organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1778-o1779

The herbicide triflusulfuron-meth­yl

aInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 11 June 2011; accepted 14 June 2011; online 22 June 2011)

The mol­ecule of the title compound [systematic name: methyl 2-({[4-dimethyl­amino-6-(2,2,2-trifluoro­eth­oxy)-1,3,5-triazin-2-yl]carbamo­yl}sulfamo­yl)-3-methyl­benzoate], C17H19F3N6O6S, features a nearly planar (r.m.s. deviation = 0.098 Å) dimethyl­amino­triazinyl-urea group with a short intra­molecular N—H⋯N hydrogen bond to a triazine N atom. An intra­molecular dipole–dipole inter­action between the sulfamide and carboxyl­ate groups, with Os⋯Cc = 2.800 (1) Å and Ns⋯Oc = 2.835 (1) Å, controls the orientation of the methyl­benzoate group and the shape of the mol­ecule. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonding, C—H⋯X (X = N,O) inter­actions and arene ππ stacking.

Related literature

For general information on the synthesis and herbicidal properties of the title compound, see: EFSA (2008[EFSA (2008). European Food Safety Authority Scientific Report 2008, Vol. 195, pp. 1-115. Conclusion on the peer review of triflusulfuron. www.efsa.europa.eu/en/efsajournal/pub/195r.html.]); Moon (1989[Moon, M. P. (1989). WO Patent 8909214 A1.]); Peeples et al. (1991[Peeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25-30.]); Wittenbach et al. (1994[Wittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). Pestic. Biochem. Physiol. 49, 72-81.]). For the inhibition mechanism of sulfonyl­urea herbicides on acetohy­droxy acid syntheases, see: Duggleby et al. (2008[Duggleby, R. G., McCourt, J. A. & Guddat, L. W. (2008). Plant Phys. Biochem. 46, 309-324.]); McCourt et al. (2005[McCourt, J. A., Pang, S. S., Guddat, L. W. & Duggleby, R. G. (2005). Biochemistry, 44, 2330-2338.]). For the crystal structures of related sulfonyl­urea compounds, see: Ma, Wang et al. (2003[Ma, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, o438-o440.]); Ma, Li et al. (2003[Ma, N., Li, Z.-M., Wang, J.-G. & Song, H.-B. (2003). Acta Cryst. E59, o275-o276.]); Wang et al. (2004[Wang, B.-L., Ma, N., Wang, J.-G., Ma, Y., Li, Z.-M. & Leng, X.-B. (2004). Jiegou Huaxue, 23, 783-787.]); Sorokin et al. (1993[Sorokin, V. I., Golosov, S. N., Kornilov, A. N., Yufit, D. S., Struchkov, Yu. T. & Drozd, V. N. (1993). Khim. Get. Soedin. SSSR (Russ.) (Chem. Heterocycl. Compd), pp. 1670-1675.]); Liu et al. (2008[Liu, Q.-X., Wu, X.-M., Liu, S.-W., Song, H.-B., Wang, X.-G. & Guo, J.-H. (2008). J. Coord. Chem. 61, 2990-2998.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19F3N6O6S

  • Mr = 492.44

  • Monoclinic, C 2/c

  • a = 16.7107 (11) Å

  • b = 15.6406 (11) Å

  • c = 17.1875 (12) Å

  • β = 107.035 (1)°

  • V = 4295.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.55 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.94

  • 31010 measured reflections

  • 6217 independent reflections

  • 5708 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.102

  • S = 1.07

  • 6217 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N5 0.88 1.95 2.6410 (13) 135
N2—H2N⋯N3i 0.88 2.03 2.8998 (12) 172
C9—H9A⋯O5 0.98 2.42 3.2253 (16) 139
C14—H14B⋯O3 0.98 2.59 3.4363 (16) 145
C14—H14C⋯O5ii 0.98 2.42 3.2637 (14) 143
C16—H16A⋯O2iii 0.99 2.55 3.4209 (14) 147
C16—H16B⋯O1iv 0.99 2.32 3.2325 (14) 153
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triflusulfuron-methyl, methyl 2-[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]carbamoylsulfamoyl]-3-methylbenzoate, (I), is the methyl ester of Triflusulfuron. Both substances are triazinylsulfonylurea herbicides, a subclass of sulfonylurea herbicides. These substances are efficient inhibitors of acetohydroxyacid synthase (AHAS), which impairs the synthesis of the branched-chain amino acids valine, leucine and isoleucine in plants leading to the cessation of cell division and subsequent growth processes (EFSA, 2008). Triflusulfuron-methyl is in use as a post-emergence herbicide in crop protection of sugar and fodder beet in order to control various annual grasses and broad–leaved weeds like fools parsley, mayweeds, brassica species, or small nettle (Moon, 1989; Peeples et al., 1991; Wittenbach et al., 1994). Trade names of the originator DuPontTM (Moon, 1989) for formulations of (I) are UpBeet in the USA and Canada, and Debut or Safari in Europe. For mammalians, the toxicity of Triflusulfuron-methyl is comparatively low whereas it is high for aquatic organisms (EFSA, 2008). In view of the actual importance of this substance a crystal structure determination was carried out and is presented here.

A view of the asymmetric unit of the structure is presented in Fig. 1. Bond lengths and angles in the molecule exhibit normal values (Allen et al., 1987) and are in good agreement with the few related crystal structures, which have been determined so far with comparable accuracy [refcodes RACCOO (Ma, Wang et al., 2003), XUYTUG (Ma, Li et al., 2003), NAFWAT (Wang et al., 2004) and YUZHUW (Sorokin et al., 1993); Cambridge Structural Database, Version 5.31, with Aug. 2010 updates; Allen, 2002]. The molecule of the title compound can be divided into three approximately planar parts: (i) the triazinylsulfonylurea group including the triazine substituents N(CH3)2 and OCH2CF3 comprising the 18 atoms S1, O2, O5, O6, N1 to N6, and C10 to C17 with a r.m.s. deviation from planarity of 0.098 Å; (ii) the methylphenyl group with a r.m.s. deviation from planarity of 0.011 Å; and (iii) the methylcarboxylate group with a r.m.s. deviation from planarity of 0.002 Å. The interplanar angle is 75.26 (2)° between (i) and (ii), and 48.07 (6)° between (ii) and (iii). The mutual orienations of these three parts and the shape of the entire molecule are controlled by two remarkable intramolecular interactions. Firstly, by a short and strong internal hydrogen bond N1—H1n···N5 with N1···N5 = 2.641 (1) Å, where H1n is the most acidic hydrogen atom of the compound and N5 is a triazine nitrogen as the acceptor (Fig. 1). Secondly, by an intramolecular dipole-dipole interaction between the sulfamoyl and the carboxylate group with the very short contact distances O2···C7 = 2.800 (1) Å and O3···N1 = 2.835 (1) Å (Fig. 1). These interactions are characteristic also for other triazinyl- and pyrimidinyl-sulfonylurea compounds, e.g. for RACCOO (Ma, Wang et al., 2003) where the corresponding distances are N(H)···N = 2.690 Å, O···C = 2.823 Å, and O···N = 3.198 Å, respectively. As the result the stereochemistry and shape of the molecule cores of all these compounds is in crystalline state remarkably uniform. Interestingly this stereochemistry changes drastically when the molecules enter the herbicide binding site of acetohydroxyacid synthases (AHAS): There molecules like (I) convert by ~180°-rotations about the bonds C11—N2 and N2—C10, which opens the intramolecular hydrogen bond N1—H1n···N5, makes both NH groups to be approximately parallel and exo-oriented toward hydrogen bond acceptors like H2O, and brings O5, N3, and O6 closely together for hydrogen bond interactions with the guanidine terminus of an arginine in the herbicide pocket of AHAS enzymes (McCourt et al., 2005; Duggleby et al., 2008). Such conversion also takes place under concomitant deprotonation of N1 when a triazinyl- or pyrimidinyl-sulfonylurea compound chelates a metal atom with the urea oxygen (O becomes formally anionic by NH-deprotonation) and a triazine/pyrimidine nitrogen, e.g. in the Cu complex MOGTIM (Liu et al., 2008).

Further hydrogen bond-like interactions in (I) are listed in Table 1. The most important of them, apart from N1—H1n···N5, is the intermolecular bond N2—H2n···N3i, two of which link a pair of molecules related by a twofold symmetry axis (Fig. 1). In the crystal lattice these hydrogen bonded pairs interact then by π-π-stacking between pairs of inversion related and mutually slipped dimethylamino-triazine groups with a C13—C13(1 - x,1 - y,1 - z) distance of 3.460 (2) Å (ring-ring perpendicular distance 3.420 Å, ring-ring slippage 2.743 Å) and by weaker π-π-stacking between inversion related pairs of benzene rings (perpendicular distance 3.587 Å, ring-ring slippage 1.002 Å). Fig. 2 exemplifies a part of the crystal lattice with N—H···N hydrogen bonds and triazine π-π- interactions. A packing diagram of the structure is depicted in Fig. 3.

Related literature top

For general information on the synthesis and herbicidal properties of the title compound, see: EFSA (2008); Moon (1989); Peeples et al. (1991); Wittenbach et al. (1994). For the inhibition mechanism of sulfonylurea herbicides on acetohydroxy acid syntheases, see: Duggleby et al. (2008); McCourt et al. (2005). For the crystal structures of related sulfonylurea compounds, see: Ma, Wang et al. (2003); Ma, Li et al. (2003); Wang et al. (2004); Sorokin et al. (1993); Liu et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

A sample of (I) was obtained from Sigma-Aldrich. It was recrystallized from methanol by room temperature evaporation to furnish colourless prisms suitable for X-ray diffraction.

Refinement top

H atoms were located in a difference Fourier map, placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(C,N) for CH, CH2 and NH groups; Uiso(H) = 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Hydrogen bonds are drawn as dashed red lines. Symmetry code i: -x + 1, y, -z + 3/2. Intramolecular interactions are N1···N5 = 2.641 (1) Å, O2···C7 = 2.800 (1) Å, and O3···N1 = 2.835 (1) Å.
[Figure 2] Fig. 2. View of the crystal structure of (I) showing N—H···N hydrogen bonds as dashed red lines and π-π stacking interactions between dimethylamino-triazine groups as orange lines. C-bonded H-atoms omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of (I) in a view down the c-axis, i.e. approximately along the intermolecular hydrogen bonds N2—H2n···N3. H-atoms omitted for clarity.
Methyl 2-({[4-dimethylamino-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2- yl]carbamoyl}sulfamoyl)-3-methylbenzoate top
Crystal data top
C17H19F3N6O6SF(000) = 2032
Mr = 492.44Dx = 1.523 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.7107 (11) ÅCell parameters from 9962 reflections
b = 15.6406 (11) Åθ = 2.6–30.5°
c = 17.1875 (12) ŵ = 0.23 mm1
β = 107.035 (1)°T = 100 K
V = 4295.1 (5) Å3Block, colourless
Z = 80.55 × 0.35 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6217 independent reflections
Radiation source: fine-focus sealed tube5708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2323
Tmin = 0.84, Tmax = 0.94k = 2222
31010 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 3.028P]
where P = (Fo2 + 2Fc2)/3
6217 reflections(Δ/σ)max = 0.001
302 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C17H19F3N6O6SV = 4295.1 (5) Å3
Mr = 492.44Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.7107 (11) ŵ = 0.23 mm1
b = 15.6406 (11) ÅT = 100 K
c = 17.1875 (12) Å0.55 × 0.35 × 0.30 mm
β = 107.035 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5708 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.94Rint = 0.024
31010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.07Δρmax = 0.50 e Å3
6217 reflectionsΔρmin = 0.49 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.196829 (15)0.535633 (16)0.521723 (15)0.01859 (7)
O10.19376 (6)0.62050 (5)0.55125 (6)0.02835 (18)
O20.18217 (5)0.52321 (5)0.43604 (5)0.02233 (16)
O30.22779 (6)0.34464 (6)0.47823 (6)0.02816 (18)
O40.09973 (6)0.31848 (6)0.39337 (6)0.03011 (19)
O50.29214 (5)0.50520 (6)0.69463 (5)0.02743 (18)
O60.65207 (5)0.33795 (5)0.66348 (5)0.02148 (16)
N10.29218 (5)0.49756 (6)0.56180 (5)0.01930 (17)
H1N0.32280.48570.52940.023*
N20.40259 (5)0.44268 (6)0.66704 (5)0.01867 (17)
H2N0.42270.43200.71940.022*
N30.52875 (5)0.38975 (6)0.66484 (5)0.01831 (17)
N40.55747 (6)0.36370 (6)0.53872 (5)0.01880 (17)
N50.42372 (5)0.41857 (6)0.54018 (5)0.01753 (16)
N60.45192 (6)0.39316 (6)0.41973 (5)0.02194 (18)
C10.12686 (6)0.46904 (7)0.55453 (7)0.02002 (19)
C20.10617 (7)0.38937 (7)0.51509 (7)0.0220 (2)
C30.04287 (8)0.34016 (8)0.52991 (8)0.0295 (2)
H30.02810.28690.50300.035*
C40.00129 (8)0.36899 (9)0.58398 (9)0.0323 (3)
H40.04260.33580.59340.039*
C50.02355 (7)0.44542 (9)0.62381 (8)0.0305 (3)
H50.00490.46340.66140.037*
C60.08655 (7)0.49787 (8)0.61108 (7)0.0252 (2)
C70.15278 (7)0.35064 (7)0.46116 (7)0.0229 (2)
C80.13986 (9)0.27562 (9)0.34038 (9)0.0349 (3)
H8A0.09720.24940.29490.052*
H8B0.17740.23120.37100.052*
H8C0.17220.31720.31930.052*
C90.10498 (8)0.57997 (10)0.65897 (9)0.0352 (3)
H9A0.16560.58580.68350.053*
H9B0.07730.57910.70200.053*
H9C0.08410.62850.62260.053*
C100.32549 (6)0.48361 (7)0.64409 (6)0.01966 (19)
C110.45251 (6)0.41618 (6)0.62069 (6)0.01614 (18)
C120.57646 (6)0.36447 (6)0.61875 (6)0.01739 (18)
C130.47864 (7)0.39181 (6)0.50082 (6)0.01759 (18)
C140.36494 (8)0.41607 (8)0.37767 (7)0.0259 (2)
H14A0.35300.47310.39510.039*
H14B0.32730.37430.39110.039*
H14C0.35640.41610.31880.039*
C150.50356 (9)0.36299 (8)0.37022 (7)0.0279 (2)
H15A0.56110.35470.40480.042*
H15B0.50300.40540.32810.042*
H15C0.48130.30860.34450.042*
C160.71016 (7)0.31386 (7)0.62056 (7)0.0224 (2)
H16A0.71870.36140.58580.027*
H16B0.68960.26330.58590.027*
C170.78997 (8)0.29349 (10)0.68535 (9)0.0334 (3)
F10.84761 (5)0.26665 (7)0.65023 (7)0.0484 (2)
F20.78026 (6)0.23027 (8)0.73382 (7)0.0546 (3)
F30.82179 (6)0.36048 (8)0.73076 (7)0.0570 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01670 (12)0.01668 (12)0.02069 (13)0.00019 (8)0.00281 (9)0.00071 (8)
O10.0256 (4)0.0188 (4)0.0389 (5)0.0006 (3)0.0068 (3)0.0046 (3)
O20.0207 (4)0.0242 (4)0.0199 (4)0.0001 (3)0.0026 (3)0.0051 (3)
O30.0252 (4)0.0237 (4)0.0338 (5)0.0012 (3)0.0060 (3)0.0034 (3)
O40.0294 (4)0.0285 (4)0.0293 (4)0.0035 (3)0.0038 (3)0.0060 (3)
O50.0214 (4)0.0398 (5)0.0203 (4)0.0045 (3)0.0048 (3)0.0065 (3)
O60.0160 (3)0.0298 (4)0.0192 (3)0.0026 (3)0.0060 (3)0.0009 (3)
N10.0155 (4)0.0234 (4)0.0175 (4)0.0012 (3)0.0025 (3)0.0011 (3)
N20.0165 (4)0.0263 (4)0.0124 (3)0.0017 (3)0.0028 (3)0.0007 (3)
N30.0153 (4)0.0251 (4)0.0139 (4)0.0002 (3)0.0033 (3)0.0004 (3)
N40.0213 (4)0.0197 (4)0.0164 (4)0.0022 (3)0.0070 (3)0.0011 (3)
N50.0191 (4)0.0192 (4)0.0130 (4)0.0012 (3)0.0028 (3)0.0003 (3)
N60.0271 (4)0.0253 (4)0.0133 (4)0.0033 (3)0.0058 (3)0.0003 (3)
C10.0165 (4)0.0220 (5)0.0199 (4)0.0002 (3)0.0027 (3)0.0032 (4)
C20.0202 (5)0.0199 (5)0.0240 (5)0.0000 (4)0.0036 (4)0.0040 (4)
C30.0245 (5)0.0237 (5)0.0385 (6)0.0032 (4)0.0062 (5)0.0078 (5)
C40.0222 (5)0.0360 (6)0.0389 (7)0.0002 (5)0.0092 (5)0.0161 (5)
C50.0203 (5)0.0442 (7)0.0276 (6)0.0058 (5)0.0080 (4)0.0104 (5)
C60.0185 (5)0.0337 (6)0.0222 (5)0.0036 (4)0.0038 (4)0.0017 (4)
C70.0252 (5)0.0152 (4)0.0266 (5)0.0019 (4)0.0048 (4)0.0014 (4)
C80.0402 (7)0.0314 (6)0.0322 (6)0.0034 (5)0.0091 (5)0.0095 (5)
C90.0251 (6)0.0480 (8)0.0327 (6)0.0036 (5)0.0089 (5)0.0129 (6)
C100.0163 (4)0.0229 (5)0.0180 (4)0.0014 (4)0.0023 (3)0.0032 (4)
C110.0156 (4)0.0177 (4)0.0143 (4)0.0022 (3)0.0031 (3)0.0003 (3)
C120.0169 (4)0.0181 (4)0.0172 (4)0.0022 (3)0.0052 (3)0.0001 (3)
C130.0222 (5)0.0159 (4)0.0147 (4)0.0042 (3)0.0054 (3)0.0005 (3)
C140.0293 (5)0.0301 (5)0.0143 (4)0.0027 (4)0.0000 (4)0.0014 (4)
C150.0381 (6)0.0310 (6)0.0176 (5)0.0032 (5)0.0131 (4)0.0024 (4)
C160.0195 (4)0.0237 (5)0.0270 (5)0.0007 (4)0.0118 (4)0.0007 (4)
C170.0203 (5)0.0438 (7)0.0387 (7)0.0052 (5)0.0127 (5)0.0088 (5)
F10.0268 (4)0.0632 (6)0.0641 (6)0.0147 (4)0.0270 (4)0.0148 (5)
F20.0356 (5)0.0737 (7)0.0595 (6)0.0213 (5)0.0215 (4)0.0405 (5)
F30.0273 (4)0.0810 (8)0.0545 (6)0.0069 (4)0.0011 (4)0.0191 (5)
Geometric parameters (Å, º) top
S1—O11.4274 (9)C2—C71.5020 (16)
S1—O21.4337 (8)C3—C41.389 (2)
S1—N11.6507 (9)C3—H30.9500
S1—C11.7765 (11)C4—C51.374 (2)
O3—C71.2044 (15)C4—H40.9500
O4—C71.3385 (14)C5—C61.4016 (17)
O4—C81.4444 (16)C5—H50.9500
O5—C101.2094 (13)C6—C91.5076 (19)
O6—C121.3381 (12)C8—H8A0.9800
O6—C161.4311 (12)C8—H8B0.9800
N1—C101.3771 (13)C8—H8C0.9800
N1—H1N0.8800C9—H9A0.9800
N2—C111.3753 (13)C9—H9B0.9800
N2—C101.3884 (13)C9—H9C0.9800
N2—H2N0.8800C14—H14A0.9800
N3—C121.3378 (13)C14—H14B0.9800
N3—C111.3429 (12)C14—H14C0.9800
N4—C121.3179 (13)C15—H15A0.9800
N4—C131.3602 (14)C15—H15B0.9800
N5—C111.3258 (12)C15—H15C0.9800
N5—C131.3561 (13)C16—C171.5000 (17)
N6—C131.3333 (13)C16—H16A0.9900
N6—C151.4566 (15)C16—H16B0.9900
N6—C141.4656 (15)C17—F31.3216 (19)
C1—C61.4090 (16)C17—F21.3332 (16)
C1—C21.4122 (15)C17—F11.3449 (15)
C2—C31.3906 (16)
O1—S1—O2118.56 (5)H8A—C8—H8C109.5
O1—S1—N1108.54 (5)H8B—C8—H8C109.5
O2—S1—N1103.49 (5)C6—C9—H9A109.5
O1—S1—C1109.68 (5)C6—C9—H9B109.5
O2—S1—C1108.44 (5)H9A—C9—H9B109.5
N1—S1—C1107.50 (5)C6—C9—H9C109.5
C7—O4—C8114.32 (10)H9A—C9—H9C109.5
C12—O6—C16117.02 (8)H9B—C9—H9C109.5
C10—N1—S1122.42 (8)O5—C10—N1124.11 (10)
C10—N1—H1N118.8O5—C10—N2120.60 (10)
S1—N1—H1N118.8N1—C10—N2115.29 (9)
C11—N2—C10130.10 (9)N5—C11—N3126.34 (9)
C11—N2—H2N114.9N5—C11—N2120.00 (9)
C10—N2—H2N114.9N3—C11—N2113.67 (8)
C12—N3—C11112.81 (8)N4—C12—N3128.15 (9)
C12—N4—C13113.58 (9)N4—C12—O6119.67 (9)
C11—N5—C13114.85 (9)N3—C12—O6112.18 (9)
C13—N6—C15122.09 (10)N6—C13—N5116.63 (9)
C13—N6—C14119.97 (9)N6—C13—N4119.11 (9)
C15—N6—C14117.57 (9)N5—C13—N4124.26 (9)
C6—C1—C2120.93 (10)N6—C14—H14A109.5
C6—C1—S1121.56 (9)N6—C14—H14B109.5
C2—C1—S1117.16 (8)H14A—C14—H14B109.5
C3—C2—C1119.53 (11)N6—C14—H14C109.5
C3—C2—C7116.72 (10)H14A—C14—H14C109.5
C1—C2—C7123.62 (10)H14B—C14—H14C109.5
C4—C3—C2119.96 (12)N6—C15—H15A109.5
C4—C3—H3120.0N6—C15—H15B109.5
C2—C3—H3120.0H15A—C15—H15B109.5
C5—C4—C3120.04 (11)N6—C15—H15C109.5
C5—C4—H4120.0H15A—C15—H15C109.5
C3—C4—H4120.0H15B—C15—H15C109.5
C4—C5—C6122.53 (12)O6—C16—C17105.26 (9)
C4—C5—H5118.7O6—C16—H16A110.7
C6—C5—H5118.7C17—C16—H16A110.7
C5—C6—C1116.95 (11)O6—C16—H16B110.7
C5—C6—C9117.13 (11)C17—C16—H16B110.7
C1—C6—C9125.92 (11)H16A—C16—H16B108.8
O3—C7—O4124.01 (11)F3—C17—F2108.69 (13)
O3—C7—C2124.89 (11)F3—C17—F1107.18 (11)
O4—C7—C2110.97 (10)F2—C17—F1106.45 (11)
O4—C8—H8A109.5F3—C17—C16112.73 (12)
O4—C8—H8B109.5F2—C17—C16112.14 (11)
H8A—C8—H8B109.5F1—C17—C16109.34 (11)
O4—C8—H8C109.5
O1—S1—N1—C1064.66 (10)S1—N1—C10—O57.42 (16)
O2—S1—N1—C10168.53 (9)S1—N1—C10—N2173.18 (8)
C1—S1—N1—C1053.90 (10)C11—N2—C10—O5177.04 (11)
O1—S1—C1—C68.55 (11)C11—N2—C10—N12.38 (16)
O2—S1—C1—C6139.44 (9)C13—N5—C11—N30.51 (15)
N1—S1—C1—C6109.28 (9)C13—N5—C11—N2179.32 (9)
O1—S1—C1—C2164.73 (8)C12—N3—C11—N50.02 (15)
O2—S1—C1—C233.84 (10)C12—N3—C11—N2179.81 (9)
N1—S1—C1—C277.44 (9)C10—N2—C11—N58.96 (17)
C6—C1—C2—C32.50 (16)C10—N2—C11—N3170.89 (10)
S1—C1—C2—C3170.82 (9)C13—N4—C12—N30.72 (15)
C6—C1—C2—C7173.24 (10)C13—N4—C12—O6179.68 (9)
S1—C1—C2—C713.44 (14)C11—N3—C12—N40.66 (15)
C1—C2—C3—C40.85 (17)C11—N3—C12—O6179.72 (9)
C7—C2—C3—C4175.18 (11)C16—O6—C12—N43.04 (14)
C2—C3—C4—C51.03 (19)C16—O6—C12—N3176.62 (9)
C3—C4—C5—C61.33 (19)C15—N6—C13—N5177.58 (10)
C4—C5—C6—C10.28 (17)C14—N6—C13—N54.83 (14)
C4—C5—C6—C9179.79 (12)C15—N6—C13—N41.92 (15)
C2—C1—C6—C52.19 (16)C14—N6—C13—N4174.67 (9)
S1—C1—C6—C5170.84 (9)C11—N5—C13—N6179.90 (9)
C2—C1—C6—C9177.89 (11)C11—N5—C13—N40.43 (14)
S1—C1—C6—C99.08 (16)C12—N4—C13—N6179.33 (9)
C8—O4—C7—O30.53 (17)C12—N4—C13—N50.12 (14)
C8—O4—C7—C2176.61 (10)C12—O6—C16—C17176.05 (10)
C3—C2—C7—O3127.73 (13)O6—C16—C17—F363.38 (13)
C1—C2—C7—O348.12 (17)O6—C16—C17—F259.68 (14)
C3—C2—C7—O448.31 (14)O6—C16—C17—F1177.50 (10)
C1—C2—C7—O4135.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.881.952.6410 (13)135
N2—H2N···N3i0.882.032.8998 (12)172
C9—H9A···O50.982.423.2253 (16)139
C14—H14B···O30.982.593.4363 (16)145
C14—H14C···O5ii0.982.423.2637 (14)143
C15—H15A···N40.982.332.7695 (15)107
C16—H16A···O2iii0.992.553.4209 (14)147
C16—H16B···O1iv0.992.323.2325 (14)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19F3N6O6S
Mr492.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)16.7107 (11), 15.6406 (11), 17.1875 (12)
β (°) 107.035 (1)
V3)4295.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.55 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.84, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
31010, 6217, 5708
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.102, 1.07
No. of reflections6217
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N50.881.952.6410 (13)135
N2—H2N···N3i0.882.032.8998 (12)172
C9—H9A···O50.982.423.2253 (16)139
C14—H14B···O30.982.593.4363 (16)145
C14—H14C···O5ii0.982.423.2637 (14)143
C16—H16A···O2iii0.992.553.4209 (14)147
C16—H16B···O1iv0.992.323.2325 (14)153
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuggleby, R. G., McCourt, J. A. & Guddat, L. W. (2008). Plant Phys. Biochem. 46, 309–324.  CrossRef CAS Google Scholar
First citationEFSA (2008). European Food Safety Authority Scientific Report 2008, Vol. 195, pp. 1–115. Conclusion on the peer review of triflusulfuron. www.efsa.europa.eu/en/efsajournal/pub/195r.html.  Google Scholar
First citationLiu, Q.-X., Wu, X.-M., Liu, S.-W., Song, H.-B., Wang, X.-G. & Guo, J.-H. (2008). J. Coord. Chem. 61, 2990–2998.  CrossRef CAS Google Scholar
First citationMa, N., Li, Z.-M., Wang, J.-G. & Song, H.-B. (2003). Acta Cryst. E59, o275–o276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, N., Wang, B., Wang, J., Song, H., Wang, S. & Li, Z. (2003). Acta Cryst. E59, o438–o440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCourt, J. A., Pang, S. S., Guddat, L. W. & Duggleby, R. G. (2005). Biochemistry, 44, 2330–2338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoon, M. P. (1989). WO Patent 8909214 A1.  Google Scholar
First citationPeeples, K. A., Moon, M. P., Lichtner, F. T., Wittenbach, V. A., Carski, T. H., Woodward, M. D., Graham, K. & Reinke, H. (1991). Weeds, 2, 25–30.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorokin, V. I., Golosov, S. N., Kornilov, A. N., Yufit, D. S., Struchkov, Yu. T. & Drozd, V. N. (1993). Khim. Get. Soedin. SSSR (Russ.) (Chem. Heterocycl. Compd), pp. 1670–1675.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B.-L., Ma, N., Wang, J.-G., Ma, Y., Li, Z.-M. & Leng, X.-B. (2004). Jiegou Huaxue, 23, 783–787.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittenbach, V. A., Koeppe, M. K., Lichtner, F. T., Zimmerman, W. T. & Reiser, R. W. (1994). Pestic. Biochem. Physiol. 49, 72–81.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1778-o1779
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds