organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1706-o1707

Absolute configuration of micromelin

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 4 June 2011; accepted 12 June 2011; online 18 June 2011)

The title compound {systematic name: 7-meth­oxy-6-[(1R,2R,5R)-5-methyl-4-oxo-3,6-dioxabicyclo­[3.1.0]hexan-2-yl]-2H-chromen-2-one}, C15H12O6, is a coumarin, which was isolated from the roots of Micromelum glanduliferum. There are two mol­ecules in the asymmetric unit with slight differences in bond angles. In both mol­ecules, the furan ring adopts a flattened envelope conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into chains along the a axis. Aromatic ππ stacking inter­actions with centroid–centroid distances in the range 3.6995 (11)–3.8069 (11) Å and C⋯O short contacts [3.030 (2)–3.171 (3) Å] also occur.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background to plants in the Rutaceae family, coumarins and their activities, see: Ito et al. (1997[Ito, C., Katsuno, S., Ohta, H., Omura, M., Kajirua, I. & Furukawa, H. (1997). Chem. Pharm. Bull. 45, 48-52.], 2000[Ito, C., Itoigawa, M., Katsuno, S., Omura, M., Tokuda, H., Nishino, H. & Furukawa, H. (2000). J. Nat. Prod. 63, 1218-1224.]); Kamperdick et al. (1999[Kamperdick, C., Phuong, N. M., Sun, T. V., Schmidt, J. & Adam, G. (1999). Phytochemistry, 52, 1671-1676.]); Rahmani et al. (2003[Rahmani, M., Susidarti, R. A., Ismail, H. B. M., Sukari, M. A., Hin, T.-Y. Y., Lian, G. E. C., Ali, A. M., Kulip, J. & Waterman, P. G. (2003). Phytochemistry, 64, 873-877.]); Tangyuenyongwatthana et al. (1992[Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157-162.]); Tanti­shaiyakul et al. (1986[Tantishaiyakul, V., Pummangura, S., Chaichantipyuth, C., Ma, W. W. & McLaughlin, J. L. (1986). J. Nat. Prod. 49, 180-181.]); Tanti­vatana et al. (1983[Tantivatana, P., Ruana, G. M., Vaisiriroj, V., Lankin, D. C., Bhacca, M. C., Borris, R. P., Cordell, G. A. & Johnson, L. F. (1983). J. Org. Chem. 48, 268-270.]); Thuy et al. (1999[Thuy, T. T., Ripperger, H., Porzel, A., Sung, T. V. & Adam, G. (1999). Phytochemistry, 52, 511-516.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12O6

  • Mr = 288.25

  • Monoclinic, P 21

  • a = 6.7514 (2) Å

  • b = 23.7537 (8) Å

  • c = 8.0730 (3) Å

  • β = 90.000 (1)°

  • V = 1294.67 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.56 × 0.22 × 0.19 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.609, Tmax = 0.838

  • 21511 measured reflections

  • 4392 independent reflections

  • 4392 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.059

  • S = 1.06

  • 4392 reflections

  • 384 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2632 Friedel pairs

  • Flack parameter: 0.06 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3B—H3B⋯O4Ai 0.93 2.60 3.450 (2) 152
C5A—H5A⋯O2Aii 0.93 2.60 3.518 (3) 171
C5B—H5B⋯O2Biii 0.93 2.57 3.493 (2) 173
C8A—H8A⋯O5Aiii 0.93 2.58 3.440 (3) 155
C8B—H8B⋯O5Bii 0.93 2.42 3.298 (3) 157
C10A—H10A⋯O2B 0.98 2.35 3.186 (2) 142
C10B—H10B⋯O2Aiv 0.98 2.29 3.171 (3) 150
C14B—H14E⋯O4Av 0.96 2.49 3.423 (3) 163
C15B—H15D⋯O4Av 0.96 2.46 3.405 (2) 166
Symmetry codes: (i) x-1, y, z-1; (ii) x, y, z+1; (iii) x, y, z-1; (iv) x-1, y, z; (v) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are important secondary metabolites which occur commonly in the Rutaceae family. Many of them have been isolated from several genera of Rutaceae especially from Micromelum and Clausena genera (Ito et al., 1997; 2000; Kamperdick et al., 1999; Rahmani et al., 2003; Tangyuenyongwatthana et al., 1992; Tantishaiyakul et al., 1986; Thuy et al., 1999) and some of these compounds show interesting biological activities (Tantishaiyakul et al., 1986; Tantivatana et al., 1983). Although Micromelum glanduliferum is one of Rutaceae plants, however, no phytochemical investigation has been reported. As part of our continuing studies of the phytochemical constituents and bioactive compounds in Thai medicinal plants, we report herein the crystal structure of the title compound which was isolated from the roots of M. glanduliferum which were collected from Nongkai Province in the northeastern part of Thailand.

There are two crystallograpic independent molecules A and B in the asymmetric unit of (I), C15H12O6, (Fig. 1) with the same conformation but with slight differences in bond angles. In the structure of (I), the furan ring (C10–C13/O3) is in a flattened envelope conformation with the puckering atom O3 of 0.064 (1) Å, and puckering parameter Q = 0.0991 (18) Å and ϕ = 9.2 (11)° (Cremer & Pople, 1975) for molecule A and the corresponding values are -0.053 (1) Å, 0.0820 (19) Å and ϕ = 10.1 (15)° for molecule B. The benzene and dihydro-pyran ring system (C1–C9/O1) is planar with the r.m.s. 0.0089 (2) Å for molecule A [0.0149 (2) Å for molecule B]. The methoxy group is almost planarly attached to the benzene ring with the torsion angle C15–O6–C7–C8 = 2.3 (3)° for molecule A and 2.6 (3)° for molecule B. The orientation of the oxirane ring (C10–C13–O5) can be indicated by the dihedral angle between the furan and oxirane rings being 79.46 (15)° for molecule A [79.48 (16)° for molecule B]. The bond distances in (I) are within normal ranges (Allen et al., 1987). The absolute configuration at atoms C10, C11 and C13 or positions 1, 2 and 5 of the micromelin are R,R,R configurations.

In the crystal (Fig. 2), molecules are linked by C—H···O weak interactions into 2D chains along the a axis. ππ interactions were observed with centroid···centroid distances: Cg1···Cg3 = 3.7698 (7) Å; Cg2···Cg5 = 3.7102 (11) Å; Cg3···Cg4 = 3.6995 (11) Å and 3.7666 (11) Å (symmetry code: 1+x, y, z); Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of C10A–C13A/O3A, C1A–C4A/C9A/O1A, C4A–C9A, C1B–C4B/C9B/O1B and C4B–C9B rings, respectively. C···O [3.030 (2)-3.171 (3) Å] short contacts were also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For background to plants in the Rutaceae family, coumarins and their activities, see: Ito et al. (1997, 2000); Kamperdick et al. (1999); Rahmani et al. (2003); Tangyuenyongwatthana et al. (1992); Tantishaiyakul et al. (1986); Tantivatana et al. (1983); Thuy et al. (1999). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The chemical contents of the roots of M. glanduliferum (5.25 kg) were successively extracted with CH2Cl2 over the period of 3 days at room temperature. Removal the solvent under reduced pressure provided CH2Cl2 extract which were subjected to quick column chromatography (QCC) over silica gel and eluted with a gradient of n-hexane-EtOAc (100% n-hexane to 100% EtOAc) to provide nine fractions (A-I). Fraction F (6.23 g) was washed with n-hexane and recrystallized from CH2Cl2/CH3OH (1:4 v/v) to give colourless needles of the title compound. Mp 491.0-492.2 K (decompose).

Refinement top

H atoms were placed in calculated positions with (C—H) = 0.93 for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.79 Å from C5B and the deepest hole is located at 0.81 Å from C7B. 2632 Friedel pairs were used to determine the absolute configuration. The crystal is a twin with BASF = 0.497 (1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.
7-Methoxy-6-[(1R,2R,5R)-5-methyl-4-oxo-3,6- dioxabicyclo[3.1.0]hexan-2-yl]-2H-chromen-2-one top
Crystal data top
C15H12O6F(000) = 600
Mr = 288.25Dx = 1.479 Mg m3
Monoclinic, P21Melting point = 491.0–492.2 (decompose) K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 6.7514 (2) ÅCell parameters from 4392 reflections
b = 23.7537 (8) Åθ = 1.9–67.5°
c = 8.0730 (3) ŵ = 0.98 mm1
β = 90.000 (1)°T = 100 K
V = 1294.67 (8) Å3Needle, colorless
Z = 40.56 × 0.22 × 0.19 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
4392 independent reflections
Radiation source: sealed tube4392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 67.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.609, Tmax = 0.838k = 2828
21511 measured reflectionsl = 79
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059
S = 1.06(Δ/σ)max = 0.001
4392 reflectionsΔρmax = 0.13 e Å3
384 parametersΔρmin = 0.13 e Å3
1 restraintAbsolute structure: Flack (1983), 2632 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (10)
Crystal data top
C15H12O6V = 1294.67 (8) Å3
Mr = 288.25Z = 4
Monoclinic, P21Cu Kα radiation
a = 6.7514 (2) ŵ = 0.98 mm1
b = 23.7537 (8) ÅT = 100 K
c = 8.0730 (3) Å0.56 × 0.22 × 0.19 mm
β = 90.000 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4392 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.838Rint = 0.028
21511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.13 e Å3
S = 1.06Δρmin = 0.13 e Å3
4392 reflectionsAbsolute structure: Flack (1983), 2632 Friedel pairs
384 parametersAbsolute structure parameter: 0.06 (10)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.5534 (2)0.77310 (5)0.20837 (17)0.0204 (3)
O2A0.5534 (2)0.70240 (6)0.03012 (18)0.0264 (3)
O3A0.74087 (18)0.88672 (5)0.89684 (16)0.0216 (3)
O4A0.8825 (2)0.97077 (5)0.92773 (18)0.0269 (3)
O5A0.4227 (2)0.93361 (5)1.05332 (16)0.0241 (3)
O6A0.5758 (2)0.93052 (5)0.57220 (16)0.0241 (3)
C1A0.5487 (3)0.71597 (7)0.1741 (2)0.0202 (4)
C2A0.5373 (2)0.67836 (8)0.3155 (3)0.0214 (4)
H2A0.53330.63970.29740.026*
C3A0.5323 (3)0.69786 (8)0.4722 (2)0.0201 (4)
H3A0.52350.67270.56020.024*
C4A0.5405 (3)0.75717 (7)0.5038 (2)0.0181 (4)
C5A0.5383 (3)0.78164 (8)0.6622 (3)0.0181 (4)
H5A0.52920.75840.75460.022*
C6A0.5493 (3)0.83936 (7)0.6845 (2)0.0195 (4)
C7A0.5631 (3)0.87404 (7)0.5419 (2)0.0189 (4)
C8A0.5625 (3)0.85146 (8)0.3842 (3)0.0195 (4)
H8A0.56900.87460.29140.023*
C9A0.5519 (3)0.79334 (8)0.3677 (2)0.0182 (4)
C10A0.4044 (3)0.91242 (8)0.8848 (2)0.0211 (4)
H10A0.27870.91510.82460.025*
C11A0.5444 (3)0.86343 (7)0.8562 (2)0.0215 (4)
H11A0.51280.83330.93490.026*
C12A0.7343 (3)0.94293 (7)0.9141 (2)0.0212 (3)
C13A0.5240 (3)0.96269 (8)0.9180 (2)0.0225 (4)
C14A0.4710 (3)1.02263 (7)0.8862 (2)0.0281 (4)
H14A0.32961.02680.88910.042*
H14B0.51951.03370.77930.042*
H14C0.52971.04600.96980.042*
C15A0.5814 (3)0.96784 (8)0.4322 (2)0.0272 (4)
H15A0.59191.00600.47030.041*
H15B0.46230.96350.36860.041*
H15C0.69380.95890.36430.041*
O1B0.05200 (18)0.79463 (5)0.46409 (16)0.0183 (3)
O2B0.0717 (2)0.86476 (5)0.64252 (16)0.0242 (3)
O3B0.23060 (19)0.67681 (5)0.22314 (17)0.0233 (3)
O4B0.34079 (19)0.58955 (6)0.2685 (2)0.0318 (3)
O5B0.09923 (19)0.64242 (5)0.38897 (15)0.0236 (3)
O6B0.04861 (19)0.63788 (5)0.09768 (17)0.0225 (3)
C1B0.0630 (3)0.85163 (7)0.4988 (2)0.0203 (4)
C2B0.0651 (3)0.88964 (7)0.3574 (2)0.0199 (4)
H2B0.07200.92820.37610.024*
C3B0.0575 (3)0.87071 (7)0.2008 (2)0.0197 (4)
H3B0.05570.89610.11310.024*
C4B0.0519 (3)0.81105 (8)0.1684 (2)0.0178 (4)
C5B0.0489 (3)0.78703 (8)0.0093 (2)0.0199 (4)
H5B0.04820.81040.08310.024*
C6B0.0471 (3)0.72951 (8)0.0123 (2)0.0194 (4)
C7B0.0466 (3)0.69415 (7)0.1295 (2)0.0192 (4)
C8B0.0462 (3)0.71642 (7)0.2875 (3)0.0175 (3)
H8B0.04400.69310.38010.021*
C9B0.0491 (3)0.77488 (7)0.3041 (2)0.0179 (4)
C10B0.1127 (3)0.66169 (7)0.2188 (3)0.0215 (4)
H10B0.23980.66220.16020.026*
C11B0.0431 (3)0.70558 (9)0.1849 (2)0.0228 (4)
H11B0.02540.73660.26360.027*
C12B0.2048 (3)0.62152 (8)0.2490 (2)0.0226 (4)
C13B0.0122 (3)0.60858 (8)0.2562 (2)0.0207 (4)
C14B0.0890 (3)0.55004 (8)0.2368 (3)0.0278 (4)
H14D0.23110.55070.23420.042*
H14E0.03990.53430.13530.042*
H14F0.04530.52750.32840.042*
C15B0.0417 (3)0.60079 (7)0.2381 (2)0.0223 (4)
H15D0.04170.56240.20070.033*
H15E0.07650.60790.30070.033*
H15F0.15550.60720.30690.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0222 (6)0.0233 (7)0.0158 (7)0.0021 (5)0.0004 (5)0.0002 (5)
O2A0.0267 (7)0.0324 (7)0.0201 (8)0.0025 (6)0.0010 (6)0.0059 (6)
O3A0.0261 (6)0.0169 (5)0.0217 (7)0.0002 (5)0.0085 (6)0.0002 (5)
O4A0.0280 (7)0.0249 (6)0.0278 (8)0.0054 (5)0.0071 (6)0.0003 (5)
O5A0.0309 (7)0.0241 (6)0.0171 (6)0.0045 (5)0.0002 (5)0.0034 (5)
O6A0.0348 (7)0.0188 (6)0.0188 (7)0.0023 (5)0.0023 (6)0.0039 (5)
C1A0.0148 (8)0.0238 (9)0.0219 (11)0.0021 (7)0.0029 (7)0.0024 (7)
C2A0.0169 (8)0.0224 (8)0.0248 (10)0.0003 (7)0.0031 (7)0.0036 (7)
C3A0.0148 (8)0.0233 (9)0.0223 (11)0.0016 (7)0.0022 (7)0.0022 (7)
C4A0.0138 (8)0.0209 (9)0.0197 (9)0.0004 (6)0.0014 (7)0.0021 (7)
C5A0.0149 (8)0.0194 (8)0.0201 (9)0.0013 (6)0.0030 (7)0.0050 (6)
C6A0.0174 (8)0.0210 (9)0.0202 (10)0.0014 (7)0.0064 (7)0.0011 (7)
C7A0.0172 (8)0.0193 (9)0.0202 (10)0.0008 (7)0.0029 (7)0.0035 (7)
C8A0.0173 (8)0.0232 (9)0.0179 (9)0.0001 (7)0.0019 (7)0.0045 (7)
C9A0.0126 (8)0.0243 (9)0.0178 (10)0.0007 (7)0.0013 (8)0.0004 (7)
C10A0.0265 (8)0.0225 (8)0.0142 (9)0.0010 (8)0.0023 (7)0.0007 (7)
C11A0.0248 (8)0.0204 (9)0.0193 (10)0.0049 (7)0.0051 (8)0.0039 (7)
C12A0.0297 (9)0.0212 (8)0.0127 (9)0.0039 (7)0.0063 (7)0.0037 (6)
C13A0.0298 (9)0.0233 (8)0.0143 (9)0.0020 (8)0.0036 (7)0.0011 (7)
C14A0.0325 (10)0.0261 (10)0.0258 (10)0.0044 (8)0.0000 (8)0.0006 (7)
C15A0.0388 (11)0.0206 (8)0.0222 (10)0.0016 (8)0.0005 (8)0.0067 (7)
O1B0.0193 (6)0.0204 (6)0.0153 (7)0.0001 (5)0.0028 (5)0.0005 (5)
O2B0.0288 (7)0.0248 (7)0.0192 (7)0.0029 (6)0.0037 (5)0.0047 (5)
O3B0.0241 (6)0.0253 (6)0.0205 (7)0.0007 (5)0.0035 (5)0.0015 (5)
O4B0.0288 (7)0.0317 (7)0.0349 (8)0.0085 (6)0.0011 (6)0.0057 (6)
O5B0.0318 (7)0.0250 (6)0.0139 (6)0.0045 (5)0.0027 (5)0.0007 (5)
O6B0.0306 (7)0.0187 (6)0.0181 (7)0.0036 (5)0.0002 (6)0.0005 (5)
C1B0.0145 (8)0.0204 (8)0.0261 (12)0.0001 (7)0.0020 (7)0.0038 (7)
C2B0.0171 (8)0.0168 (8)0.0259 (10)0.0012 (7)0.0040 (7)0.0007 (7)
C3B0.0154 (8)0.0204 (8)0.0232 (10)0.0007 (7)0.0019 (8)0.0027 (7)
C4B0.0141 (8)0.0191 (9)0.0202 (10)0.0007 (6)0.0027 (7)0.0029 (7)
C5B0.0186 (8)0.0239 (9)0.0172 (9)0.0020 (7)0.0001 (7)0.0037 (7)
C6B0.0184 (8)0.0212 (9)0.0185 (10)0.0031 (7)0.0023 (8)0.0003 (7)
C7B0.0166 (8)0.0178 (8)0.0231 (10)0.0028 (7)0.0018 (7)0.0016 (7)
C8B0.0163 (7)0.0177 (8)0.0184 (9)0.0028 (6)0.0018 (7)0.0054 (6)
C9B0.0157 (8)0.0221 (9)0.0161 (9)0.0005 (7)0.0021 (7)0.0026 (7)
C10B0.0253 (9)0.0258 (9)0.0133 (9)0.0044 (7)0.0019 (7)0.0013 (6)
C11B0.0284 (9)0.0226 (9)0.0173 (10)0.0050 (8)0.0007 (8)0.0007 (7)
C12B0.0295 (9)0.0239 (9)0.0145 (10)0.0013 (7)0.0005 (7)0.0008 (7)
C13B0.0255 (8)0.0238 (9)0.0127 (10)0.0033 (7)0.0010 (7)0.0009 (7)
C14B0.0339 (10)0.0252 (9)0.0243 (10)0.0033 (8)0.0034 (9)0.0007 (7)
C15B0.0284 (8)0.0188 (8)0.0197 (9)0.0032 (7)0.0017 (8)0.0021 (7)
Geometric parameters (Å, º) top
O1A—C9A1.373 (2)O1B—C9B1.374 (2)
O1A—C1A1.385 (2)O1B—C1B1.385 (2)
O2A—C1A1.207 (2)O2B—C1B1.203 (2)
O3A—C12A1.343 (2)O3B—C12B1.341 (2)
O3A—C11A1.474 (2)O3B—C11B1.471 (2)
O4A—C12A1.204 (2)O4B—C12B1.202 (2)
O5A—C10A1.456 (2)O5B—C10B1.451 (2)
O5A—C13A1.462 (2)O5B—C13B1.463 (2)
O6A—C7A1.366 (2)O6B—C7B1.361 (2)
O6A—C15A1.437 (2)O6B—C15B1.437 (2)
C1A—C2A1.451 (3)C1B—C2B1.455 (3)
C2A—C3A1.348 (3)C2B—C3B1.343 (3)
C2A—H2A0.9300C2B—H2B0.9300
C3A—C4A1.433 (2)C3B—C4B1.441 (2)
C3A—H3A0.9300C3B—H3B0.9300
C4A—C9A1.397 (3)C4B—C9B1.392 (2)
C4A—C5A1.405 (3)C4B—C5B1.406 (3)
C5A—C6A1.385 (2)C5B—C6B1.377 (3)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.419 (2)C6B—C7B1.420 (3)
C6A—C11A1.500 (3)C6B—C11B1.505 (3)
C7A—C8A1.381 (3)C7B—C8B1.381 (3)
C8A—C9A1.389 (3)C8B—C9B1.395 (2)
C8A—H8A0.9300C8B—H8B0.9300
C10A—C13A1.466 (3)C10B—C13B1.464 (3)
C10A—C11A1.517 (3)C10B—C11B1.506 (3)
C10A—H10A0.9800C10B—H10B0.9800
C11A—H11A0.9800C11B—H11B0.9800
C12A—C13A1.496 (3)C12B—C13B1.498 (2)
C13A—C14A1.490 (2)C13B—C14B1.492 (2)
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
C9A—O1A—C1A121.99 (14)C9B—O1B—C1B121.63 (13)
C12A—O3A—C11A111.50 (14)C12B—O3B—C11B112.06 (15)
C10A—O5A—C13A60.32 (11)C10B—O5B—C13B60.31 (11)
C7A—O6A—C15A117.82 (14)C7B—O6B—C15B116.94 (15)
O2A—C1A—O1A116.95 (16)O2B—C1B—O1B116.82 (16)
O2A—C1A—C2A126.46 (16)O2B—C1B—C2B126.52 (16)
O1A—C1A—C2A116.58 (16)O1B—C1B—C2B116.66 (16)
C3A—C2A—C1A121.86 (17)C3B—C2B—C1B122.02 (16)
C3A—C2A—H2A119.1C3B—C2B—H2B119.0
C1A—C2A—H2A119.1C1B—C2B—H2B119.0
C2A—C3A—C4A120.27 (17)C2B—C3B—C4B120.06 (16)
C2A—C3A—H3A119.9C2B—C3B—H3B120.0
C4A—C3A—H3A119.9C4B—C3B—H3B120.0
C9A—C4A—C5A117.51 (16)C9B—C4B—C5B117.92 (16)
C9A—C4A—C3A117.85 (18)C9B—C4B—C3B117.67 (17)
C5A—C4A—C3A124.65 (16)C5B—C4B—C3B124.41 (16)
C6A—C5A—C4A121.84 (18)C6B—C5B—C4B121.22 (17)
C6A—C5A—H5A119.1C6B—C5B—H5B119.4
C4A—C5A—H5A119.1C4B—C5B—H5B119.4
C5A—C6A—C7A118.23 (17)C5B—C6B—C7B119.00 (17)
C5A—C6A—C11A119.76 (17)C5B—C6B—C11B119.47 (17)
C7A—C6A—C11A122.01 (15)C7B—C6B—C11B121.53 (16)
O6A—C7A—C8A123.13 (16)O6B—C7B—C8B123.40 (16)
O6A—C7A—C6A115.41 (15)O6B—C7B—C6B115.39 (16)
C8A—C7A—C6A121.47 (16)C8B—C7B—C6B121.20 (16)
C7A—C8A—C9A118.33 (16)C7B—C8B—C9B118.02 (16)
C7A—C8A—H8A120.8C7B—C8B—H8B121.0
C9A—C8A—H8A120.8C9B—C8B—H8B121.0
O1A—C9A—C8A115.95 (15)O1B—C9B—C4B121.91 (16)
O1A—C9A—C4A121.44 (16)O1B—C9B—C8B115.46 (15)
C8A—C9A—C4A122.62 (17)C4B—C9B—C8B122.62 (17)
O5A—C10A—C13A60.06 (12)O5B—C10B—C13B60.26 (12)
O5A—C10A—C11A110.76 (14)O5B—C10B—C11B110.29 (15)
C13A—C10A—C11A108.03 (15)C13B—C10B—C11B108.09 (15)
O5A—C10A—H10A120.9O5B—C10B—H10B121.0
C13A—C10A—H10A120.9C13B—C10B—H10B121.0
C11A—C10A—H10A120.9C11B—C10B—H10B121.0
O3A—C11A—C6A109.19 (15)O3B—C11B—C6B110.73 (15)
O3A—C11A—C10A103.82 (14)O3B—C11B—C10B103.96 (15)
C6A—C11A—C10A116.54 (15)C6B—C11B—C10B116.25 (17)
O3A—C11A—H11A109.0O3B—C11B—H11B108.5
C6A—C11A—H11A109.0C6B—C11B—H11B108.5
C10A—C11A—H11A109.0C10B—C11B—H11B108.5
O4A—C12A—O3A121.87 (16)O4B—C12B—O3B122.68 (18)
O4A—C12A—C13A127.90 (16)O4B—C12B—C13B127.76 (17)
O3A—C12A—C13A110.21 (15)O3B—C12B—C13B109.51 (16)
O5A—C13A—C10A59.62 (11)O5B—C13B—C10B59.43 (11)
O5A—C13A—C14A117.86 (16)O5B—C13B—C14B116.71 (15)
C10A—C13A—C14A127.90 (17)C10B—C13B—C14B128.36 (16)
O5A—C13A—C12A108.14 (14)O5B—C13B—C12B107.97 (15)
C10A—C13A—C12A105.27 (15)C10B—C13B—C12B105.57 (15)
C14A—C13A—C12A121.63 (16)C14B—C13B—C12B121.78 (15)
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
O6A—C15A—H15A109.5O6B—C15B—H15D109.5
O6A—C15A—H15B109.5O6B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
O6A—C15A—H15C109.5O6B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C9A—O1A—C1A—O2A178.97 (17)C9B—O1B—C1B—O2B177.49 (14)
C9A—O1A—C1A—C2A1.4 (3)C9B—O1B—C1B—C2B1.9 (2)
O2A—C1A—C2A—C3A179.84 (19)O2B—C1B—C2B—C3B179.08 (18)
O1A—C1A—C2A—C3A0.3 (3)O1B—C1B—C2B—C3B0.2 (2)
C1A—C2A—C3A—C4A0.7 (3)C1B—C2B—C3B—C4B1.6 (3)
C2A—C3A—C4A—C9A0.6 (3)C2B—C3B—C4B—C9B1.8 (3)
C2A—C3A—C4A—C5A179.32 (16)C2B—C3B—C4B—C5B178.27 (16)
C9A—C4A—C5A—C6A0.8 (3)C9B—C4B—C5B—C6B1.2 (3)
C3A—C4A—C5A—C6A179.12 (16)C3B—C4B—C5B—C6B178.86 (17)
C4A—C5A—C6A—C7A0.0 (3)C4B—C5B—C6B—C7B0.5 (3)
C4A—C5A—C6A—C11A179.40 (16)C4B—C5B—C6B—C11B179.74 (17)
C15A—O6A—C7A—C8A2.3 (3)C15B—O6B—C7B—C8B2.6 (3)
C15A—O6A—C7A—C6A177.34 (16)C15B—O6B—C7B—C6B178.06 (14)
C5A—C6A—C7A—O6A179.27 (15)C5B—C6B—C7B—O6B178.79 (15)
C11A—C6A—C7A—O6A1.3 (3)C11B—C6B—C7B—O6B2.0 (3)
C5A—C6A—C7A—C8A1.1 (3)C5B—C6B—C7B—C8B0.6 (3)
C11A—C6A—C7A—C8A178.34 (17)C11B—C6B—C7B—C8B178.65 (17)
O6A—C7A—C8A—C9A179.09 (16)O6B—C7B—C8B—C9B178.41 (14)
C6A—C7A—C8A—C9A1.3 (3)C6B—C7B—C8B—C9B0.9 (3)
C1A—O1A—C9A—C8A178.32 (14)C1B—O1B—C9B—C4B1.7 (3)
C1A—O1A—C9A—C4A1.6 (3)C1B—O1B—C9B—C8B177.39 (14)
C7A—C8A—C9A—O1A179.47 (16)C5B—C4B—C9B—O1B179.89 (14)
C7A—C8A—C9A—C4A0.4 (3)C3B—C4B—C9B—O1B0.1 (3)
C5A—C4A—C9A—O1A179.54 (16)C5B—C4B—C9B—C8B0.8 (3)
C3A—C4A—C9A—O1A0.6 (3)C3B—C4B—C9B—C8B179.19 (14)
C5A—C4A—C9A—C8A0.6 (3)C7B—C8B—C9B—O1B178.93 (14)
C3A—C4A—C9A—C8A179.34 (16)C7B—C8B—C9B—C4B0.2 (3)
C13A—O5A—C10A—C11A99.42 (16)C13B—O5B—C10B—C11B99.79 (16)
C12A—O3A—C11A—C6A113.83 (16)C12B—O3B—C11B—C6B116.25 (18)
C12A—O3A—C11A—C10A11.11 (18)C12B—O3B—C11B—C10B9.3 (2)
C5A—C6A—C11A—O3A110.37 (17)C5B—C6B—C11B—O3B112.02 (18)
C7A—C6A—C11A—O3A70.2 (2)C7B—C6B—C11B—O3B68.8 (2)
C5A—C6A—C11A—C10A132.47 (18)C5B—C6B—C11B—C10B129.66 (19)
C7A—C6A—C11A—C10A46.9 (2)C7B—C6B—C11B—C10B49.6 (2)
O5A—C10A—C11A—O3A56.68 (17)O5B—C10B—C11B—O3B57.98 (18)
C13A—C10A—C11A—O3A7.34 (19)C13B—C10B—C11B—O3B6.2 (2)
O5A—C10A—C11A—C6A176.76 (14)O5B—C10B—C11B—C6B179.94 (14)
C13A—C10A—C11A—C6A112.74 (17)C13B—C10B—C11B—C6B115.77 (19)
C11A—O3A—C12A—O4A170.99 (17)C11B—O3B—C12B—O4B173.74 (18)
C11A—O3A—C12A—C13A10.6 (2)C11B—O3B—C12B—C13B8.7 (2)
C10A—O5A—C13A—C14A119.70 (18)C10B—O5B—C13B—C14B120.65 (18)
C10A—O5A—C13A—C12A97.43 (17)C10B—O5B—C13B—C12B97.83 (16)
C11A—C10A—C13A—O5A104.05 (15)C11B—C10B—C13B—O5B103.51 (16)
O5A—C10A—C13A—C14A103.3 (2)O5B—C10B—C13B—C14B101.4 (2)
C11A—C10A—C13A—C14A152.64 (19)C11B—C10B—C13B—C14B155.06 (19)
O5A—C10A—C13A—C12A102.35 (16)O5B—C10B—C13B—C12B101.97 (16)
C11A—C10A—C13A—C12A1.7 (2)C11B—C10B—C13B—C12B1.5 (2)
O4A—C12A—C13A—O5A121.19 (19)O4B—C12B—C13B—O5B119.4 (2)
O3A—C12A—C13A—O5A57.12 (19)O3B—C12B—C13B—O5B58.02 (19)
O4A—C12A—C13A—C10A176.34 (19)O4B—C12B—C13B—C10B178.3 (2)
O3A—C12A—C13A—C10A5.3 (2)O3B—C12B—C13B—C10B4.3 (2)
O4A—C12A—C13A—C14A20.0 (3)O4B—C12B—C13B—C14B19.8 (3)
O3A—C12A—C13A—C14A161.68 (15)O3B—C12B—C13B—C14B162.80 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3B—H3B···O4Ai0.932.603.450 (2)152
C5A—H5A···O2Aii0.932.603.518 (3)171
C5B—H5B···O2Biii0.932.573.493 (2)173
C8A—H8A···O5Aiii0.932.583.440 (3)155
C8B—H8B···O5Bii0.932.423.298 (3)157
C10A—H10A···O2B0.982.353.186 (2)142
C10B—H10B···O2Aiv0.982.293.171 (3)150
C14B—H14E···O4Av0.962.493.423 (3)163
C15B—H15D···O4Av0.962.463.405 (2)166
Symmetry codes: (i) x1, y, z1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H12O6
Mr288.25
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.7514 (2), 23.7537 (8), 8.0730 (3)
β (°)90, 90.000 (1), 90
V3)1294.67 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.98
Crystal size (mm)0.56 × 0.22 × 0.19
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.609, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
21511, 4392, 4392
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.059, 1.06
No. of reflections4392
No. of parameters384
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13
Absolute structureFlack (1983), 2632 Friedel pairs
Absolute structure parameter0.06 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3B—H3B···O4Ai0.932.603.450 (2)152
C5A—H5A···O2Aii0.932.603.518 (3)171
C5B—H5B···O2Biii0.932.573.493 (2)173
C8A—H8A···O5Aiii0.932.583.440 (3)155
C8B—H8B···O5Bii0.932.423.298 (3)157
C10A—H10A···O2B0.982.353.186 (2)142
C10B—H10B···O2Aiv0.982.293.171 (3)150
C14B—H14E···O4Av0.962.493.423 (3)163
C15B—H15D···O4Av0.962.463.405 (2)166
Symmetry codes: (i) x1, y, z1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z; (v) x+1, y1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SL thanks the Thailand Research Fund (grant No. RSA5280011) for financial support. IS thanks Mae Fah Luang University for an MSc graduate student research grant. SC thanks the Prince of Songkla University for financial support through the Crystal Materials Research Unit (CMRU). The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIto, C., Itoigawa, M., Katsuno, S., Omura, M., Tokuda, H., Nishino, H. & Furukawa, H. (2000). J. Nat. Prod. 63, 1218–1224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIto, C., Katsuno, S., Ohta, H., Omura, M., Kajirua, I. & Furukawa, H. (1997). Chem. Pharm. Bull. 45, 48–52.  CrossRef CAS Google Scholar
First citationKamperdick, C., Phuong, N. M., Sun, T. V., Schmidt, J. & Adam, G. (1999). Phytochemistry, 52, 1671–1676.  CrossRef CAS Google Scholar
First citationRahmani, M., Susidarti, R. A., Ismail, H. B. M., Sukari, M. A., Hin, T.-Y. Y., Lian, G. E. C., Ali, A. M., Kulip, J. & Waterman, P. G. (2003). Phytochemistry, 64, 873–877.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157–162.  Google Scholar
First citationTantishaiyakul, V., Pummangura, S., Chaichantipyuth, C., Ma, W. W. & McLaughlin, J. L. (1986). J. Nat. Prod. 49, 180–181.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTantivatana, P., Ruana, G. M., Vaisiriroj, V., Lankin, D. C., Bhacca, M. C., Borris, R. P., Cordell, G. A. & Johnson, L. F. (1983). J. Org. Chem. 48, 268–270.  CrossRef CAS Web of Science Google Scholar
First citationThuy, T. T., Ripperger, H., Porzel, A., Sung, T. V. & Adam, G. (1999). Phytochemistry, 52, 511–516.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1706-o1707
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds