 (4)
H170.01830.47110.19730.067*
C160.13394 (14)0.45329 (7)0.3553 (2)0.0618 (5)
H160.1370.41690.3290.074*
C140.19522 (13)0.52779 (7)0.5101 (2)0.0660 (5)
H140.23990.54220.58940.079*
C70.18510 (13)0.67464 (7)0.2986 (2)0.0600 (5)
H70.25510.6690.31340.072*
C150.19991 (13)0.47420 (7)0.4721 (2)0.0608 (5)
H150.24760.45220.52520.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0472 (6)0.0611 (7)0.0503 (7)0.0055 (5)0.0024 (5)0.0189 (5)
C10.0438 (9)0.0394 (8)0.0427 (8)0.0022 (7)0.0049 (7)0.0000 (7)
C100.0463 (9)0.0340 (7)0.0394 (8)0.0015 (7)0.0037 (7)0.0035 (6)
C90.0608 (11)0.0349 (8)0.0434 (9)0.0011 (7)0.0083 (8)0.0024 (7)
C120.0473 (9)0.0524 (9)0.0424 (9)0.0019 (8)0.0040 (7)0.0094 (8)
C80.0501 (10)0.0525 (9)0.0445 (9)0.0001 (8)0.0032 (8)0.0007 (7)
C50.0854 (14)0.0488 (10)0.0521 (10)0.0012 (9)0.0036 (10)0.0101 (8)
C20.0482 (10)0.0507 (9)0.0532 (10)0.0005 (8)0.0013 (8)0.0004 (8)
C130.0669 (12)0.0488 (9)0.0627 (11)0.0032 (9)0.0085 (10)0.0010 (9)
C110.0535 (11)0.0673 (11)0.0523 (10)0.0006 (8)0.0067 (8)0.0184 (9)
C40.0632 (12)0.0502 (9)0.0570 (11)0.0143 (8)0.0140 (9)0.0010 (8)
C30.0462 (10)0.0580 (10)0.0666 (11)0.0103 (8)0.0060 (9)0.0043 (9)
C60.0868 (15)0.0621 (11)0.0513 (11)0.0133 (10)0.0093 (10)0.0073 (9)
C170.0624 (11)0.0582 (11)0.0461 (9)0.0054 (9)0.0026 (8)0.0010 (8)
C160.0750 (12)0.0508 (10)0.0597 (11)0.0070 (9)0.0035 (10)0.0013 (9)
C140.0633 (12)0.0729 (12)0.0619 (12)0.0047 (10)0.0169 (10)0.0001 (10)
C70.0559 (10)0.0680 (11)0.0560 (11)0.0078 (9)0.0076 (9)0.0022 (9)
C150.0571 (11)0.0673 (12)0.0578 (11)0.0126 (9)0.0010 (9)0.0132 (9)
Geometric parameters (Å, º) top
O1—C11.3677 (16)C13—C141.377 (2)
O1—C111.4372 (17)C13—H130.93
C1—C21.366 (2)C11—H11A0.97
C1—C101.4272 (19)C11—H11B0.97
C10—C81.409 (2)C4—C31.352 (2)
C10—C91.4176 (19)C4—H40.93
C9—C51.409 (2)C3—H30.93
C9—C41.412 (2)C6—C71.397 (2)
C12—C131.377 (2)C6—H60.93
C12—C171.380 (2)C17—C161.378 (2)
C12—C111.493 (2)C17—H170.93
C8—C71.367 (2)C16—C151.367 (2)
C8—H80.93C16—H160.93
C5—C61.356 (2)C14—C151.369 (2)
C5—H50.93C14—H140.93
C2—C31.407 (2)C7—H70.93
C2—H20.93C15—H150.93
C1—O1—C11117.72 (12)O1—C11—H11B110.1
C2—C1—O1125.11 (14)C12—C11—H11B110.1
C2—C1—C10120.74 (13)H11A—C11—H11B108.5
O1—C1—C10114.15 (12)C3—C4—C9120.82 (15)
C8—C10—C9119.11 (14)C3—C4—H4119.6
C8—C10—C1122.59 (13)C9—C4—H4119.6
C9—C10—C1118.29 (13)C4—C3—C2120.93 (16)
C5—C9—C4122.44 (15)C4—C3—H3119.5
C5—C9—C10118.31 (15)C2—C3—H3119.5
C4—C9—C10119.24 (14)C5—C6—C7120.58 (16)
C13—C12—C17118.49 (15)C5—C6—H6119.7
C13—C12—C11120.38 (15)C7—C6—H6119.7
C17—C12—C11121.12 (15)C16—C17—C12120.45 (16)
C7—C8—C10120.67 (15)C16—C17—H17119.8
C7—C8—H8119.7C12—C17—H17119.8
C10—C8—H8119.7C15—C16—C17120.49 (16)
C6—C5—C9121.22 (16)C15—C16—H16119.8
C6—C5—H5119.4C17—C16—H16119.8
C9—C5—H5119.4C15—C14—C13120.21 (16)
C1—C2—C3119.97 (15)C15—C14—H14119.9
C1—C2—H2120C13—C14—H14119.9
C3—C2—H2120C8—C7—C6120.08 (17)
C14—C13—C12120.84 (15)C8—C7—H7120
C14—C13—H13119.6C6—C7—H7120
C12—C13—H13119.6C16—C15—C14119.51 (16)
O1—C11—C12107.80 (12)C16—C15—H15120.2
O1—C11—H11A110.1C14—C15—H15120.2
C12—C11—H11A110.1
C11—O1—C1—C21.5 (2)C11—C12—C13—C14179.53 (15)
C11—O1—C1—C10178.07 (12)C1—O1—C11—C12177.97 (12)
C2—C1—C10—C8177.82 (14)C13—C12—C11—O183.11 (18)
O1—C1—C10—C82.56 (19)C17—C12—C11—O197.56 (17)
C2—C1—C10—C91.1 (2)C5—C9—C4—C3178.92 (15)
O1—C1—C10—C9178.56 (12)C10—C9—C4—C30.2 (2)
C8—C10—C9—C50.5 (2)C9—C4—C3—C20.2 (2)
C1—C10—C9—C5179.38 (13)C1—C2—C3—C41.0 (2)
C8—C10—C9—C4178.67 (13)C9—C5—C6—C70.2 (3)
C1—C10—C9—C40.3 (2)C13—C12—C17—C160.3 (2)
C9—C10—C8—C70.7 (2)C11—C12—C17—C16179.60 (15)
C1—C10—C8—C7178.16 (14)C12—C17—C16—C150.2 (3)
C4—C9—C5—C6178.20 (16)C12—C13—C14—C150.1 (3)
C10—C9—C5—C60.9 (2)C10—C8—C7—C61.5 (2)
O1—C1—C2—C3178.15 (14)C5—C6—C7—C81.0 (3)
C10—C1—C2—C31.4 (2)C17—C16—C15—C140.1 (3)
C17—C12—C13—C140.2 (2)C13—C14—C15—C160.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.723.6168 (18)161
C16—H16···Cg1ii0.932.853.6847 (18)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14O
Mr234.28
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)13.0210 (6), 24.8832 (10), 7.9478 (3)
V3)2575.12 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.07 × 0.06 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22084, 2418, 1609
Rint0.059
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.02
No. of reflections2418
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.723.6168 (18)161
C16—H16···Cg1ii0.932.853.6847 (18)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z.
 

Acknowledgements

APV and AI are grateful to the DST-India (FIST program) for the use of the diffractometer at the School of Chemistry, Bharathidasan University.

References

First citationAbdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernandes, J. P., Carvalho, B. S., Luchez, C. V., Politi, M. J. & Brandt, C. A. (2011). Ultrason. Sonochem. 18, 489–493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008a). Acta Cryst. E64, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008b). Acta Cryst. E64, o1821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008c). Acta Cryst. E64, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008d). Acta Cryst. E64, o1823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2009a). Acta Cryst. E65, o731.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2009b). Acta Cryst. E65, o732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L., Wang, Q., Zhou, G. C., Guo, L. & Yu, X. Q. (2008). ARKIVOC, xii, 103-108.  CrossRef Google Scholar
First citationMohamed, M. I. F. & Arunadevi, S. (2010). J. Chem. Pharm. Res. 2, 296–300.  Google Scholar
First citationRao, H. S. P. & Senthilkumar, S. P. (2001). Proc. - Indian Acad. Sci. Chem. Sci. 113, 191–196.  CrossRef CAS Google Scholar
First citationSalunkhe, M. M., Thorat, M. T., Mane, R. B. & Sande, A. R. (1994). Bull. Soc. Chem. Belg. 103, 691–693.  CrossRef CAS Google Scholar
First citationScanu, D., Yelampieva, N. P. & Deschenau, R. (2007). Macromolecules, 40, 1133–1139.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages o1924-o1925
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds