organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1678-o1679

1′′-Benzyl-1′-methyl-4′-(naphthalen-1-yl)naphthalene-2-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-1,2′′-dione

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 6 June 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, C38H32N2O2, the pyrrolidine ring adopts an envelope conformation, whereas the cyclo­hexa­none ring in the tetra­hydro­naphthalene fused-ring system adopts a half-chair conformation. The benzyl ring is oriented at an angle of 67.1 (1)° with respect to the naphthyl ring system. Four intra­molecular C—H⋯O close contacts and C—H⋯π inter­action are observed. In the crystal, mol­ecules associate via C—H⋯O hydrogen bonds, forming a C(12) chain motif along the ac plane.

Related literature

For general background to pyrrolidine derivatives, see: Mendoza et al. (2011[Mendoza, A., Perez-Silanes, S., Quiliano, M., Pabon, A., Galiano, S., Gonzalez, G., Garavito, G., Zimic, M., Vaisberg, A., Aldana, I., Monge, A. & Deharo, E. (2011). Exp. Parasitol. 128, 97-103.]); Morais et al. (2009[Morais, C., Gobe, G., Johnson, D. W. & Healy, H. (2009). Angiogenesis, 12, 365-379.]); Pettersson et al. (2011[Pettersson, M., Campbell, B. M., Dounay, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865-868.]); Shi et al. (2011[Shi, W., Ma, H., Duan, Y., Aubart, K., Fang, Y., Zonis, R., Yang, L. & Hu, W. (2011). Bioorg. Med. Chem. Lett. 21, 1060-1063.]). For a related structure, see: Selvanayagam et al. (2011[Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.]). For the superposition of related structures, see: Gans & Shalloway (2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C38H32N2O2

  • Mr = 548.66

  • Monoclinic, P 21 /c

  • a = 12.6084 (6) Å

  • b = 14.3751 (7) Å

  • c = 17.4021 (9) Å

  • β = 110.057 (1)°

  • V = 2962.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 7081 measured reflections

  • 7081 independent reflections

  • 4812 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.149

  • S = 1.06

  • 7081 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C5/C1/C11/C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O1i 0.93 2.54 3.399 (3) 154
C3—H3⋯O2 0.98 2.28 2.815 (2) 113
C4—H4B⋯O1 0.97 2.46 3.055 (2) 120
C10—H10⋯O2 0.93 2.53 3.182 (3) 127
C12—H12A⋯O1 0.97 2.38 3.078 (2) 128
C13—H13ACg 0.97 2.56 3.238 (2) 127
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Pyrrolidine derivatives are dual norepinephrine reuptake inhibitors and 5-HT(2A) partial agonists (Pettersson et al., 2011). These derivatives are also used as peptide deformylase inhibitors (Shi et al., 2011). These derivatives possess anti-angiogenic (Morais et al., 2009) and antimalarial (Mendoza et al., 2011) activities. In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of all the ring systems (except benzyl ring) in the present structure is comparable with the related reported structure (Selvanayagam et al., 2011). Fig. 2 shows a superposition of the pyrrolidine ring of (I) with this related reported structure, using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.044 Å.

The sum of the angles at N1 of the pyrrolidine ring [335.3°] and N2 of the oxindole ring [360.1°] are in accordance with sp3 and sp2 hybridizations. The widening of the C21—C22—C23 and C21—C30—C29 bond angles [123.2 (2)° and 121.9 (2)°, respectively] are due to the short contacts H3···H23 (2 Å) and H4B···H30 (2.1 Å).

Pyrrolidine ring is in an envelope conformation, with puckering parameters q2 = 0.420 (2) Å and ϕ = 171.9 (3) °, and with atom C4 deviating -0.587 (2) Å from the least-squares plane passing through the remaining four atoms (N1/C1-C3) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthalin ring system has a half-chair conformation with the lowest asymmetry parameters of ΔC2(C12-C13) = 0.093 (1)° (Nardelli, 1983). The mean plane of oxindole ring system make a dihedral angles of 44.0 (1) and 82.7 (1)°, respectively with respect to the naphtyl group systems and benzyl ring. The benzyl ring is oriented at an angle of 67.1 (1)° with respect to the naphthyl ring system.

The molecular structure is influenced by four intramolecular C—H···O close contacts and C—H···π interaction. Atoms O1 and O2 act as a bifurcated acceptor for these four C—H···O intramolecular close contacts. In the molecular packing, C—H···O hydrogen bonds involving atoms C26 and O1 link symmetry-related molecules to form C(12) chain motif in the unit cell. (Fig. 3 and Table 1).

Related literature top

For general background to pyrrolidine derivatives, see: Mendoza et al. (2011); Morais et al. (2009); Pettersson et al. (2011); Shi et al. (2011). For a related structure, see: Selvanayagam et al. (2011). For the superposition of related structures, see: Gans & Shalloway (2001). For ring-puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a mixture of N-Benzyl isatin (1mmol), sarcosine (1mmol) and 2-napthalidene- 1,2,3,4-tetrahydronaphthalene-1-ones (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms. During the structure analysis, it was observed that the unit cell contains large accesible voids in the crystal structure which tend to host unpredictable disordered solvent molecules. This affects the diffraction pattern, mostly a low scattering angles and was corrected with the SQUEEZE program (Spek, 2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)'; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Superposition of (I) (red) with the similar reported structure of Selvanayagam et al. (2011) (blue).
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the c axis; H-bonds are shown as dashed lines forms a C(12) chain motif in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
1''-Benzyl-1'-methyl-4'-(naphthalen-1-yl)naphthalene-2-spiro-3'-pyrrolidine- 2'-spiro-3''-indoline-1,2''-dione top
Crystal data top
C38H32N2O2F(000) = 1160
Mr = 548.66Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19526 reflections
a = 12.6084 (6) Åθ = 2.4–28.3°
b = 14.3751 (7) ŵ = 0.08 mm1
c = 17.4021 (9) ÅT = 292 K
β = 110.057 (1)°Block, colourless
V = 2962.8 (3) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4812 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 1615
7081 measured reflectionsk = 018
7081 independent reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.6156P]
where P = (Fo2 + 2Fc2)/3
7081 reflections(Δ/σ)max < 0.001
380 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C38H32N2O2V = 2962.8 (3) Å3
Mr = 548.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6084 (6) ŵ = 0.08 mm1
b = 14.3751 (7) ÅT = 292 K
c = 17.4021 (9) Å0.22 × 0.20 × 0.18 mm
β = 110.057 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4812 reflections with I > 2σ(I)
7081 measured reflectionsRint = 0.000
7081 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
7081 reflectionsΔρmin = 0.14 e Å3
380 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66021 (11)0.12013 (10)0.16760 (9)0.0662 (4)
O20.93723 (11)0.40608 (9)0.17479 (8)0.0626 (4)
N10.90128 (12)0.19586 (10)0.24061 (8)0.0493 (4)
N20.73609 (12)0.08330 (10)0.06975 (9)0.0515 (4)
C10.82372 (13)0.20914 (12)0.15647 (10)0.0438 (4)
C20.77474 (14)0.31053 (12)0.15932 (10)0.0440 (4)
C30.79927 (15)0.32572 (12)0.25429 (10)0.0483 (4)
H30.86220.36980.27310.058*
C40.84428 (17)0.23271 (13)0.29382 (11)0.0579 (5)
H4A0.89650.24100.34920.069*
H4B0.78330.19220.29490.069*
C50.72848 (14)0.13465 (12)0.13340 (11)0.0478 (4)
C60.82563 (15)0.11410 (13)0.04566 (10)0.0500 (4)
C70.8606 (2)0.07633 (15)0.01446 (12)0.0656 (6)
H70.82230.02700.04670.079*
C80.9545 (2)0.11472 (18)0.02475 (14)0.0774 (7)
H80.97910.09180.06580.093*
C91.0130 (2)0.18583 (18)0.02375 (15)0.0766 (7)
H91.07750.20930.01610.092*
C100.97681 (16)0.22356 (15)0.08476 (13)0.0617 (5)
H101.01680.27160.11790.074*
C110.88083 (14)0.18802 (12)0.09463 (11)0.0467 (4)
C120.64951 (14)0.32215 (14)0.10675 (11)0.0537 (5)
H12A0.60560.27490.12210.064*
H12B0.62350.38240.11800.064*
C130.62867 (17)0.31449 (15)0.01543 (12)0.0623 (5)
H13A0.64960.25280.00310.075*
H13B0.54900.32330.01490.075*
C140.69571 (18)0.38566 (14)0.01072 (12)0.0599 (5)
C150.6569 (2)0.42401 (19)0.08921 (14)0.0832 (7)
H150.58780.40500.12630.100*
C160.7195 (3)0.4893 (2)0.11224 (16)0.1014 (9)
H160.69210.51440.16470.122*
C170.8221 (3)0.51820 (19)0.05876 (17)0.0964 (8)
H170.86430.56210.07500.116*
C180.8620 (2)0.48169 (15)0.01912 (14)0.0729 (6)
H180.93140.50120.05550.087*
C190.79923 (17)0.41576 (13)0.04390 (11)0.0549 (5)
C200.84519 (15)0.38003 (12)0.12938 (11)0.0478 (4)
C210.70292 (15)0.36805 (13)0.27567 (10)0.0517 (4)
C220.69140 (15)0.46686 (14)0.27729 (10)0.0518 (4)
C230.77083 (18)0.52959 (14)0.26515 (12)0.0609 (5)
H230.83260.50620.25370.073*
C240.7590 (2)0.62308 (16)0.26981 (15)0.0765 (6)
H240.81340.66260.26280.092*
C250.6657 (3)0.66048 (18)0.28506 (16)0.0879 (8)
H250.65810.72460.28790.106*
C260.5871 (2)0.60358 (19)0.29565 (15)0.0805 (7)
H260.52450.62920.30450.097*
C270.59733 (16)0.50575 (16)0.29370 (11)0.0614 (5)
C280.51909 (18)0.4461 (2)0.30987 (13)0.0741 (6)
H280.45700.47100.31990.089*
C290.53320 (19)0.3533 (2)0.31101 (14)0.0767 (7)
H290.48230.31470.32370.092*
C300.62455 (18)0.31407 (16)0.29314 (13)0.0679 (6)
H300.63180.24970.29320.082*
C310.94324 (17)0.10143 (13)0.26161 (12)0.0614 (5)
H31A0.88230.06170.26220.092*
H31B1.00090.10130.31470.092*
H31C0.97410.07910.22180.092*
C320.65854 (17)0.00833 (14)0.03219 (13)0.0641 (5)
H32A0.63390.01580.02670.077*
H32B0.59240.01440.04830.077*
C330.70527 (15)0.08882 (13)0.05326 (11)0.0532 (4)
C340.64882 (19)0.16142 (15)0.00444 (14)0.0710 (6)
H340.58450.14950.04060.085*
C350.6867 (2)0.25106 (17)0.02169 (16)0.0816 (7)
H350.64790.29930.01180.098*
C360.7813 (2)0.27023 (16)0.08771 (16)0.0784 (7)
H360.80650.33120.09910.094*
C370.83818 (19)0.19893 (16)0.13677 (14)0.0720 (6)
H370.90240.21130.18170.086*
C380.80016 (17)0.10885 (14)0.11940 (13)0.0629 (5)
H380.83930.06070.15300.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0568 (8)0.0683 (9)0.0841 (10)0.0130 (7)0.0380 (8)0.0036 (7)
O20.0576 (8)0.0656 (9)0.0608 (8)0.0172 (7)0.0154 (7)0.0010 (7)
N10.0483 (8)0.0490 (9)0.0456 (8)0.0023 (7)0.0097 (7)0.0001 (7)
N20.0499 (8)0.0495 (9)0.0508 (8)0.0032 (7)0.0117 (7)0.0047 (7)
C10.0390 (9)0.0460 (10)0.0470 (9)0.0018 (7)0.0155 (7)0.0007 (7)
C20.0414 (9)0.0457 (10)0.0443 (9)0.0004 (7)0.0141 (7)0.0012 (7)
C30.0493 (10)0.0500 (10)0.0453 (9)0.0027 (8)0.0160 (8)0.0040 (8)
C40.0690 (12)0.0570 (12)0.0454 (10)0.0044 (10)0.0167 (9)0.0002 (9)
C50.0423 (9)0.0468 (10)0.0527 (10)0.0004 (8)0.0140 (8)0.0012 (8)
C60.0523 (10)0.0520 (11)0.0436 (9)0.0109 (9)0.0140 (8)0.0058 (8)
C70.0815 (15)0.0681 (13)0.0490 (11)0.0195 (11)0.0246 (11)0.0034 (9)
C80.0981 (18)0.0828 (17)0.0657 (14)0.0330 (15)0.0466 (14)0.0160 (13)
C90.0690 (14)0.0885 (17)0.0916 (17)0.0188 (13)0.0526 (13)0.0307 (14)
C100.0527 (11)0.0637 (13)0.0761 (13)0.0049 (9)0.0317 (10)0.0120 (10)
C110.0443 (9)0.0488 (10)0.0492 (9)0.0069 (8)0.0187 (8)0.0056 (8)
C120.0433 (9)0.0569 (11)0.0580 (11)0.0025 (8)0.0134 (8)0.0015 (9)
C130.0527 (11)0.0684 (13)0.0542 (11)0.0060 (10)0.0033 (9)0.0027 (10)
C140.0675 (12)0.0586 (12)0.0504 (11)0.0119 (10)0.0160 (10)0.0013 (9)
C150.0942 (17)0.0917 (18)0.0537 (13)0.0162 (14)0.0124 (12)0.0073 (12)
C160.135 (3)0.105 (2)0.0610 (15)0.0160 (19)0.0290 (17)0.0285 (15)
C170.131 (2)0.0851 (18)0.0820 (18)0.0011 (17)0.0482 (18)0.0265 (15)
C180.0921 (16)0.0630 (13)0.0680 (13)0.0038 (12)0.0330 (12)0.0080 (11)
C190.0675 (12)0.0478 (10)0.0519 (10)0.0057 (9)0.0239 (10)0.0016 (8)
C200.0507 (10)0.0421 (9)0.0504 (10)0.0001 (8)0.0169 (8)0.0024 (8)
C210.0510 (10)0.0605 (12)0.0443 (9)0.0029 (9)0.0171 (8)0.0057 (8)
C220.0532 (10)0.0608 (12)0.0390 (9)0.0068 (9)0.0128 (8)0.0000 (8)
C230.0669 (12)0.0585 (12)0.0603 (12)0.0074 (10)0.0257 (10)0.0012 (9)
C240.0913 (17)0.0583 (14)0.0811 (15)0.0064 (12)0.0308 (13)0.0062 (11)
C250.103 (2)0.0639 (15)0.0899 (18)0.0290 (15)0.0238 (15)0.0018 (13)
C260.0754 (15)0.0865 (18)0.0754 (15)0.0311 (14)0.0203 (13)0.0077 (13)
C270.0520 (11)0.0837 (15)0.0439 (10)0.0148 (10)0.0106 (8)0.0056 (10)
C280.0530 (12)0.111 (2)0.0603 (13)0.0049 (13)0.0225 (10)0.0180 (13)
C290.0623 (13)0.104 (2)0.0727 (14)0.0181 (13)0.0348 (12)0.0180 (13)
C300.0674 (13)0.0735 (14)0.0693 (13)0.0117 (11)0.0315 (11)0.0112 (11)
C310.0615 (12)0.0543 (12)0.0606 (12)0.0076 (9)0.0108 (10)0.0055 (9)
C320.0551 (11)0.0584 (12)0.0620 (12)0.0054 (9)0.0014 (9)0.0089 (9)
C330.0514 (10)0.0530 (11)0.0536 (10)0.0078 (9)0.0157 (9)0.0054 (9)
C340.0669 (13)0.0632 (14)0.0726 (14)0.0075 (11)0.0108 (11)0.0107 (11)
C350.0861 (17)0.0606 (14)0.0941 (17)0.0160 (13)0.0257 (15)0.0181 (13)
C360.0867 (17)0.0550 (13)0.0996 (18)0.0026 (12)0.0399 (15)0.0072 (12)
C370.0688 (14)0.0680 (14)0.0741 (14)0.0012 (11)0.0180 (11)0.0129 (12)
C380.0624 (12)0.0567 (12)0.0615 (12)0.0075 (10)0.0107 (10)0.0039 (10)
Geometric parameters (Å, º) top
O1—C51.221 (2)C17—C181.378 (3)
O2—C201.218 (2)C17—H170.9300
N1—C41.453 (2)C18—C191.394 (3)
N1—C311.457 (2)C18—H180.9300
N1—C11.468 (2)C19—C201.490 (3)
N2—C51.362 (2)C21—C301.370 (3)
N2—C61.404 (2)C21—C221.429 (3)
N2—C321.451 (2)C22—C231.416 (3)
C1—C111.517 (2)C22—C271.426 (3)
C1—C51.555 (2)C23—C241.358 (3)
C1—C21.590 (2)C23—H230.9300
C2—C121.539 (2)C24—C251.398 (3)
C2—C201.541 (2)C24—H240.9300
C2—C31.589 (2)C25—C261.346 (4)
C3—C211.515 (2)C25—H250.9300
C3—C41.522 (3)C26—C271.414 (3)
C3—H30.9800C26—H260.9300
C4—H4A0.9700C27—C281.407 (3)
C4—H4B0.9700C28—C291.345 (3)
C6—C71.379 (3)C28—H280.9300
C6—C111.390 (3)C29—C301.409 (3)
C7—C81.372 (3)C29—H290.9300
C7—H70.9300C30—H300.9300
C8—C91.369 (3)C31—H31A0.9600
C8—H80.9300C31—H31B0.9600
C9—C101.401 (3)C31—H31C0.9600
C9—H90.9300C32—C331.511 (3)
C10—C111.378 (2)C32—H32A0.9700
C10—H100.9300C32—H32B0.9700
C12—C131.523 (3)C33—C381.376 (3)
C12—H12A0.9700C33—C341.379 (3)
C12—H12B0.9700C34—C351.371 (3)
C13—C141.494 (3)C34—H340.9300
C13—H13A0.9700C35—C361.370 (3)
C13—H13B0.9700C35—H350.9300
C14—C191.394 (3)C36—C371.369 (3)
C14—C151.397 (3)C36—H360.9300
C15—C161.372 (4)C37—C381.378 (3)
C15—H150.9300C37—H370.9300
C16—C171.373 (4)C38—H380.9300
C16—H160.9300
C4—N1—C31113.34 (15)C16—C17—C18119.5 (3)
C4—N1—C1106.40 (13)C16—C17—H17120.2
C31—N1—C1115.58 (14)C18—C17—H17120.2
C5—N2—C6111.11 (14)C17—C18—C19120.6 (2)
C5—N2—C32122.98 (16)C17—C18—H18119.7
C6—N2—C32125.90 (16)C19—C18—H18119.7
N1—C1—C11111.45 (13)C18—C19—C14119.87 (19)
N1—C1—C5111.05 (13)C18—C19—C20118.38 (18)
C11—C1—C5101.04 (13)C14—C19—C20121.75 (17)
N1—C1—C2102.78 (13)O2—C20—C19119.97 (17)
C11—C1—C2119.30 (14)O2—C20—C2120.77 (16)
C5—C1—C2111.43 (13)C19—C20—C2119.26 (15)
C12—C2—C20108.76 (14)C30—C21—C22118.20 (18)
C12—C2—C3113.42 (14)C30—C21—C3121.82 (18)
C20—C2—C3109.47 (13)C22—C21—C3119.98 (16)
C12—C2—C1114.28 (14)C23—C22—C27117.36 (18)
C20—C2—C1107.98 (13)C23—C22—C21123.22 (17)
C3—C2—C1102.66 (13)C27—C22—C21119.40 (18)
C21—C3—C4116.62 (15)C24—C23—C22121.6 (2)
C21—C3—C2115.11 (14)C24—C23—H23119.2
C4—C3—C2105.01 (14)C22—C23—H23119.2
C21—C3—H3106.5C23—C24—C25120.6 (2)
C4—C3—H3106.5C23—C24—H24119.7
C2—C3—H3106.5C25—C24—H24119.7
N1—C4—C3102.79 (14)C26—C25—C24120.0 (2)
N1—C4—H4A111.2C26—C25—H25120.0
C3—C4—H4A111.2C24—C25—H25120.0
N1—C4—H4B111.2C25—C26—C27121.5 (2)
C3—C4—H4B111.2C25—C26—H26119.2
H4A—C4—H4B109.1C27—C26—H26119.2
O1—C5—N2124.20 (16)C28—C27—C26121.7 (2)
O1—C5—C1127.08 (16)C28—C27—C22119.3 (2)
N2—C5—C1108.64 (15)C26—C27—C22119.0 (2)
C7—C6—C11122.88 (18)C29—C28—C27120.6 (2)
C7—C6—N2127.01 (18)C29—C28—H28119.7
C11—C6—N2110.04 (15)C27—C28—H28119.7
C8—C7—C6117.1 (2)C28—C29—C30120.5 (2)
C8—C7—H7121.4C28—C29—H29119.8
C6—C7—H7121.4C30—C29—H29119.8
C7—C8—C9121.8 (2)C21—C30—C29121.9 (2)
C7—C8—H8119.1C21—C30—H30119.0
C9—C8—H8119.1C29—C30—H30119.0
C8—C9—C10120.6 (2)N1—C31—H31A109.5
C8—C9—H9119.7N1—C31—H31B109.5
C10—C9—H9119.7H31A—C31—H31B109.5
C11—C10—C9118.7 (2)N1—C31—H31C109.5
C11—C10—H10120.7H31A—C31—H31C109.5
C9—C10—H10120.7H31B—C31—H31C109.5
C10—C11—C6118.91 (17)N2—C32—C33115.50 (15)
C10—C11—C1131.72 (17)N2—C32—H32A108.4
C6—C11—C1109.17 (15)C33—C32—H32A108.4
C13—C12—C2112.77 (15)N2—C32—H32B108.4
C13—C12—H12A109.0C33—C32—H32B108.4
C2—C12—H12A109.0H32A—C32—H32B107.5
C13—C12—H12B109.0C38—C33—C34118.27 (19)
C2—C12—H12B109.0C38—C33—C32123.44 (17)
H12A—C12—H12B107.8C34—C33—C32118.29 (17)
C14—C13—C12110.80 (16)C35—C34—C33120.6 (2)
C14—C13—H13A109.5C35—C34—H34119.7
C12—C13—H13A109.5C33—C34—H34119.7
C14—C13—H13B109.5C36—C35—C34120.7 (2)
C12—C13—H13B109.5C36—C35—H35119.7
H13A—C13—H13B108.1C34—C35—H35119.7
C19—C14—C15118.5 (2)C37—C36—C35119.4 (2)
C19—C14—C13120.00 (17)C37—C36—H36120.3
C15—C14—C13121.5 (2)C35—C36—H36120.3
C16—C15—C14120.8 (2)C36—C37—C38119.9 (2)
C16—C15—H15119.6C36—C37—H37120.1
C14—C15—H15119.6C38—C37—H37120.1
C15—C16—C17120.8 (2)C33—C38—C37121.15 (19)
C15—C16—H16119.6C33—C38—H38119.4
C17—C16—H16119.6C37—C38—H38119.4
C4—N1—C1—C11170.62 (14)C12—C13—C14—C1930.5 (2)
C31—N1—C1—C1162.61 (19)C12—C13—C14—C15149.0 (2)
C4—N1—C1—C577.56 (16)C19—C14—C15—C160.4 (3)
C31—N1—C1—C549.21 (19)C13—C14—C15—C16180.0 (2)
C4—N1—C1—C241.70 (16)C14—C15—C16—C170.3 (4)
C31—N1—C1—C2168.47 (14)C15—C16—C17—C180.6 (4)
N1—C1—C2—C12143.34 (14)C16—C17—C18—C190.1 (4)
C11—C1—C2—C1292.80 (18)C17—C18—C19—C140.7 (3)
C5—C1—C2—C1224.3 (2)C17—C18—C19—C20178.7 (2)
N1—C1—C2—C2095.51 (15)C15—C14—C19—C180.9 (3)
C11—C1—C2—C2028.35 (19)C13—C14—C19—C18179.53 (19)
C5—C1—C2—C20145.49 (14)C15—C14—C19—C20178.45 (18)
N1—C1—C2—C320.09 (15)C13—C14—C19—C201.1 (3)
C11—C1—C2—C3143.95 (14)C18—C19—C20—O22.5 (3)
C5—C1—C2—C398.91 (15)C14—C19—C20—O2178.12 (18)
C12—C2—C3—C2112.2 (2)C18—C19—C20—C2177.21 (17)
C20—C2—C3—C21109.49 (17)C14—C19—C20—C22.2 (3)
C1—C2—C3—C21136.00 (15)C12—C2—C20—O2156.02 (17)
C12—C2—C3—C4117.47 (16)C3—C2—C20—O231.6 (2)
C20—C2—C3—C4120.87 (15)C1—C2—C20—O279.4 (2)
C1—C2—C3—C46.35 (17)C12—C2—C20—C1923.7 (2)
C31—N1—C4—C3174.48 (14)C3—C2—C20—C19148.10 (15)
C1—N1—C4—C346.38 (17)C1—C2—C20—C19100.85 (17)
C21—C3—C4—N1159.66 (15)C4—C3—C21—C3031.4 (2)
C2—C3—C4—N130.92 (17)C2—C3—C21—C3092.3 (2)
C6—N2—C5—O1177.45 (17)C4—C3—C21—C22149.21 (17)
C32—N2—C5—O13.8 (3)C2—C3—C21—C2287.09 (19)
C6—N2—C5—C10.32 (19)C30—C21—C22—C23176.09 (18)
C32—N2—C5—C1179.08 (15)C3—C21—C22—C234.5 (3)
N1—C1—C5—O158.9 (2)C30—C21—C22—C272.4 (3)
C11—C1—C5—O1177.17 (17)C3—C21—C22—C27177.04 (15)
C2—C1—C5—O155.1 (2)C27—C22—C23—C240.7 (3)
N1—C1—C5—N2118.17 (15)C21—C22—C23—C24177.78 (19)
C11—C1—C5—N20.15 (17)C22—C23—C24—C251.5 (3)
C2—C1—C5—N2127.90 (15)C23—C24—C25—C260.3 (4)
C5—N2—C6—C7177.43 (18)C24—C25—C26—C271.5 (4)
C32—N2—C6—C73.9 (3)C25—C26—C27—C28175.9 (2)
C5—N2—C6—C110.4 (2)C25—C26—C27—C222.2 (3)
C32—N2—C6—C11179.10 (16)C23—C22—C27—C28177.11 (17)
C11—C6—C7—C80.2 (3)C21—C22—C27—C281.5 (3)
N2—C6—C7—C8176.48 (18)C23—C22—C27—C261.0 (3)
C6—C7—C8—C91.6 (3)C21—C22—C27—C26179.63 (18)
C7—C8—C9—C101.6 (3)C26—C27—C28—C29177.2 (2)
C8—C9—C10—C110.4 (3)C22—C27—C28—C290.9 (3)
C9—C10—C11—C62.1 (3)C27—C28—C29—C302.3 (3)
C9—C10—C11—C1176.24 (18)C22—C21—C30—C291.1 (3)
C7—C6—C11—C102.1 (3)C3—C21—C30—C29178.35 (18)
N2—C6—C11—C10175.08 (16)C28—C29—C30—C211.3 (3)
C7—C6—C11—C1177.46 (16)C5—N2—C32—C33105.3 (2)
N2—C6—C11—C10.28 (19)C6—N2—C32—C3376.1 (2)
N1—C1—C11—C1056.4 (2)N2—C32—C33—C3817.9 (3)
C5—C1—C11—C10174.47 (19)N2—C32—C33—C34163.17 (19)
C2—C1—C11—C1063.1 (3)C38—C33—C34—C350.0 (3)
N1—C1—C11—C6118.11 (15)C32—C33—C34—C35179.0 (2)
C5—C1—C11—C60.08 (17)C33—C34—C35—C360.0 (4)
C2—C1—C11—C6122.36 (16)C34—C35—C36—C370.0 (4)
C20—C2—C12—C1353.7 (2)C35—C36—C37—C380.0 (4)
C3—C2—C12—C13175.74 (15)C34—C33—C38—C370.1 (3)
C1—C2—C12—C1367.0 (2)C32—C33—C38—C37178.8 (2)
C2—C12—C13—C1458.2 (2)C36—C37—C38—C330.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C5/C1/C11/C6 ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.932.543.399 (3)154
C3—H3···O20.982.282.815 (2)113
C4—H4B···O10.972.463.055 (2)120
C10—H10···O20.932.533.182 (3)127
C12—H12A···O10.972.383.078 (2)128
C13—H13A···Cg0.972.563.238 (2)127
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC38H32N2O2
Mr548.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)12.6084 (6), 14.3751 (7), 17.4021 (9)
β (°) 110.057 (1)
V3)2962.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7081, 7081, 4812
Rint0.000
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.149, 1.06
No. of reflections7081
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), 'ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009)', SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C5/C1/C11/C6 ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···O1i0.932.543.399 (3)154
C3—H3···O20.982.282.815 (2)113
C4—H4B···O10.972.463.055 (2)120
C10—H10···O20.932.533.182 (3)127
C12—H12A···O10.972.383.078 (2)128
C13—H13A···Cg0.972.563.238 (2)127
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMendoza, A., Perez-Silanes, S., Quiliano, M., Pabon, A., Galiano, S., Gonzalez, G., Garavito, G., Zimic, M., Vaisberg, A., Aldana, I., Monge, A. & Deharo, E. (2011). Exp. Parasitol. 128, 97–103.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorais, C., Gobe, G., Johnson, D. W. & Healy, H. (2009). Angiogenesis, 12, 365–379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPettersson, M., Campbell, B. M., Dounay, A. B., Gray, D. L., Xie, L., O'Donnell, C. J., Stratman, N. C., Zoski, K., Drummond, E., Bora, G., Probert, A. & Whisman, T. (2011). Bioorg. Med. Chem. Lett. 21, 865–868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSelvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, W., Ma, H., Duan, Y., Aubart, K., Fang, Y., Zonis, R., Yang, L. & Hu, W. (2011). Bioorg. Med. Chem. Lett. 21, 1060–1063.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1678-o1679
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds