organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Opipramol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 May 2011; accepted 1 June 2011; online 11 June 2011)

In the title compound (systematic name: 2-{4-[3-(5H-dibenz[b,f]azepin-5-yl)prop­yl]piperazin-1-yl}ethanol), C23H29N3O, the 5H-dibenz[b,f]azepine and piperazine rings adopt boat and chair conformations, respectively, and the overall shape of the fused ring part of the molecule is a butterfly. In the crystal, O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into a layer parallel to the bc plane.

Related literature

For the application of opipramol, see: Moller et al. (2001[Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.]). For related structures, see: Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979-o1980.]); Nagaraj et al. (2005[Nagaraj, B., Yathirajan, H. S. & Lynch, D. E. (2005). Acta Cryst. E61, o1757-o1759.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H29N3O

  • Mr = 363.49

  • Monoclinic, P 21 /c

  • a = 12.6215 (2) Å

  • b = 10.5929 (2) Å

  • c = 14.3629 (2) Å

  • β = 90.966 (1)°

  • V = 1920.02 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.59 × 0.36 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.977

  • 30830 measured reflections

  • 7949 independent reflections

  • 6682 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 7949 reflections

  • 248 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N2i 0.896 (16) 1.999 (16) 2.8822 (9) 168.3 (14)
C5—H5A⋯O1ii 0.95 2.41 3.3478 (11) 167
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Opipramol [systematic IUPAC name: 4-[3-(5H-dibenz[b,f] azepin-5-yl)propyl]-1-piperazinethanol] is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). The crystal structure studies of opipramol dipicrate is reported (Jasinski et al., 2010). In view of the importance of the title compound, C23H29N3O, the crystal structure is reported.

In the title compound (Fig. 1), the seven-membered, 5H-dibenz[b,f]azepine ring (N1/C1/C6–C9/C14) adopts a boat conformation (Cremer & Pople, 1975) and the overall molecular shape is that of a butterfly (Nagaraj et al., 2005) whereas the piperazine ring (N2/C18/C19/N3/C20/C21) adopts a chair conformation (Cremer & Pople, 1975) with the puckering parameters, Q = 0.5934 (8) Å, Θ = 177.94 (8)°, ϕ = 305.8 (18)°. The torsion angle between the 5H-dibenz[b,f]azepine and the piperazine rings, N1–C15–C16–C17 is 61.73 (8)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), intermolecular O1—H1O1···N2 and C5—H5A···O1 hydrogen bonds link the molecules into layers parallel to the bc plane.

Related literature top

For the application of opipramol, see: Moller et al. (2001). For related structures, see: Jasinski et al. (2010); Nagaraj et al. (2005). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem. Ltd., Bangalore, India. The compound was recrystallized from acetone (m. p. 373–374 K).

Refinement top

H1O1 was located from a difference map and was refined freely [O—H = 0.896 (16) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined with a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-{4-[3-(5H-dibenz[b,f]azepin-5- yl)propyl]piperazin-1-yl}ethanol top
Crystal data top
C23H29N3OF(000) = 784
Mr = 363.49Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9885 reflections
a = 12.6215 (2) Åθ = 2.9–34.2°
b = 10.5929 (2) ŵ = 0.08 mm1
c = 14.3629 (2) ÅT = 100 K
β = 90.966 (1)°Block, colourless
V = 1920.02 (5) Å30.59 × 0.36 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7949 independent reflections
Radiation source: fine-focus sealed tube6682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 34.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1619
Tmin = 0.955, Tmax = 0.977k = 1316
30830 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.4097P]
where P = (Fo2 + 2Fc2)/3
7949 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H29N3OV = 1920.02 (5) Å3
Mr = 363.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6215 (2) ŵ = 0.08 mm1
b = 10.5929 (2) ÅT = 100 K
c = 14.3629 (2) Å0.59 × 0.36 × 0.30 mm
β = 90.966 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6682 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.977Rint = 0.026
30830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
7949 reflectionsΔρmin = 0.25 e Å3
248 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10636 (5)1.33255 (6)1.06904 (4)0.01965 (12)
N10.33738 (5)0.74218 (6)0.57588 (4)0.01418 (11)
N20.21096 (5)1.06560 (6)0.73239 (4)0.01326 (11)
N30.12890 (5)1.23458 (6)0.87387 (4)0.01380 (11)
C10.35654 (6)0.60944 (7)0.58110 (5)0.01411 (12)
C20.45637 (6)0.56231 (8)0.60674 (5)0.01763 (13)
H2A0.51360.61920.61650.021*
C30.47316 (7)0.43319 (8)0.61812 (5)0.02086 (15)
H3A0.54120.40270.63630.025*
C40.39006 (8)0.34908 (8)0.60285 (6)0.02318 (16)
H4A0.40110.26100.61060.028*
C50.29077 (7)0.39456 (8)0.57628 (6)0.02090 (15)
H5A0.23440.33670.56560.025*
C60.27213 (6)0.52452 (7)0.56485 (5)0.01608 (13)
C70.16454 (6)0.56539 (8)0.53991 (5)0.01885 (14)
H7A0.10840.51360.56110.023*
C80.13636 (6)0.66812 (8)0.49038 (5)0.01869 (14)
H8A0.06270.68460.48310.022*
C90.20930 (6)0.75680 (7)0.44664 (5)0.01590 (13)
C100.17851 (7)0.81058 (8)0.36112 (5)0.02081 (15)
H10A0.10990.79310.33620.025*
C110.24589 (8)0.88867 (8)0.31209 (5)0.02329 (16)
H11A0.22390.92320.25390.028*
C120.34570 (7)0.91589 (8)0.34884 (6)0.02238 (16)
H12A0.39260.96850.31530.027*
C130.37721 (6)0.86616 (8)0.43480 (5)0.01829 (14)
H13A0.44540.88580.45970.022*
C140.30944 (6)0.78756 (7)0.48477 (5)0.01414 (12)
C150.40721 (6)0.82280 (7)0.63287 (5)0.01655 (13)
H15A0.47500.83470.60040.020*
H15B0.42290.77990.69280.020*
C160.35831 (6)0.95205 (7)0.65234 (5)0.01594 (13)
H16A0.41001.00400.68810.019*
H16B0.34340.99540.59250.019*
C170.25587 (6)0.94200 (7)0.70697 (5)0.01620 (13)
H17A0.20280.89490.66910.019*
H17B0.27000.89290.76450.019*
C180.10673 (6)1.04721 (7)0.77555 (5)0.01661 (13)
H18A0.11480.99200.83080.020*
H18B0.05801.00510.73070.020*
C190.06022 (6)1.17294 (8)0.80442 (5)0.01601 (13)
H19A0.05221.22810.74910.019*
H19B0.01091.15940.83070.019*
C200.23213 (6)1.25503 (7)0.83151 (5)0.01593 (13)
H20A0.28051.29620.87720.019*
H20B0.22371.31210.77730.019*
C210.28023 (6)1.13121 (7)0.80016 (5)0.01553 (13)
H21A0.34971.14790.77160.019*
H21B0.29241.07620.85500.019*
C220.08179 (6)1.35398 (7)0.90363 (5)0.01556 (13)
H22A0.00541.34030.91440.019*
H22B0.08811.41620.85260.019*
C230.13187 (6)1.40919 (7)0.99127 (5)0.01650 (13)
H23A0.20971.41320.98470.020*
H23B0.10531.49601.00100.020*
H1O10.1474 (12)1.3609 (15)1.1160 (11)0.047 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (3)0.0212 (3)0.0123 (2)0.0037 (2)0.0003 (2)0.00024 (19)
N10.0171 (3)0.0124 (3)0.0129 (2)0.0007 (2)0.00349 (19)0.00178 (19)
N20.0140 (2)0.0135 (3)0.0123 (2)0.0022 (2)0.00079 (19)0.00190 (19)
N30.0138 (2)0.0157 (3)0.0119 (2)0.0006 (2)0.00102 (19)0.00231 (19)
C10.0180 (3)0.0130 (3)0.0113 (3)0.0014 (2)0.0002 (2)0.0009 (2)
C20.0203 (3)0.0175 (3)0.0150 (3)0.0033 (3)0.0019 (2)0.0009 (2)
C30.0276 (4)0.0191 (3)0.0159 (3)0.0078 (3)0.0006 (3)0.0010 (2)
C40.0352 (4)0.0149 (3)0.0196 (3)0.0043 (3)0.0037 (3)0.0018 (3)
C50.0289 (4)0.0155 (3)0.0183 (3)0.0023 (3)0.0036 (3)0.0002 (3)
C60.0199 (3)0.0153 (3)0.0131 (3)0.0010 (2)0.0018 (2)0.0017 (2)
C70.0178 (3)0.0205 (4)0.0184 (3)0.0035 (3)0.0021 (2)0.0039 (3)
C80.0157 (3)0.0219 (4)0.0184 (3)0.0004 (3)0.0010 (2)0.0059 (3)
C90.0172 (3)0.0165 (3)0.0139 (3)0.0036 (2)0.0019 (2)0.0036 (2)
C100.0251 (4)0.0211 (4)0.0160 (3)0.0063 (3)0.0062 (3)0.0038 (3)
C110.0349 (4)0.0213 (4)0.0136 (3)0.0087 (3)0.0013 (3)0.0003 (3)
C120.0306 (4)0.0196 (4)0.0171 (3)0.0047 (3)0.0058 (3)0.0021 (3)
C130.0194 (3)0.0177 (3)0.0177 (3)0.0023 (3)0.0023 (2)0.0002 (2)
C140.0163 (3)0.0136 (3)0.0125 (3)0.0029 (2)0.0007 (2)0.0020 (2)
C150.0172 (3)0.0151 (3)0.0172 (3)0.0009 (2)0.0041 (2)0.0034 (2)
C160.0179 (3)0.0134 (3)0.0165 (3)0.0006 (2)0.0003 (2)0.0025 (2)
C170.0190 (3)0.0126 (3)0.0170 (3)0.0016 (2)0.0007 (2)0.0017 (2)
C180.0168 (3)0.0181 (3)0.0150 (3)0.0054 (2)0.0012 (2)0.0026 (2)
C190.0135 (3)0.0210 (3)0.0135 (3)0.0019 (2)0.0009 (2)0.0027 (2)
C200.0142 (3)0.0159 (3)0.0177 (3)0.0019 (2)0.0001 (2)0.0039 (2)
C210.0144 (3)0.0169 (3)0.0152 (3)0.0003 (2)0.0026 (2)0.0037 (2)
C220.0169 (3)0.0163 (3)0.0135 (3)0.0020 (2)0.0008 (2)0.0005 (2)
C230.0198 (3)0.0161 (3)0.0136 (3)0.0008 (2)0.0009 (2)0.0015 (2)
Geometric parameters (Å, º) top
O1—C231.4221 (9)C11—C121.3879 (13)
O1—H1O10.896 (16)C11—H11A0.9500
N1—C11.4284 (10)C12—C131.3941 (11)
N1—C141.4327 (9)C12—H12A0.9500
N1—C151.4669 (9)C13—C141.4002 (11)
N2—C211.4719 (9)C13—H13A0.9500
N2—C171.4750 (10)C15—C161.5295 (10)
N2—C181.4766 (9)C15—H15A0.9900
N3—C201.4633 (9)C15—H15B0.9900
N3—C191.4641 (9)C16—C171.5275 (11)
N3—C221.4644 (10)C16—H16A0.9900
C1—C21.3988 (10)C16—H16B0.9900
C1—C61.4109 (11)C17—H17A0.9900
C2—C31.3932 (11)C17—H17B0.9900
C2—H2A0.9500C18—C191.5160 (11)
C3—C41.3908 (13)C18—H18A0.9900
C3—H3A0.9500C18—H18B0.9900
C4—C51.3900 (13)C19—H19A0.9900
C4—H4A0.9500C19—H19B0.9900
C5—C61.4057 (11)C20—C211.5168 (11)
C5—H5A0.9500C20—H20A0.9900
C6—C71.4641 (11)C20—H20B0.9900
C7—C81.3446 (12)C21—H21A0.9900
C7—H7A0.9500C21—H21B0.9900
C8—C91.4644 (12)C22—C231.5163 (10)
C8—H8A0.9500C22—H22A0.9900
C9—C101.4029 (11)C22—H22B0.9900
C9—C141.4072 (10)C23—H23A0.9900
C10—C111.3870 (13)C23—H23B0.9900
C10—H10A0.9500
C23—O1—H1O1105.3 (10)N1—C15—H15A109.1
C1—N1—C14114.65 (6)C16—C15—H15A109.1
C1—N1—C15116.37 (6)N1—C15—H15B109.1
C14—N1—C15116.79 (6)C16—C15—H15B109.1
C21—N2—C17110.88 (6)H15A—C15—H15B107.8
C21—N2—C18107.94 (6)C17—C16—C15112.28 (6)
C17—N2—C18109.61 (6)C17—C16—H16A109.1
C20—N3—C19107.69 (5)C15—C16—H16A109.1
C20—N3—C22111.24 (6)C17—C16—H16B109.1
C19—N3—C22110.21 (6)C15—C16—H16B109.1
C2—C1—C6119.36 (7)H16A—C16—H16B107.9
C2—C1—N1121.07 (7)N2—C17—C16113.42 (6)
C6—C1—N1119.49 (6)N2—C17—H17A108.9
C3—C2—C1121.06 (8)C16—C17—H17A108.9
C3—C2—H2A119.5N2—C17—H17B108.9
C1—C2—H2A119.5C16—C17—H17B108.9
C4—C3—C2119.84 (8)H17A—C17—H17B107.7
C4—C3—H3A120.1N2—C18—C19110.53 (6)
C2—C3—H3A120.1N2—C18—H18A109.5
C5—C4—C3119.69 (8)C19—C18—H18A109.5
C5—C4—H4A120.2N2—C18—H18B109.5
C3—C4—H4A120.2C19—C18—H18B109.5
C4—C5—C6121.32 (8)H18A—C18—H18B108.1
C4—C5—H5A119.3N3—C19—C18110.52 (6)
C6—C5—H5A119.3N3—C19—H19A109.5
C5—C6—C1118.73 (7)C18—C19—H19A109.5
C5—C6—C7118.10 (7)N3—C19—H19B109.5
C1—C6—C7123.14 (7)C18—C19—H19B109.5
C8—C7—C6127.21 (7)H19A—C19—H19B108.1
C8—C7—H7A116.4N3—C20—C21111.04 (6)
C6—C7—H7A116.4N3—C20—H20A109.4
C7—C8—C9125.70 (7)C21—C20—H20A109.4
C7—C8—H8A117.1N3—C20—H20B109.4
C9—C8—H8A117.1C21—C20—H20B109.4
C10—C9—C14118.72 (7)H20A—C20—H20B108.0
C10—C9—C8117.98 (7)N2—C21—C20111.61 (6)
C14—C9—C8123.27 (7)N2—C21—H21A109.3
C11—C10—C9121.56 (8)C20—C21—H21A109.3
C11—C10—H10A119.2N2—C21—H21B109.3
C9—C10—H10A119.2C20—C21—H21B109.3
C10—C11—C12119.42 (7)H21A—C21—H21B108.0
C10—C11—H11A120.3N3—C22—C23114.20 (6)
C12—C11—H11A120.3N3—C22—H22A108.7
C11—C12—C13120.12 (8)C23—C22—H22A108.7
C11—C12—H12A119.9N3—C22—H22B108.7
C13—C12—H12A119.9C23—C22—H22B108.7
C12—C13—C14120.73 (8)H22A—C22—H22B107.6
C12—C13—H13A119.6O1—C23—C22109.58 (6)
C14—C13—H13A119.6O1—C23—H23A109.8
C13—C14—C9119.38 (7)C22—C23—H23A109.8
C13—C14—N1121.65 (7)O1—C23—H23B109.8
C9—C14—N1118.91 (7)C22—C23—H23B109.8
N1—C15—C16112.50 (6)H23A—C23—H23B108.2
C14—N1—C1—C2116.85 (7)C10—C9—C14—C132.75 (11)
C15—N1—C1—C224.50 (10)C8—C9—C14—C13175.33 (7)
C14—N1—C1—C666.45 (9)C10—C9—C14—N1174.38 (7)
C15—N1—C1—C6152.20 (7)C8—C9—C14—N17.54 (11)
C6—C1—C2—C31.21 (11)C1—N1—C14—C13111.94 (8)
N1—C1—C2—C3175.49 (7)C15—N1—C14—C1329.25 (10)
C1—C2—C3—C40.74 (12)C1—N1—C14—C971.01 (8)
C2—C3—C4—C50.03 (12)C15—N1—C14—C9147.81 (7)
C3—C4—C5—C60.32 (12)C1—N1—C15—C16158.48 (6)
C4—C5—C6—C10.14 (11)C14—N1—C15—C1661.01 (8)
C4—C5—C6—C7177.90 (7)N1—C15—C16—C1761.73 (8)
C2—C1—C6—C50.90 (10)C21—N2—C17—C1667.12 (8)
N1—C1—C6—C5175.86 (7)C18—N2—C17—C16173.81 (6)
C2—C1—C6—C7178.53 (7)C15—C16—C17—N2175.98 (6)
N1—C1—C6—C71.78 (10)C21—N2—C18—C1957.76 (8)
C5—C6—C7—C8150.54 (8)C17—N2—C18—C19178.62 (6)
C1—C6—C7—C831.80 (12)C20—N3—C19—C1860.33 (8)
C6—C7—C8—C93.66 (13)C22—N3—C19—C18178.17 (6)
C7—C8—C9—C10144.64 (8)N2—C18—C19—N361.60 (8)
C7—C8—C9—C1433.45 (12)C19—N3—C20—C2158.73 (8)
C14—C9—C10—C112.62 (12)C22—N3—C20—C21179.59 (6)
C8—C9—C10—C11175.56 (7)C17—N2—C21—C20176.59 (6)
C9—C10—C11—C120.88 (13)C18—N2—C21—C2056.52 (8)
C10—C11—C12—C130.73 (12)N3—C20—C21—N258.74 (8)
C11—C12—C13—C140.55 (12)C20—N3—C22—C2374.86 (8)
C12—C13—C14—C91.22 (11)C19—N3—C22—C23165.77 (6)
C12—C13—C14—N1175.83 (7)N3—C22—C23—O169.38 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N2i0.896 (16)1.999 (16)2.8822 (9)168.3 (14)
C5—H5A···O1ii0.952.413.3478 (11)167
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H29N3O
Mr363.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.6215 (2), 10.5929 (2), 14.3629 (2)
β (°) 90.966 (1)
V3)1920.02 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.59 × 0.36 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
30830, 7949, 6682
Rint0.026
(sin θ/λ)max1)0.792
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections7949
No. of parameters248
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N2i0.896 (16)1.999 (16)2.8822 (9)168.3 (14)
C5—H5A···O1ii0.952.413.3478 (11)167.4
Symmetry codes: (i) x, y+5/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). WSL also thanks the Malaysian government and USM for the award of a research fellowship. MSS thanks UOM for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979–o1980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNagaraj, B., Yathirajan, H. S. & Lynch, D. E. (2005). Acta Cryst. E61, o1757–o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds