organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1751-o1752

1-[(Z)-1-Bromo-2-(butyl­di­chloro-λ4-tellan­yl)ethen­yl]cyclo­hex-1-ene

aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bBioMat-Departmento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, cDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo-Campus Diadema, Rua Prof. Artur Ridel 275, 09972-270 Diadema, SP, Brazil, dDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

(Received 12 June 2011; accepted 14 June 2011; online 18 June 2011)

The TeIV atom in the title compound, [Te(C4H9)(C8H10Br)Cl2] or C12H19BrCl2Te, is in a distorted ψ-trigonal–bipyramidal geometry, with the lone pair of electrons projected to occupy a position in the equatorial plane, and with the Cl atoms being mutually trans [172.48 (4)°]. Close intra­molecular [Te⋯Br = 3.3444 (18) Å] and inter­molecular [Te⋯Cl = 3.675 (3) Å] inter­actions are observed. The latter lead to centrosymmetric dimers which assemble into layers in the bc plane. The primary connections between layers are of the type C—H⋯Cl.

Related literature

For background to the synthesis, see: Guadagnin et al. (2008[Guadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). Tetrahedron Lett. 49, 4713-4716.]). For related X-ray structures, see: Zukerman-Schpector et al. (1998[Zukerman-Schpector, J., Stefani, H. A., Silva, D. deO., Braga, A. L., Dornelles, L., Silveira, C. daC. & Caracelli, I. (1998). Acta Cryst. C54, 2007-2009.], 2008[Zukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, A. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536-541.]). For coordination polyhedra around TeIV atoms, see: Zukerman-Schpector & Haiduc (2002[Zukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178-193.]); Tiekink & Zukerman-Schpector (2010[Tiekink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46-76.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19BrCl2Te

  • Mr = 441.67

  • Triclinic, [P \overline 1]

  • a = 6.311 (3) Å

  • b = 10.243 (6) Å

  • c = 12.334 (9) Å

  • α = 103.34 (2)°

  • β = 91.53 (2)°

  • γ = 91.411 (14)°

  • V = 775.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.82 mm−1

  • T = 98 K

  • 0.22 × 0.20 × 0.15 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.360, Tmax = 0.486

  • 7151 measured reflections

  • 3012 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.12

  • 3012 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Te—Cl1 2.5381 (15)
Te—Cl2 2.4859 (15)
Te—C1 2.092 (4)
Te—C3 2.143 (4)
Cl1—Te—Cl2 172.48 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3a⋯Cl2i 0.97 2.80 3.576 (5) 138
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was synthesized using a palladium-catalyzed cross-coupling reaction of a potassium aryltrifluoroborate salt with various (Z)-2-chloro vinylic tellurides (Guadagnin et al., 2008). Complementing these studies are crystallographic studies (Zukerman-Schpector et al. 1998; Zukerman-Schpector et al., 2008) focused upon determining coordination polyhedra and supramolecular aggregation patterns (Zukerman-Schpector & Haiduc, 2002; Tiekink & Zukerman-Schpector, 2010) which lead to the crystallographic characterization of (I).

The immediate coordination geometry about the TeIV atom in (I) is defined by two Cl atoms and two C atoms which, along with a stereochemically active lone pair of electrons, define a ψ-trigonal bi-pyramidal geometry, Table 1. In this description the lone pair is assumed to occupy a position in the equatorial plane, and the Cl atoms to be mutually trans. Additional Te···X interactions are evident and contribute to the distortion of the coordination geometry. Thus, an intramolecular Te···Br interaction [3.3444 (18) Å] is noted. In addition, there is an intermolecular Te···Cl contact [Te···Cl1i = 3.675 (3) Å, symmetry operation i: 1 - x, 1 - y, 1 - z]. The latter interaction explains the elongation of the Te—Cl1 bond compared to the Te—Cl2 bond, Table 1. Within the substituted ligand, the configuration about the C1C2 bond [1.327 (6) Å] is Z. The cyclohexene ring adopts a half-chair conformation with puckering parameters: q2 = 0.364 (5) Å and q3 = -0.278 (5) Å, and amplitudes: Q = 0.458 (6) Å, θ = 127.4 (6) ° and ϕ2 = 30.2 (8) ° (Cremer & Pople, 1975).

The most prominent feature of the crystal packing are the aforementioned Te···Cl1 interactions. These lead to centrosymmetric dimers that assemble into chains along the b axis. These partially inter-digitate along the c axis. The layers thus formed in the bc plane, Fig. 2, are connected via C—H···Cl interactions, Table 2, along the a axis, Fig. 3.

Related literature top

For background to the synthesis, see: Guadagnin et al. (2008). For related X-ray structures, see: Zukerman-Schpector et al. (1998, 2008). For coordination polyhedra around TeIV atoms, see: Zukerman-Schpector & Haiduc (2002); Tiekink & Zukerman-Schpector (2010). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The starting (Z)-(2-bromo-2-cyclohexenylvinyl)(butyl)tellane was prepared as described in previous work (Guadagnin et al., 2008) and a solution of it (1 mmol, 0.370 g) in hexane (5 ml) at 273 K was poured into a two-necked round-bottomed flask under a nitrogen atmosphere and then SO2Cl2 (1 mmol, 1.37 g) added drop wise. A white solid formed immediately. The mixture was warmed to room temperature. The resulting solid was filtered and dried. Crystals of (I) were obatined by slow evaporation from its CHCl3 solution held at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the assembly of centrosymmetric molecules in the bc plane in (I). The intermolecular Te···Cl interactions are indicated by dashed lines.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the b axis showing C—H···Cl interactions (orange dashed lines) occurring between the layers shown in Fig. 2.
1-[(Z)-1-Bromo-2-(butyldichloro-λ4-tellanyl)ethenyl]cyclohex-1-ene top
Crystal data top
C12H19BrCl2TeZ = 2
Mr = 441.67F(000) = 424
Triclinic, P1Dx = 1.893 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.311 (3) ÅCell parameters from 2823 reflections
b = 10.243 (6) Åθ = 2.3–30.3°
c = 12.334 (9) ŵ = 4.82 mm1
α = 103.34 (2)°T = 98 K
β = 91.53 (2)°Block, colourless
γ = 91.411 (14)°0.22 × 0.20 × 0.15 mm
V = 775.1 (8) Å3
Data collection top
Rigaku Saturn724
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 3.0°
dtprofit.ref scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.360, Tmax = 0.486l = 1514
7151 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0328P)2 + 2.7479P]
where P = (Fo2 + 2Fc2)/3
3012 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C12H19BrCl2Teγ = 91.411 (14)°
Mr = 441.67V = 775.1 (8) Å3
Triclinic, P1Z = 2
a = 6.311 (3) ÅMo Kα radiation
b = 10.243 (6) ŵ = 4.82 mm1
c = 12.334 (9) ÅT = 98 K
α = 103.34 (2)°0.22 × 0.20 × 0.15 mm
β = 91.53 (2)°
Data collection top
Rigaku Saturn724
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2898 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.486Rint = 0.033
7151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.12Δρmax = 0.89 e Å3
3012 reflectionsΔρmin = 0.59 e Å3
146 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te0.54785 (4)0.72646 (3)0.54317 (2)0.02297 (11)
Cl10.28881 (18)0.59324 (11)0.63286 (10)0.0303 (2)
Cl20.76717 (17)0.88070 (11)0.46001 (9)0.0270 (2)
Br0.88870 (7)0.84752 (4)0.75713 (4)0.02781 (13)
C10.4888 (7)0.8911 (4)0.6734 (4)0.0243 (9)
H10.36060.93360.67210.029*
C20.6258 (6)0.9377 (4)0.7578 (4)0.0210 (8)
C30.2891 (7)0.7512 (5)0.4343 (4)0.0272 (10)
H3A0.16010.76470.47600.033*
H3B0.31670.83030.40560.033*
C40.2579 (7)0.6278 (4)0.3363 (4)0.0254 (9)
H4A0.38840.61270.29600.031*
H4B0.22630.54910.36490.031*
C50.0798 (7)0.6463 (5)0.2574 (4)0.0275 (9)
H5A0.11440.72240.22600.033*
H5B0.04920.66550.29830.033*
C60.0426 (8)0.5215 (5)0.1634 (4)0.0327 (11)
H6A0.16970.50290.12230.049*
H6B0.07050.53630.11450.049*
H6C0.00510.44650.19420.049*
C70.5937 (7)1.0547 (4)0.8505 (4)0.0218 (9)
C80.7386 (8)1.0984 (5)0.9333 (4)0.0278 (10)
H80.86171.05020.93300.033*
C90.7148 (8)1.2201 (5)1.0265 (4)0.0339 (11)
H9A0.84501.27441.03610.041*
H9B0.69251.19171.09520.041*
C100.5313 (8)1.3048 (5)1.0050 (5)0.0390 (12)
H10A0.49591.36551.07440.047*
H10B0.57421.35850.95360.047*
C110.3404 (8)1.2207 (5)0.9576 (4)0.0358 (11)
H11A0.22741.27860.94520.043*
H11B0.29271.17101.01100.043*
C120.3841 (7)1.1224 (5)0.8482 (4)0.0280 (10)
H12A0.27101.05420.83160.034*
H12B0.38331.17000.78880.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.02153 (17)0.01990 (16)0.02365 (17)0.00270 (11)0.00238 (11)0.00268 (11)
Cl10.0311 (6)0.0213 (5)0.0360 (6)0.0017 (4)0.0052 (5)0.0010 (4)
Cl20.0254 (5)0.0286 (5)0.0260 (5)0.0036 (4)0.0036 (4)0.0034 (4)
Br0.0224 (2)0.0283 (2)0.0286 (2)0.00692 (18)0.00469 (18)0.00199 (18)
C10.023 (2)0.023 (2)0.025 (2)0.0068 (17)0.0015 (17)0.0014 (17)
C20.0174 (19)0.0191 (19)0.026 (2)0.0021 (16)0.0012 (16)0.0042 (17)
C30.023 (2)0.024 (2)0.030 (2)0.0023 (17)0.0078 (18)0.0023 (19)
C40.032 (2)0.021 (2)0.021 (2)0.0082 (18)0.0013 (18)0.0000 (17)
C50.031 (2)0.024 (2)0.025 (2)0.0000 (18)0.0044 (18)0.0004 (18)
C60.042 (3)0.028 (2)0.025 (2)0.000 (2)0.004 (2)0.0016 (19)
C70.026 (2)0.0157 (19)0.024 (2)0.0026 (16)0.0001 (17)0.0042 (16)
C80.028 (2)0.025 (2)0.028 (2)0.0017 (18)0.0027 (19)0.0029 (19)
C90.031 (3)0.033 (3)0.030 (2)0.000 (2)0.003 (2)0.009 (2)
C100.040 (3)0.032 (3)0.037 (3)0.005 (2)0.000 (2)0.008 (2)
C110.034 (3)0.034 (3)0.034 (3)0.010 (2)0.000 (2)0.001 (2)
C120.026 (2)0.027 (2)0.027 (2)0.0040 (18)0.0047 (18)0.0000 (19)
Geometric parameters (Å, º) top
Te—Cl12.5381 (15)C6—H6B0.9600
Te—Cl22.4859 (15)C6—H6C0.9600
Te—C12.092 (4)C7—C81.341 (6)
Te—C32.143 (4)C7—C121.511 (6)
Br—C21.918 (4)C8—C91.502 (6)
C1—C21.327 (6)C8—H80.9300
C1—H10.9300C9—C101.518 (7)
C2—C71.475 (6)C9—H9A0.9700
C3—C41.539 (6)C9—H9B0.9700
C3—H3A0.9700C10—C111.488 (7)
C3—H3B0.9700C10—H10A0.9700
C4—C51.511 (6)C10—H10B0.9700
C4—H4A0.9700C11—C121.522 (7)
C4—H4B0.9700C11—H11A0.9700
C5—C61.524 (6)C11—H11B0.9700
C5—H5A0.9700C12—H12A0.9700
C5—H5B0.9700C12—H12B0.9700
C6—H6A0.9600
C1—Te—C397.25 (17)H6A—C6—H6C109.5
C1—Te—Cl287.77 (14)H6B—C6—H6C109.5
C3—Te—Cl288.63 (14)C8—C7—C2122.8 (4)
C1—Te—Cl186.80 (14)C8—C7—C12121.3 (4)
Cl1—Te—Cl2172.48 (4)C2—C7—C12115.9 (4)
C2—C1—Te123.1 (3)C7—C8—C9124.2 (4)
C2—C1—H1118.5C7—C8—H8117.9
Te—C1—H1118.5C9—C8—H8117.9
C1—C2—C7125.3 (4)C8—C9—C10112.4 (4)
C1—C2—Br117.1 (3)C8—C9—H9A109.1
C7—C2—Br117.6 (3)C10—C9—H9A109.1
C4—C3—Te111.2 (3)C8—C9—H9B109.1
C4—C3—H3A109.4C10—C9—H9B109.1
Te—C3—H3A109.4H9A—C9—H9B107.9
C4—C3—H3B109.4C11—C10—C9111.9 (4)
Te—C3—H3B109.4C11—C10—H10A109.2
H3A—C3—H3B108.0C9—C10—H10A109.2
C5—C4—C3111.5 (4)C11—C10—H10B109.2
C5—C4—H4A109.3C9—C10—H10B109.2
C3—C4—H4A109.3H10A—C10—H10B107.9
C5—C4—H4B109.3C10—C11—C12112.2 (4)
C3—C4—H4B109.3C10—C11—H11A109.2
H4A—C4—H4B108.0C12—C11—H11A109.2
C4—C5—C6111.3 (4)C10—C11—H11B109.2
C4—C5—H5A109.4C12—C11—H11B109.2
C6—C5—H5A109.4H11A—C11—H11B107.9
C4—C5—H5B109.4C7—C12—C11113.1 (4)
C6—C5—H5B109.4C7—C12—H12A109.0
H5A—C5—H5B108.0C11—C12—H12A109.0
C5—C6—H6A109.5C7—C12—H12B109.0
C5—C6—H6B109.5C11—C12—H12B109.0
H6A—C6—H6B109.5H12A—C12—H12B107.8
C5—C6—H6C109.5
C3—Te—C1—C2168.3 (4)Br—C2—C7—C80.7 (6)
Cl2—Te—C1—C280.0 (4)C1—C2—C7—C121.7 (6)
Cl1—Te—C1—C2105.2 (4)Br—C2—C7—C12179.7 (3)
Te—C1—C2—C7178.8 (3)C2—C7—C8—C9177.6 (4)
Te—C1—C2—Br0.2 (5)C12—C7—C8—C93.5 (7)
C1—Te—C3—C4168.9 (3)C7—C8—C9—C1011.7 (7)
Cl2—Te—C3—C4103.5 (3)C8—C9—C10—C1142.3 (6)
Cl1—Te—C3—C482.6 (3)C9—C10—C11—C1258.9 (6)
Te—C3—C4—C5178.3 (3)C8—C7—C12—C1112.0 (6)
C3—C4—C5—C6177.4 (4)C2—C7—C12—C11167.0 (4)
C1—C2—C7—C8179.3 (5)C10—C11—C12—C742.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3a···Cl2i0.972.803.576 (5)138
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H19BrCl2Te
Mr441.67
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)6.311 (3), 10.243 (6), 12.334 (9)
α, β, γ (°)103.34 (2), 91.53 (2), 91.411 (14)
V3)775.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.82
Crystal size (mm)0.22 × 0.20 × 0.15
Data collection
DiffractometerRigaku Saturn724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.360, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
7151, 3012, 2898
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.12
No. of reflections3012
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.59

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Te—Cl12.5381 (15)Te—C12.092 (4)
Te—Cl22.4859 (15)Te—C32.143 (4)
Cl1—Te—Cl2172.48 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3a···Cl2i0.972.803.576 (5)138
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank the Brazilian agencies FAPESP (07/59404–2 to HAS), CNPq (306532/2009–3 to JZ-S, 308116/2010–0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). Tetrahedron Lett. 49, 4713–4716.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178–193.  CAS Google Scholar
First citationZukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, A. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536–541.  CAS Google Scholar
First citationZukerman-Schpector, J., Stefani, H. A., Silva, D. deO., Braga, A. L., Dornelles, L., Silveira, C. daC. & Caracelli, I. (1998). Acta Cryst. C54, 2007–2009.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1751-o1752
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds