metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(4-meth­­oxy-2-{[2-(piperazin-4-ium-1-yl)eth­yl]imino­meth­yl}phenol­ate)cadmium

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 29 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, [CdCl2(C14H21N3O2)], the Schiff base ligand chelates the CdII ion in an N,N,O-tridentate fashion. Two Cl atoms complete a distorted square-pyramidal coordination environment around the metal atom. In the crystal, adjacent mol­ecules are linked through C—H⋯π inter­actions into infinite chains along the a axis. The mol­ecules are further connected into a three-dimensional network via N—H⋯O, N—H⋯Cl and C—H⋯Cl inter­actions. The ethyl­ene group is disordered over two sets of sites in a 0.520 (10):0.480 (10) ratio.

Related literature

For similar structures, see: Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]); Xu et al. (2008[Xu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306-3313.]); Saleh Salga et al. (2010[Saleh Salga, M., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1131.]). For a description of the geometry of complexes with five-coordinated metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C14H21N3O2)]

  • Mr = 446.64

  • Monoclinic, P 21 /c

  • a = 10.1173 (9) Å

  • b = 16.2686 (15) Å

  • c = 10.3486 (10) Å

  • β = 103.069 (1)°

  • V = 1659.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.684, Tmax = 0.937

  • 14540 measured reflections

  • 3624 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.061

  • S = 1.07

  • 3624 reflections

  • 225 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.241 (2)
Cd1—N1 2.245 (3)
Cd1—N2 2.475 (2)
Cd1—Cl1 2.4584 (8)
Cd1—Cl2 2.4797 (8)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.92 (2) 1.80 (2) 2.705 (3) 166 (4)
N3—H3B⋯Cl2ii 0.90 (2) 2.33 (2) 3.222 (3) 174 (4)
C9—H9A⋯Cl1iii 0.99 2.64 3.454 (8) 139
C8—H8A⋯Cl2iv 0.98 2.82 3.777 (3) 167
C8—H8B⋯Cl1v 0.98 2.76 3.514 (3) 134
C13—H13A⋯Cl1i 0.99 2.71 3.542 (4) 142
C12—H12ACg1vi 0.99 2.48 3.408 (4) 156
C9′—H9DCg1iv 0.99 2.72 3.620 (8) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) x-1, y, z-1; (vi) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The ligands containing a piperazine ring have been reported to possess ambidentate character, capable of binding metal centers through one or both piperazine N atoms (Mukhopadhyay et al., 2003; Xu et al., 2008; Saleh Salga et al., 2010). The coordination mode depends largely on the conformation (chair or boat) adopted by the ring which, in turn, depends on the metal salt entity and remote substituations in the ligand. In the present structure, the piperazine ring assumes a chair conformation and employs only one of the ring N atoms to bind to the metal center. The Schiff base ligand chelates the metal atom in an N,N,O-mode, along with two Cl atoms makes a distorted square-pyramidal cadmium(II) complex. The distortion from the ideal geometry is evident from the τ index of 0.30 (τ is 0 for an ideal square-pyramid and is 1 for a perfect trigonal-bipyramid, Addison et al., 1984). The other ring N atom stays away from the chelation, and is protonated to keep the electronutrality of the molecule, thus the complex can be described as a zwitterion. In the crystal, C—H···π interactions link the molecules into infinite chains along the a axis and these are connected into a three-dimensional network via N—H···O, N—H···Cl and C—H···Cl hydrogen bonds (Table 1).

Related literature top

For similar structures, see: Mukhopadhyay et al. (2003); Xu et al. (2008); Saleh Salga et al. (2010). For a description of the geometry of complexes with five-coordinated metal ions, see: Addison et al. (1984).

Experimental top

A mixture of 5-methoxysalicylaldehyde (0.35 g, 2.3 mmol) and aminoethylpiperazine (0.3 g, 2.3 mmol) in ethanol (20 ml) was refluxed for 2 h, followed by addition of a solution of cadmium(II) chloride (0.42 g, 2.3 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 1 h and then left at room temperature for one day to give the X-ray quality crystals of the title compound.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 Å (methylene). The N-bound hydrogen atoms were located in a difference Fourier map and refined with distance restraint of N—H 0.91 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2 (1.5 for methyl)Ueq(carrier atom). C9 and C10 were found to be disordered with two positions being resolved for each of the atoms. From anisotropic refinement, the site occupancy factor of the major component refined is 0.52 (1). The corresponding bond distances involving the disordered atoms were restrained to be equal with the SADI command in SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Only the major disordered component is shown.
Dichlorido(4-methoxy-2-{[2-(piperazin-4-ium-1- yl)ethyl]iminomethyl}phenolate)cadmium top
Crystal data top
[CdCl2(C14H21N3O2)]F(000) = 896
Mr = 446.64Dx = 1.788 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4675 reflections
a = 10.1173 (9) Åθ = 2.4–30.3°
b = 16.2686 (15) ŵ = 1.65 mm1
c = 10.3486 (10) ÅT = 100 K
β = 103.069 (1)°Plate, yellow
V = 1659.2 (3) Å30.25 × 0.18 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3624 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.684, Tmax = 0.937k = 2020
14540 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0115P)2 + 3.0473P]
where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.65 e Å3
5 restraintsΔρmin = 0.78 e Å3
Crystal data top
[CdCl2(C14H21N3O2)]V = 1659.2 (3) Å3
Mr = 446.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1173 (9) ŵ = 1.65 mm1
b = 16.2686 (15) ÅT = 100 K
c = 10.3486 (10) Å0.25 × 0.18 × 0.04 mm
β = 103.069 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3624 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3138 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.937Rint = 0.040
14540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0315 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.65 e Å3
3624 reflectionsΔρmin = 0.78 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.34107 (2)0.052048 (13)0.68131 (2)0.01663 (7)
Cl10.56656 (8)0.11579 (5)0.74780 (10)0.0354 (2)
Cl20.23070 (8)0.07175 (5)0.87000 (8)0.02395 (17)
O10.2602 (2)0.15436 (13)0.5407 (2)0.0251 (5)
O20.1051 (2)0.17553 (14)0.0579 (2)0.0268 (5)
N10.2318 (3)0.02551 (17)0.5110 (3)0.0360 (8)
N20.4238 (3)0.08960 (15)0.7371 (3)0.0201 (6)
N30.6073 (3)0.20036 (17)0.9144 (3)0.0282 (7)
H3A0.644 (3)0.2509 (14)0.941 (4)0.034*
H3B0.647 (3)0.1620 (18)0.972 (3)0.034*
C10.1647 (3)0.15272 (19)0.4325 (3)0.0213 (7)
C20.1038 (3)0.22708 (19)0.3799 (4)0.0250 (7)
H20.12400.27560.43160.030*
C30.0166 (3)0.2327 (2)0.2574 (4)0.0259 (7)
H30.02010.28460.22570.031*
C40.0181 (3)0.16303 (19)0.1797 (3)0.0199 (6)
C50.0301 (3)0.08803 (19)0.2301 (3)0.0221 (7)
H50.00280.03980.17920.027*
C60.1199 (3)0.08094 (18)0.3567 (3)0.0198 (6)
C70.1562 (4)0.0024 (2)0.3998 (4)0.0336 (9)
H70.12010.04480.33900.040*
C80.1108 (3)0.1114 (2)0.0365 (3)0.0277 (7)
H8A0.15390.06290.00770.042*
H8B0.16390.12970.12300.042*
H8C0.01860.09740.04400.042*
C90.2794 (9)0.1146 (3)0.5179 (6)0.027 (2)0.520 (10)
H9A0.36230.11950.48280.033*0.520 (10)
H9B0.20810.15000.46390.033*0.520 (10)
C100.3083 (6)0.1410 (3)0.6602 (6)0.0207 (17)0.520 (10)
H10A0.22670.13330.69650.025*0.520 (10)
H10B0.33340.19990.66740.025*0.520 (10)
C9'0.2199 (7)0.1130 (4)0.5540 (8)0.0213 (18)0.480 (10)
H9C0.17860.14830.47750.026*0.480 (10)
H9D0.16460.11660.62150.026*0.480 (10)
C10'0.3645 (7)0.1373 (4)0.6114 (7)0.0227 (19)0.480 (10)
H10C0.36860.19690.63140.027*0.480 (10)
H10D0.41950.12700.54520.027*0.480 (10)
C110.5665 (4)0.0977 (2)0.7352 (4)0.0374 (10)
H11A0.57720.08750.64380.045*
H11B0.61850.05490.79320.045*
C120.6273 (4)0.1815 (2)0.7807 (4)0.0363 (9)
H12A0.72550.18140.78210.044*
H12B0.58330.22440.71750.044*
C130.4637 (4)0.1933 (2)0.9208 (4)0.0407 (10)
H13A0.40980.23650.86520.049*
H13B0.45500.20121.01340.049*
C140.4095 (4)0.1085 (2)0.8714 (4)0.0441 (11)
H14A0.45830.06620.93290.053*
H14B0.31230.10540.87350.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01874 (11)0.01363 (11)0.01584 (12)0.00060 (9)0.00039 (8)0.00174 (9)
Cl10.0207 (4)0.0231 (4)0.0576 (6)0.0037 (3)0.0014 (4)0.0042 (4)
Cl20.0276 (4)0.0202 (4)0.0259 (4)0.0011 (3)0.0097 (3)0.0048 (3)
O10.0382 (13)0.0120 (10)0.0204 (12)0.0043 (9)0.0033 (10)0.0012 (9)
O20.0250 (12)0.0280 (13)0.0245 (13)0.0034 (10)0.0007 (10)0.0050 (10)
N10.060 (2)0.0154 (14)0.0215 (16)0.0037 (14)0.0132 (15)0.0005 (12)
N20.0188 (13)0.0163 (12)0.0217 (15)0.0021 (10)0.0028 (11)0.0021 (11)
N30.0386 (17)0.0143 (13)0.0228 (17)0.0021 (12)0.0119 (13)0.0002 (11)
C10.0189 (15)0.0175 (15)0.0274 (18)0.0022 (12)0.0050 (13)0.0013 (13)
C20.0249 (17)0.0140 (15)0.033 (2)0.0000 (13)0.0008 (14)0.0041 (14)
C30.0233 (16)0.0178 (15)0.035 (2)0.0022 (13)0.0036 (15)0.0054 (14)
C40.0135 (14)0.0259 (16)0.0187 (16)0.0003 (12)0.0004 (12)0.0044 (13)
C50.0251 (16)0.0184 (15)0.0226 (18)0.0016 (13)0.0049 (13)0.0031 (13)
C60.0256 (16)0.0150 (14)0.0179 (17)0.0009 (12)0.0032 (13)0.0023 (12)
C70.053 (2)0.0176 (16)0.0223 (19)0.0073 (16)0.0088 (17)0.0040 (14)
C80.0235 (17)0.0355 (19)0.0224 (19)0.0033 (14)0.0015 (14)0.0050 (15)
C90.040 (5)0.012 (3)0.021 (4)0.003 (3)0.010 (3)0.004 (3)
C100.020 (3)0.012 (3)0.027 (4)0.003 (2)0.002 (3)0.004 (3)
C9'0.023 (4)0.020 (4)0.020 (4)0.007 (3)0.002 (3)0.000 (3)
C10'0.031 (4)0.014 (3)0.021 (4)0.005 (3)0.004 (3)0.001 (3)
C110.034 (2)0.034 (2)0.053 (3)0.0217 (16)0.0285 (19)0.0279 (18)
C120.0297 (19)0.0302 (19)0.057 (3)0.0137 (15)0.0255 (18)0.0224 (18)
C130.060 (3)0.0272 (19)0.046 (3)0.0171 (18)0.035 (2)0.0180 (17)
C140.062 (3)0.0273 (19)0.058 (3)0.0221 (18)0.044 (2)0.0194 (19)
Geometric parameters (Å, º) top
Cd1—O12.241 (2)C5—H50.9500
Cd1—N12.245 (3)C6—C71.448 (4)
Cd1—N22.475 (2)C7—H70.9500
Cd1—Cl12.4584 (8)C8—H8A0.9800
Cd1—Cl22.4797 (8)C8—H8B0.9800
O1—C11.303 (4)C8—H8C0.9800
O2—C41.380 (4)C9—C101.498 (7)
O2—C81.421 (4)C9—H9A0.9900
N1—C71.285 (4)C9—H9B0.9900
N1—C9'1.505 (6)C10—H10A0.9900
N1—C91.524 (6)C10—H10B0.9900
N2—C111.455 (4)C9'—C10'1.503 (7)
N2—C141.462 (4)C9'—H9C0.9900
N2—C101.509 (6)C9'—H9D0.9900
N2—C10'1.518 (6)C10'—H10C0.9900
N3—C131.474 (5)C10'—H10D0.9900
N3—C121.476 (5)C11—C121.525 (4)
N3—H3A0.918 (18)C11—H11A0.9900
N3—H3B0.897 (18)C11—H11B0.9900
C1—C21.410 (4)C12—H12A0.9900
C1—C61.423 (4)C12—H12B0.9900
C2—C31.373 (5)C13—C141.529 (5)
C2—H20.9500C13—H13A0.9900
C3—C41.388 (5)C13—H13B0.9900
C3—H30.9500C14—H14A0.9900
C4—C51.372 (4)C14—H14B0.9900
C5—C61.420 (4)
O1—Cd1—N182.23 (9)O2—C8—H8A109.5
O1—Cd1—Cl192.75 (6)O2—C8—H8B109.5
N1—Cd1—Cl1135.90 (10)H8A—C8—H8B109.5
O1—Cd1—N2153.88 (8)O2—C8—H8C109.5
N1—Cd1—N274.96 (9)H8A—C8—H8C109.5
Cl1—Cd1—N294.82 (6)H8B—C8—H8C109.5
O1—Cd1—Cl2104.60 (6)C10—C9—N1107.9 (5)
N1—Cd1—Cl2117.46 (9)C10—C9—H9A110.1
Cl1—Cd1—Cl2106.24 (3)N1—C9—H9A110.1
N2—Cd1—Cl297.20 (7)C10—C9—H9B110.1
C1—O1—Cd1129.33 (19)N1—C9—H9B110.1
C4—O2—C8116.0 (2)H9A—C9—H9B108.4
C7—N1—C9'118.1 (4)C9—C10—N2108.4 (5)
C7—N1—C9116.0 (4)C9—C10—H10A110.0
C9'—N1—C929.7 (3)N2—C10—H10A110.0
C7—N1—Cd1128.7 (2)C9—C10—H10B110.0
C9'—N1—Cd1111.0 (3)N2—C10—H10B110.0
C9—N1—Cd1113.8 (3)H10A—C10—H10B108.4
C11—N2—C14107.8 (3)C10'—C9'—N1103.3 (5)
C11—N2—C10126.5 (4)C10'—C9'—H9C111.1
C14—N2—C1098.8 (4)N1—C9'—H9C111.1
C11—N2—C10'98.2 (4)C10'—C9'—H9D111.1
C14—N2—C10'127.0 (4)N1—C9'—H9D111.1
C10—N2—C10'32.4 (3)H9C—C9'—H9D109.1
C11—N2—Cd1111.46 (19)C9'—C10'—N2111.4 (6)
C14—N2—Cd1108.48 (19)C9'—C10'—H10C109.3
C10—N2—Cd1102.3 (3)N2—C10'—H10C109.3
C10'—N2—Cd1103.2 (3)C9'—C10'—H10D109.3
C13—N3—C12111.8 (3)N2—C10'—H10D109.3
C13—N3—H3A113 (2)H10C—C10'—H10D108.0
C12—N3—H3A110 (2)N2—C11—C12114.2 (3)
C13—N3—H3B103 (2)N2—C11—H11A108.7
C12—N3—H3B110 (2)C12—C11—H11A108.7
H3A—N3—H3B109 (3)N2—C11—H11B108.7
O1—C1—C2119.3 (3)C12—C11—H11B108.7
O1—C1—C6124.9 (3)H11A—C11—H11B107.6
C2—C1—C6115.7 (3)N3—C12—C11110.1 (3)
C3—C2—C1123.2 (3)N3—C12—H12A109.6
C3—C2—H2118.4C11—C12—H12A109.6
C1—C2—H2118.4N3—C12—H12B109.6
C2—C3—C4120.4 (3)C11—C12—H12B109.6
C2—C3—H3119.8H12A—C12—H12B108.2
C4—C3—H3119.8N3—C13—C14109.8 (3)
C5—C4—O2125.2 (3)N3—C13—H13A109.7
C5—C4—C3119.0 (3)C14—C13—H13A109.7
O2—C4—C3115.8 (3)N3—C13—H13B109.7
C4—C5—C6121.4 (3)C14—C13—H13B109.7
C4—C5—H5119.3H13A—C13—H13B108.2
C6—C5—H5119.3N2—C14—C13113.8 (3)
C5—C6—C1120.0 (3)N2—C14—H14A108.8
C5—C6—C7115.2 (3)C13—C14—H14A108.8
C1—C6—C7124.8 (3)N2—C14—H14B108.8
N1—C7—C6127.5 (3)C13—C14—H14B108.8
N1—C7—H7116.3H14A—C14—H14B107.7
C6—C7—H7116.3
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.92 (2)1.80 (2)2.705 (3)166 (4)
N3—H3B···Cl2ii0.90 (2)2.33 (2)3.222 (3)174 (4)
C9—H9A···Cl1iii0.992.643.454 (8)139
C8—H8A···Cl2iv0.982.823.777 (3)167
C8—H8B···Cl1v0.982.763.514 (3)134
C13—H13A···Cl1i0.992.713.542 (4)142
C12—H12A···Cg1vi0.992.483.408 (4)156
C9—H9D···Cg1iv0.992.723.620 (8)151
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1, y, z1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C14H21N3O2)]
Mr446.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.1173 (9), 16.2686 (15), 10.3486 (10)
β (°) 103.069 (1)
V3)1659.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.25 × 0.18 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.684, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
14540, 3624, 3138
Rint0.040
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.061, 1.07
No. of reflections3624
No. of parameters225
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.78

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—O12.241 (2)Cd1—Cl12.4584 (8)
Cd1—N12.245 (3)Cd1—Cl22.4797 (8)
Cd1—N22.475 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.921 (19)1.80 (2)2.705 (3)166 (4)
N3—H3B···Cl2ii0.901 (19)2.33 (2)3.222 (3)174 (4)
C9—H9A···Cl1iii0.992.643.454 (8)139
C8—H8A···Cl2iv0.982.823.777 (3)167
C8—H8B···Cl1v0.982.763.514 (3)134
C13—H13A···Cl1i0.992.713.542 (4)142
C12—H12A···Cg1vi0.992.483.408 (4)156
C9'—H9D···Cg1iv0.992.723.620 (8)151
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x, y, z+1; (v) x1, y, z1; (vi) x, y+1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaleh Salga, M., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306–3313.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds